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A B S T R A C T

Objective: To investigate GABA-ergic receptor density and associated brain functional and grey matter changes
in focal hand dystonia (FHD).
Methods: 18 patients with FHD of the right hand and 18 age and gender matched healthy volunteers (HV)
participated in this study. We measured the density of GABA-A receptors using [11C] Flumazenil and perfusion
using [15O] H2O. Anatomical images were also used to measure grey matter volume with voxel-based mor-
phometry (VBM).
Results: In FHD patients compared to HV, the vermis VI of the right cerebellum and the left sensorimotor cortex
had a decrease of Flumazenil binding potential (FMZ-BP), whereas the striatum and the lateral cerebellum did
not show significant change. Bilateral inferior prefrontal cortex had increased FMZ-BP and an increase of per-
fusion, which correlated negatively with disease duration. Only the left sensorimotor cortex showed a decrease
of grey matter volume.
Interpretation: Impairments of GABAergic neurotransmission in the cerebellum and the sensorimotor cortical
areas could explain different aspects of loss of inhibitory control in FHD, the former being involved in mala-
daptive plasticity, the latter in surround inhibition. Reorganization of the inferior prefrontal cortices, part of the
associative network, might be compensatory for the loss of inhibitory control in sensorimotor circuits. These
findings suggest that cerebellar and cerebral GABAergic abnormalities could play a role in the functional im-
balance of striato-cerebello-cortical loops in dystonia.

1. Introduction

Focal hand dystonia (FHD) is clinically characterized by involuntary
muscular co-contraction causing incoordination and abnormal pos-
turing of the hand during skillful movements that are over-trained. A
common hypothesis to explain the pathophysiology of FHD is a re-
duction of inhibitory control over the cortical motor areas that would
cause sustained muscle contraction (Beck and Hallett, 2011; Hallett,
2011; Marsden, 1995; Mink, 2003). Yet, there is at present no direct
demonstration of what would cause such a phenomenon. In this study,
we seek to better understand the pathophysiology of inhibitory control
in FHD.

Inhibitory control in the human brain is achieved through the

neurotransmitter gamma-aminobutyric acid (GABA). Pharmacological
work using Flumazenil, a benzodiazepine antagonist that binds to
GABA-A receptors, showed GABAergic impairments in the thalamus
and the cerebellum in animal models of dystonia (Ledoux and Lorden,
2002; Zhang et al., 2011; Zhao et al., 2011). GABAergic dysfunctions in
the striatum and the cerebellum have been suggested in FHD (Ceballos-
Baumann et al., 1995a; Krystkowiak et al., 1998; Lehéricy et al., 1996;
Shakkottai et al., 2016). A flumazenil study found GABAergic deficits in
the sensorimotor cortex but none in the cerebellum and putamen in
dystonic patients (Garibotto et al., 2011). A majority of the patients in
this study had DYT1 dystonia and all had impairments affecting several
body parts except for two with focal dystonia. DYT1 dystonia differs
from FHD, which is typically sporadic, acquired after intensive and
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repetitive motor practice, and affects a specific type of skillful hand
movements.

GABAergic neuromodulation is involved in the fine tuning of brain
networks (Popa et al., 2013). It is conceivable that altered GABAergic
neuromodulation would be associated with functional abnormalities in
the sensorimotor network. For instance, FHD patients are known to
have functional impairments in the primary and secondary motor cor-
tices, in the striatum and cerebellum (Wu et al., 2010; Butz et al., 2006;
Garraux et al., 2004). Task-related activation studies cannot easily
isolate functional changes primarily related to the disease, because they
often involve groups with different motor performances or task-induced
compensatory mechanisms. Resting state represents a useful tool to
isolate disease-related changes, and abnormal resting state activity has
been observed in striato-cortical and the cerebello-cortical loops in FHD
(Dresel et al., 2014; Hinkley et al., 2013). In addition to functional
changes, GABAergic deficits in sensorimotor areas could be associated
with structural changes as already found in this patient population
(Delmaire et al., 2007; Gibb et al., 1992). Loss of grey matter volume in
areas showing GABAergic deficits would suggest that abnormal in-
hibitory control could be related to neuronal loss.

