M. R. Del-río and J. Defelipe, Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex, AID-CNE11>3.0.CO;2-K, pp.472-482, 1996.
DOI : 10.1007/978-1-4684-8721-3

J. Defelipe, G. J. Clowry, C. J. Mcbain, A. Fisahn, M. Toledo-rodriguez et al., An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex Interneurons unbound Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Interneurons of the neocortical inhibitory system, pp.384-393, 2001.

V. Wegner and . Lefebvre, The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development New insights into the classification and nomenclature of cortical GABAergic interneurons GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits, B. Wamsley, G. Fishell, Genetic and activity-dependent mechanisms underlying interneuron diversity, pp.63-466, 2009.

B. Tasic, V. Menon, T. N. Nguyen, T. K. Kim, T. Jarsky et al., Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nature Neuroscience, vol.144, issue.2, pp.335-346, 2015.
DOI : 10.1038/mp.2014.162

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985242/pdf

J. L. Close, Z. Yao, B. P. Levi, J. A. Miller, T. E. Bakken et al., Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors, Neuron. Journal of Neuroscience, vol.93, issue.30, pp.16796-16808, 2010.

G. Fishell and B. Rudy, Mechanisms of Inhibition within the Telencephalon: ???Where the Wild Things Are???, Annual Review of Neuroscience, vol.34, issue.1, pp.535-567, 2011.
DOI : 10.1146/annurev-neuro-061010-113717

G. Miyoshi, J. Hjerling-leffler, T. Karayannis, V. H. Sousa, S. J. Butt et al., Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons Sonic Hedgehog Signaling Confers Ventral Telencephalic Progenitorswith Distinct Cortical Interneuron Fates Subcortical origins of human and monkey neocortical interneurons, Prenatal development of calbindin D-28K in human visual cortex20] N. Zecevic, A. Milosevic, S. Rakic, M. Marín-Padilla, Early development and composition of the human primordial plexiform layer: An immunohistochemical study, pp.1582-1594, 1997.

G. Meyer, J. P. Schaaps, L. Moreau, A. M. Goffinet, N. Zecevic et al., Embryonic and early fetal development of the human neocortex, Interneurons in the developing human neocortex, Devel Neurobio, pp.1858-1868, 2000.

. Alvarez-buylla, Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences, Nature Neuroscience, vol.16, 2013.

Z. Molnár and S. J. Butt, Best-laid schemes for interneuron origin of mice and men, Nature Neuroscience, vol.16, issue.11, pp.1512-1514, 2013.
DOI : 10.1016/j.cell.2013.05.056

S. A. Anderson, D. D. Eisenstat, L. Shi, J. L. Rubenstein, N. Tamamaki et al., Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex, Science. J. Neurosci. Journal of Neuroscience, vol.278, issue.19, pp.474-476, 1997.

H. Wichterle, J. M. García-verdugo, D. G. Herrera, and A. Alvarez-buylla, Young neurons from medial ganglionic eminence disperse in adult and embryonic brain, Distinct cortical migrations from the medial and lateral ganglionic eminences, pp.461-466, 1999.
DOI : 10.1038/8131

H. Wichterle, D. H. Turnbull, S. Nery, G. Fishell, A. Alvarez-buylla et al., In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain, Development The origin and migration of cortical neurones: new vistas A long, remarkable journey: tangential migration in the telencephalon, Trends in Neurosciences. Nat Rev Neurosci, vol.128, issue.2, pp.126-131, 2000.

J. G. Parnavelas, P. Alifragis, and B. Nadarajah, The origin and migration of cortical neurons, Prog. Brain Res, vol.13634, pp.73-80, 2002.

C. Métin, J. Baudoin, S. Rakic, and J. G. Parnavelas, Cell and molecular mechanisms involved in the migration of cortical interneurons Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage, European Journal of Neuroscience. Nature Neuroscience, vol.2336, issue.9, pp.173-17910, 1038.

Q. Xu, M. Tam, and S. A. Anderson, Fate mapping Nkx2.1-lineage cells in the mouse telencephalon, The Journal of Comparative Neurology, vol.31, issue.1, 2008.
DOI : 10.1002/cne.21529

L. Puelles and J. L. Rubenstein, Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization, Trends in Neurosciences, vol.16, issue.11, pp.472-47910, 1993.
DOI : 10.1016/0166-2236(93)90080-6

H. Valcanis and S. Tan, Layer specification of transplanted interneurons in developing mouse neocortex, Journal of Neuroscience, vol.2339, pp.5113-5122, 2003.

D. Gelman, A. Griveau, N. Dehorter, A. Teissier, C. Varela et al., A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area, Journal of Neuroscience, vol.31, issue.46, 2011.
DOI : 10.1523/JNEUROSCI.4068-11.2011

URL : https://hal.archives-ouvertes.fr/hal-00653942

Q. Xu, I. Cobos, E. De-la-cruz, J. L. Rubenstein, S. A. Anderson41-]-s et al., The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex doi:10.1523/JNEUROSCI.1629- 07 Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors doi:10.1523/JNEUROSCI.1807-07 The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis Mash1 regulates neurogenesis in the ventral telencephalon Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1 Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation, Origins of cortical interneuron subtypes Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon, pp.2612-2622, 1999.

C. Schuurmans and F. Guillemot, Molecular mechanisms underlying cell fate specification in the developing telencephalon, Current Opinion in Neurobiology, vol.12, issue.1, pp.26-34, 2002.
DOI : 10.1016/S0959-4388(02)00286-6

M. A. Petryniak, G. B. Potter, D. H. Rowitch, and J. L. Rubenstein, Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain, Neuron, vol.55, issue.3, pp.55-417, 2007.
DOI : 10.1016/j.neuron.2007.06.036

C. M. Parras, C. Hunt, M. Sugimori, M. Nakafuku, D. Rowitch et al., The Proneural Gene Mash1 Specifies an Early Population of Telencephalic Oligodendrocytes, Journal of Neuroscience, vol.27, issue.16, pp.4233-4242, 2007.
DOI : 10.1523/JNEUROSCI.0126-07.2007

C. Fode, Q. Ma, S. Casarosa, S. L. Ang, D. J. Anderson et al., A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons, Genes & Development, vol.1456, pp.67-80, 2000.

J. G. Corbin, M. Rutlin, N. Gaiano, and G. , Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning, Development, vol.130, issue.20, pp.130-4895, 2003.
DOI : 10.1242/dev.00717

T. Marín, S. A. Stühmer, M. Anderson, J. L. Ekker, S. Rubenstein et al., Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon Emerging complexity of layer I in human cerebral cortex Origin of GABAergic neurons in the human neocortex Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons The relationship between dlx and gad1 expression indicates highly conserved genetic pathways in the zebrafish forebrain DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons, NKX2.1 specifies cortical interneuron fate by activating Lhx6 Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum, pp.9682-9695, 1999.

J. M. Hébert, G. Fishell, Q. Xu, C. P. Wonders, S. A. Anderson et al., The genetics of early telencephalon patterning: some assembly required, Nature Reviews Neuroscience, vol.23, issue.9, pp.678-685, 2005.
DOI : 10.1038/nrn989

E. M. Anderson, S. A. Deboer, S. J. Anderson, V. H. Butt, M. V. Sousa et al., Fate determination of cerebral cortical GABAergic interneurons and their derivation from stem cells The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP- TFII in early fetal human telencephalon Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche, CellReports Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development, Development activity is required for the normal migration and specification of cortical interneuron subtypes, Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cellsL.R. Rubenstein, Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants, pp.142-1267, 1998.

P. Alifragis, Lhx6 Regulates the Migration of Cortical Interneurons from the Ventral Telencephalon But Does Not Specify their GABA Phenotype, Journal of Neuroscience, vol.24, issue.24, pp.5643-5648, 2004.
DOI : 10.1523/JNEUROSCI.1245-04.2004

P. Flandin, S. Kimura, J. L. Rubenstein, D. Vogt, R. F. Hunt et al., The Progenitor Zone of the Ventral Medial Ganglionic Eminence Requires Nkx2-1 to Generate Most of the Globus Pallidus But Few Neocortical Interneurons Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position Macklis, SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development, Tabata, K. Nakajima, COUP-TFII Is Preferentially Expressed in the Caudal Ganglionic Eminence and Is Involved in the Caudal Migratory Stream, pp.2812-2823, 2004.

S. Lodato, G. S. Tomassy, E. De-leonibus, Y. G. Uzcategui, G. Andolfi et al., Loss of COUP-TFI Alters the Balance between Caudal Ganglionic Eminence- and Medial Ganglionic Eminence-Derived Cortical Interneurons and Results in Resistance to Epilepsy, Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons, pp.4650-4662, 2011.
DOI : 10.1523/JNEUROSCI.6580-10.2011

J. Stenman, R. T. Yu, R. M. Evans, and K. Campbell, Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex, Journal of Neuroscience, vol.3089, pp.130-1113, 2003.