In a homogeneous patient population of FHD with focal symptoms
in the right dominant hand and matching healthy controls, we used a
multimodal imaging protocol including (1) Positron Emission
Tomography (PET) with flumazenil binding; (2) PET with [15O]-H2O to
investigate cerebral activation of brain areas with abnormal GABAergic
receptor density; and (3) MRI voxel-based morphometry to verify
whether areas with abnormal GABAergic receptor density would have
abnormal grey matter volume. We hypothesize that the functional im-
balance of striato-cerebello-cortical loops are due to decreases in in-
hibition in the contralateral striatum, contralateral sensorimotor cortex,
and the ipsilateral cerebellum.

2. Methods

2.1. Subjects

We studied eighteen patients with focal hand dystonia and eighteen
healthy volunteers. Patient ages ranged from 24 to 65 years (3 women,
15 men; mean age ± standard deviation = 53.94 ± 12.04 years);
eighteen control subjects were matched for age from 22 to 65 years and
sex (3 women, 15 men; mean age ± standard deviation = 53.29 ±
12.79 years). All subjects had normal neurologic examinations apart
from FHD diagnosis in the patient group. The duration of FHD ranged
from 3 to 41 years (mean ± standard deviation = 13.8 ± 9 years).
All patients were also evaluated with the Fahn-Marsden scale (FMS,
score range from 2 to 4) to assess for the severity and specificity (re-
stricted to the hand) of symptoms. Patients who participated in the
study did not present any symptoms at rest so that there was no in-
terference with the scanning procedure. Patients were off any medica-
tion affecting the central nervous system during the study and for at
least 3 months before the study. Specifically, none of the subjects were
on benzodiazepine medication, which binds GABA-A receptors and
competes directly with flumazenil for binding; baclofen which binds
GABA-B receptors; flunitrazepam, a benzodiazepine receptor agonist; or
triazolam, a partial allosteric modulator of GABA-A receptors. All pa-
tients had their last injection of botulinum toxin (BoNT) at least
3 months before the study. The study was approved by the Institutional
Review Board of the National Institutes of Health. All participants gave
their informed consent.

2.2. MRI and PET procedures

For all subjects, high-resolution structural T1-weighted images were
acquired for anatomical co-registration with a 3 T GE scanner (9 min,
TR = 6.172 ms, TE = 3.2 ms, slice thickness = 1.3 mm, no gap,
FOV = 240 × 240 mm2, 256 × 256 matrix, in-plane

resolution = 0.9375 × 0.9375 mm2). For the PET scan acquisition,
participants were scanned using a General Electric Advance Scanner
(GE Medical Systems, Waukesha, WI). Images were acquired in axial
order (FOV = 150 × 150 mm2, 35 contiguous slices were acquired,
plane separation = 4.25 mm; spatial resolution of raw PET images was
6 to 7 mm full width at half maximum (FWHM)). An 8-min transmission
scan for attenuation correction was obtained at the beginning of the
session (see Lerner et al., 2007; Lerner et al., 2012). Subject motion
during the PET acquisition was corrected with mutual-information re-
gistration of each scan timeframe to a standard frame before attenua-
tion correction (Andersson et al., 1995). Based on the calculated mo-
tion, the transmission images were resliced and projected for final
reconstruction and realignment (matrix size of 256 × 256 matrix, in
plane resolution = 2 × 2 mm2). To minimize head movements during
the scans, an individually molded thermoplastic mask was placed on
the face and head of each subject. Subjects were instructed to lie still
while relaxing with their eyes closed, to think of nothing in particular
and not to fall asleep. The entire duration of the PET procedures was
two hours, one hour for [15O] H2O to measure regional cerebral blood
flow (rCBF), and one hour for flumazenil to measure GABA-A receptors.

During the first hour, all subjects received 5 intravenous boluses of
10 mCi of [15O] H2O at 10-minute intervals. The distribution of cerebral
radioactivity was measured in a 60-second emission scan after each
bolus injection. No arterial line was inserted because of the equivalence
in errors in measuring tissue radioactivity and in the calculated rCBF
(Herscovitch et al., 1983; Lerner et al., 2007; Lerner et al., 2012).
During the second hour, and after the injection of 20 mCi of [11C]
flumazenil, 60-min dynamic emission images of the brain were ac-
quired.