L. Tricoire, K. A. Pelkey, M. I. Daw, V. H. Sousa, G. Miyoshi et al., Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells, Journal of Neuroscience, vol.30, issue.6, pp.2165-2176, 2010.
DOI : 10.1523/JNEUROSCI.5123-09.2010

URL : https://hal.archives-ouvertes.fr/hal-00465517

I. Férézou, B. Cauli, E. L. Hill, J. Rossier, E. Hamel et al., Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons, Devel Neurobio Serotonin receptor 3A controls interneuron migration into the neocortex The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex A Subpopulation of Dorsal Lateral/Caudal Ganglionic Eminence-Derived Neocortical Interneurons Expresses the Transcription Factor Sp8 The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons, Journal of Neuroscience. Nature Communications. Development. Cereb. Cortex. Cereb. Cortex. Neuron, vol.22, issue.22, pp.7389-7397, 2002.

H. Toresson, S. S. Potter, K. Campbell-yun, S. Potter, J. L. Rubenstein99 et al., Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons, the telencephalon: opposing roles for Pax6 and Gsh2 Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain102] F. Bielle, A. Griveau, N. Narboux-Nême, S. Vigneau, M. Sigrist, S, pp.127-4361, 2000.

. Arber, Multiple origins of Cajal-Retzius cells at the borders of the developing pallium Dynamics of cell migration from the lateral ganglionic eminence in the rat Tangential migration in neocortical development, Nature Neuroscience. J. Neurosci. Developmental Biology, vol.8, issue.244, pp.1002-1012, 1996.

O. Riccio, S. Murthy, G. Szabo, L. Vutskits, J. Z. Kiss et al., New Pool of Cortical Interneuron Precursors in the Early Postnatal Dorsal White Matter, Cerebral Cortex, vol.22, issue.1, pp.86-98, 2011.
DOI : 10.1093/cercor/bhr086

Y. Cai, Y. Zhang, Q. Shen, J. L. Rubenstein, Z. Yang et al., PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors doi:10.1093/cercor/bhq245 Origins of Cortical GABAergic Neurons in the Cynomolgus Monkey Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia Balancing Plasticity/Stability Across Brain Development Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey, Subpopulation of Individual Neural Progenitors in the Mammalian Dorsal Pallium Generates Both Projection Neurons and Interneurons In Vitro, Stem Cells Filipovic, Contributions of cortical subventricular zone to the development of the human cerebral cortex A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone, pp.31-1193, 2002.

D. Inta, J. Alfonso, J. Von-engelhardt, M. M. Kreuzberg, A. H. Meyer et al., Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone, Proceedings of the National Academy of Sciences, pp.20994-20999, 2008.
DOI : 10.1016/S0959-4388(98)80019-6

H. Wichterle, J. M. García-verdugo, and A. , Alvarez-Buylla, Direct evidence for homotypic, glia-independent neuronal migration, Neuron, vol.18118, pp.779-791, 1997.
DOI : 10.1016/s0896-6273(00)80317-7

URL : https://doi.org/10.1016/s0896-6273(00)80317-7

F. Polleux, K. L. Whitford, P. A. Dijkhuizen, T. Vitalis, and A. Ghosh, Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling, Development The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro, Cerebral Cortex, vol.129, issue.26, pp.3147-3160, 2002.

L. Puelles, E. Kuwana, E. Puelles, A. Bulfone, K. Shimamura et al., Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1, The Journal of Comparative Neurology, vol.21, issue.3, pp.424-409, 2000.
DOI : 10.1016/S0166-2236(97)01167-3

L. Puelles, F. Sugahara, Y. Murakami, N. Adachi, S. Kuratani et al., Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes? Current Opinion in Genetics & Development Reconstructing the ancestral vertebrate brain The Avian Telencephalic Subpallium Originates Inhibitory Neurons That Invade Tangentially the Pallium (Dorsal Ventricular Ridge and Cortical Areas), Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick126] N. Moreno, A. González, S. Rétaux, Evidences for tangential migrations inXenopus telencephalon: Developmental patterns and cell tracking experiments, Devel Neurobio, pp.475-483, 2001.