2.3. Data analysis

2.3.1. PET
Binding potential images for flumazenil (FMZ-BP) were created

using the 2-step version of the simplified reference tissue model
(SRTM2) (Wu and Carson, 2002). The input kinetics for the reference
tissue were derived from the pons (drawn on each individual's MR
image), where the [11C] flumazenil binding is predominantly accounted
for by free and non-specifically bound radiotracer (Lerner et al., 2007;
Lerner et al., 2012; Millet et al., 2002; Odano et al., 2009). FMZ-BP
images were corrected for partial volume effects and grey-white matter
ratios on a pixel by pixel basis (Giovacchini et al., 2005). FMZ-BP
images (already transformed to MR space) were normalized to the
standard Montreal Neurological Institute (MNI) PET template
(Ashburner and Friston, 1999) using AFNI (http://afni.nimh.nih.gov/
afni, Bethesda, MD), smoothed (FWHM of 10 mm) and analyzed using
SPM8 (Wellcome Department of Imaging Neuroscience, UCL, London,
UK; http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab
(Mathworks Inc., Natick, MA). To test our hypothesis, a between group
analysis was performed (2 sample t-test) to show the brain areas that
had a decrease or an increase of FMZ-BP in patients when compared
with healthy subjects at the level of the whole brain. Age and sex were
included in this analysis as nuisance covariates. An additional region of
interest (ROI) analysis was run for contralateral striatal (putamen and
caudate nuclei) regions involved in sensorimotor functions using the a-
priori masks of the YEB atlas normalized in MNI space (Lehéricy et al.,
2006), and ipsilateral cerebellar lobules V,VI and VIII containing a re-
presentation of the hand (Schmahmann et al., 1999; Küper et al., 2012;
Schlerf et al., 2010).

The image processing and analysis of resting state rCBF levels were
performed using Statistical Parametric Mapping SPM8. The images
were realigned to the first volume. The resliced volumes were nor-
malized to a standard PET template based on the MNI reference brain in
MNI space (Talairach and Tournoux, 1988). Additionally, we used an
atlas for the cerebellum (Schmahmann et al., 1999) for the spatial lo-
calization of the clusters. The normalized images of 2 ∗ 2 ∗ 2 mm3
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voxels were smoothed with 10 mm FWHM isotropic Gaussian kernel.
Global CBF was adjusted to an arbitrary value of 50 (Lerner et al.,
2007); an effect of the different global CBF values in different scans was
removed by analysis of covariance. A summed PET image (0–10 minute
post-injection) was registered to each subject's MRI with a mutual in-
formation algorithm and all the PET images were resliced (for more
details, see Lerner et al., 2007). We performed a between group analysis
(2 sample t-test) to show the brain areas that were overactive or un-
deractive in patients when compared with healthy subjects at rest.
Second, a regression analysis was performed for the patients to test for
possible correlation between individual measures of perfusion and
disease duration. Age and sex were incorporated in the design matrix of
the regression analysis to remove the variance percentage related to
variables of non interest that could interfere with the correlation.

After verification of the normality of data distribution, Pearson
correlation was performed between FMZ-BP values and rCBF levels in
regions showing a group difference in each previous analysis. Data were
extracted averaging the signal in all the voxels included in the sig-
nificant cluster from the previous group analyses. Since there were
several rCBF measures and a single FMZ value per subject, the p-values
were adjusted for multiple comparisons using the permutations test
(Nichols and Holmes, 2002). We conducted an approximate multi-
variate permutation test. At each iteration, the max-correlation coeffi-
cient was computed to build the sampling distribution. Using this dis-
tribution, the corrected p-value was calculated for each correlation
coefficient.