C. Metin, C. Alvarez, D. Moudoux, T. Vitalis, C. Pieau et al., Conserved pattern of tangential neuronal migration during forebrain development, Development, vol.134, issue.15, pp.134-2815, 2007.
DOI : 10.1242/dev.02869

Z. Molnár, C. Métin, A. Stoykova, V. Tarabykin, D. J. Price et al., Development and evolution of the subpallium Migratory pathways of GABAergic interneurons when they enter the neocortex Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex Modes of neuronal migration in the developing cerebral cortex Patterns of neuronal migration in the embryonic cortex Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision, 136] M. Salaj, R. Druga, J. Cerman, H. Kubová, F. Barinka, Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain_ Qualitative and quantitative analyses, pp.921-934, 2002.

E. Puzzolo and A. Mallamaci, Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment doi:10.1186/1749-8104-5-8. [138] N. Zecevic, A. Milosevic, Initial development of g-aminobutyric acid immunoreactivity in the human cerebral cortex, 4<495::AID-CNE6>3.0.CO;2-X, pp.8-18, 1997.

M. F. Paredes, D. James, S. Gil-perotin, H. Kim, J. A. Cotter et al., Extensive migration of young neurons into the infant human frontal lobe, Science, vol.79, issue.2, pp.7073-7073, 2016.
DOI : 10.1212/WNL.0b013e31826170b6

I. Carrera, S. Ferreiro-galve, C. Sueiro, R. Anadón, I. Rodríguez-moldes et al., Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks Prenatal development of GABA-ergic neurons in the neocortex of the rat Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor, Prenatal development of GABAimmunoreactive neurons in the human striate cortex, pp.405-409, 1989.

I. Dediego, A. Smith-fernández, A. Fairén, G. Meyer, C. G. Perez-garcia et al., characterization of an early neuronal population in the lower intermediate zone of prenatal rats Immunocytochemical localization of growth-associated protein GAP-43 in early human development, Developmental Brain Research Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement Ventricledirected migration in the developing cerebral cortex Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex, Eur. J. Neurosci. Cereb. Cortex. Nature Neuroscience. Journal of Neuroscience, vol.6, issue.23, pp.983-997, 1994.

J. Schwartz, D. L. Meinecke, F. Liu, Y. Liu, C. Zhao et al., Early Expression of GABA-containing Neurons in the Prefrontal and Visual Cortices of Rhesus Monkeys doi:10.1093/cercor/2.1.16. [152] C. Lois, A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain, Corridors of migrating neurons in the human brain and their decline during infancy, pp.69-96, 1988.

C. Metin, R. B. Vallee, P. Rakic, P. G. Bhide, K. Bakhshi et al., Modes and Mishaps of Neuronal Migration in the Mammalian Brain The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture, Journal of Neuroscience. Neuroscience, vol.28, pp.303-82, 2008.

K. Nakazawa, V. Zsiros, Z. Jiang, K. Nakao, S. Kolata et al., Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring, Translational Psychiatry GABA and glutamate in schizophrenia: A 7 T 1H-MRS study, Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia, pp.62-2012, 2012.

R. Batista-brito, G. Fishell, S. B. Nelson, V. Valakh, X. Liu et al., Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders The DLX1and DLX2 genes and susceptibility to autism spectrum disorders Cerebral vascular regulation and brain injury in preterm infants, AJP: Regulatory, Integrative and Comparative Physiology Volpe, Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances, The Lancet Neurology Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: A systematic review, Curr. Top. Dev. Biol. Neuron. Eur J Hum Genet, vol.87, issue.147, pp.81-118, 2008.

G. Bartolini, G. Ciceri, O. Marín, G. Meyer, and A. M. Goffinet, Integration of GABAergic Interneurons into Cortical Cell Assemblies:Lessons from Embryos and Adults, Neuron, Prenatal development of reelinimmunoreactive neurons in the human neocortex, pp.79-849, 1998.

X. Yu and N. Zecevic, Dorsal Radial Glial Cells Have the Potential to Generate Cortical Interneurons in Human But Not in Mouse Brain, Journal of Neuroscience, vol.31, issue.7, 2011.
DOI : 10.1523/JNEUROSCI.5249-10.2011

G. Reinchisi, K. Ijichi, N. Glidden, I. Jakovcevski, and N. Zecevic, COUP- TFII expressing interneurons in human fetal forebrain, Cerebral Cortex Le développement du cerveau foetal humain,Atlas anatomique, pp.2820-2830, 1987.
DOI : 10.1093/cercor/bhr359

URL : https://academic.oup.com/cercor/article-pdf/22/12/2820/17305781/bhr359.pdf