2.3.2. Voxel-based morphometry
Images were processed using the VBM8 toolbox (http://dbm.neuro.

uni-jena.de/vbm/), of the SPM8 software. Normalized grey matter
probability maps were obtained from the T1-weighted images. The
processing included denoising (Manjón et al., 2010), partial volume
estimation (Tohka et al., 2004) and normalization to the MNI space
using Dartel (Ashburner and Friston, 2005). The normalized maps were
smoothed with a 10 mm FWHM Gaussian kernel.

In the statistical analysis, the individual smoothed-normalized maps
were included in a two-sample t-test to perform a group comparison.
Age and sex were incorporated in the design matrix to remove the
variance percentage related to variables of non-interest that could in-
terfere with group differences. We tested the possible correlation be-
tween grey matter volume and individual values of FMZ-BP in areas
showing an effect of group in the PET FMZ-BP and the VBM analyses.
To do that, we extracted the individual FMZ-BP values in the region of
interest (average of all the voxels included in cluster showing a decrease
of BP-FMZ in FHD patients for the group analysis) and, within the same
region of interest, the individual mean values of grey matter probability
maps. For each region of interest, a Pearson correlation was performed
(after verification of the normality of data distribution) between in-
dividual FMZ-BP values and individual mean values of grey matter
probability maps (threshold of significance at p < 0.05 corrected for
multiple comparisons if needed).

2.3.3. Statistical threshold
We had strong a priori hypotheses on small anatomical regions such

as the hand area of the sensorimotor cortex with high inter-individual

Fig. 1. Results of the two-sample t-test showing the spatial localization of clusters with group difference in flumazenil binding potential (FMZ-BP) (p < 0.05, FWE correction at the
cluster level). A. Lower flumazenil binding potential in FHD patients compared to controls displayed on a glass brain (upper central view). Clusters localized in the left sensorimotor
cortex, and the vermis of the cerebellum are displayed on the canonical brain of SPM. The results of the ROI analysis including the left putamen and the right cerebellar hemisphere
(lobule VI) are displayed on the right. B. higher flumazenil binding potential in FHD patients compared to controls displayed on a glass brain (upper view). Clusters localized in the
inferior frontal gyri are displayed on the canonical brain of SPM (lower views).
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spatial variability (Yousry et al., 1997). Thus, all the results (FMZ-BP,
rCBF and VBM) were considered significant at a statistical threshold of
p < 0.001 uncorrected at the level of the whole brain (Boecker et al.,
2010) with a cluster threshold of 50 contiguous voxels, and at
p < 0.05 with family wise error (FWE) correction for multiple com-
parisons at the level of the cluster. For the region of interest analysis
involving the contralateral sensorimotor territory of the putamen and
caudate, and the ipsilateral sensorimotor lobules of the cerebellum (V,
VI, VIII), the results were considered significant at a statistical threshold
of p < 0.05 with family wise error (FWE) correction for multiple
comparisons for the number of considered regions (n = 5).

3. Results

3.1. PET FMZ-BP

At the whole-brain level, the two-sample t-test showed that patients
had a decrease of FMZ-BP in the left dorsal part of the precentral gyrus

(PMd), the primary sensorimotor cortex (including the hand area), the
left anterior insula, the bilateral vermis VI of the cerebellum (more on
the right than on the left; Fig. 1A, Table 1). In the inverse contrast (i.e.
HV-FHD), patients showed an increase of FMZ-BP in the bilateral in-
ferior ventral prefrontal cortex compared to controls (Brodmann area
44, 45, 47; Fig. 1B, Table 1).

At the ROI level, the two-sample t-test showed that patients had a
tendency toward a decrease of FMZ-BP in the left sensorimotor territory
of the putamen (T = 2.01, p = 0.04 uncorrected for multiple compar-
isons), and in the sensorimotor territory of the cerebellar lobule VI
(T = 1.71, p = 0.04 uncorrected for multiple comparisons). These ROI
results did not survive the correction for multiple comparisons.

3.2. PET rCBF

Patients, compared with the healthy volunteers, showed an increase
of resting state rCBF in the bilateral inferior and middle frontal gyri
(Brodmann area 44, 45, 47), in the orbitofrontal cortex, the anterior
cingulate cortex, the right caudate head and the right ventro-anterior
part of the putamen. Results are displayed in Fig. 2A and listed in
Table 1. Regions showing both an increased FMZ-BP and resting state
rCBF are shown in Fig. 2B. Only the left inferior frontal gyrus over-
lapped in the two modalities. The increase of resting state rCBF in the
left inferior frontal gyrus negatively correlated with the FMZ-BP in the
right cerebellar vermis and with disease duration (Fig. 2C–D). Such
correlation was not observed with the cluster of the sensorimotor
cortex, the sensorimotor putamen or the cerebellar lobule VI
(0.28 < p < 0.47).

3.3. VBM

The regions showing difference of binding potential were defined as
regions of interest for the VBM analysis. Only the left sensorimotor
cortex corresponding to the hand area and the PMd showed a decrease
of grey matter volume (see Fig. 3A). In the sensorimotor cortex, we
observed a trend suggesting that the decrease of grey matter volume
correlated with the decrease of FMZ-BP (Fig. 3B). None of the other
areas with abnormal FMZ-BP had a significant group difference in grey
matter volume (p > 0.001 uncorrected for multiple comparisons at the
level of the whole brain).

4. Discussion

In a patient population with focal right hand dystonia, we verified
our hypotheses of an abnormal decrease of GABA-A receptor density in
the vermis VI of the right cerebellum and in the left sensorimotor
cortex. Bilateral inferior prefrontal cortex had an increase in FMZ-BP
and of resting state activity, which correlated negatively with disease
duration and the loss of GABA-A receptor density in the cerebellum.
Decrease of FMZ-BP in the sensorimotor cortex was accompanied with
decrease of grey matter volume, but this was not the case for the cer-
ebellar vermis. These findings seem to indicate that in FHD, the loss of
inhibitory control in sensorimotor areas originate in GABA-ergic ab-
normalities. The loss of inhibitory control is accompanied by cortical
reorganization involving the inferior frontal gyrus. These results re-
inforce the view that despite focal motor symptoms, the pathophy-
siology of dystonia engages changes in larger associative cortical net-
works.

Several mechanisms could explain the decrease of GABAergic re-
ceptor density in the sensorimotor network: (i) a loss of cells with
GABA-A receptors; (ii) decreased number of receptors on the same
number of cells; (iii) an identical number of GABAergic receptors but a
dysfunctional binding site. In our study, there was a decrease of grey
matter volume at the site of decreased FMZ-BP in the sensorimotor
cortex confirming the findings of another study (Delmaire et al., 2007),
suggesting neuronal loss. This cell loss was however not observed at the

Table 1
Anatomical localization of clusters showing group difference in flumazenil binding po-
tential displayed in Fig. 1, and in O15water displayed in Fig. 2. MNI = Montreal Neu-
rological Institute, Ke = number of voxels in the cluster, BA = Brodmann area, L = left,
R = right, B = bilateral. Italic font refers to the result of the region of interest analysis
(ROI).

Anatomical localization MNI coordinates of cluster
local maxima

T score Ke

x y z

FMZ-BP: Patients < healthy volunteers
L precuneus (BA 7, 31) −18 −62 32 3.73 207
L paracentral lobule (BA 5),

postcentral gyrus (BA 3),
precentral gyrus (BA 4, 6)
(cluster extension in the hand
area of the primary motor
cortex)

−14 −38 56 3.35 189
−22 −25 58 3.31

L insula, inferior frontal operculum −26 32 10 3.20 514
L cerebellum (vermis 6, fastigium) −2 −62 −24 3.05 88
R inferior frontal operculum, inferior

frontal gyrus
28 34 12 3.02 156

L cerebellum (lobule 3) −6 −42 −22 2.92 97
R cerebellum (Crus 1) 16 −76 −30 2.81 133
L sensorimotor putamen (ROI analysis) −21 −2 9 2.01 34

FMZ-BP: Patients > healthy volunteers
L inferior frontal gyrus (BA 45, 46,

47)
−50 24 −8 4.40 527

R inferior frontal gyrus (BA 45, 46,
47)

58 26 6 3.93 477

O15water: Patients > healthy volunteers
R middle frontal gyrus 46 48 30 8.17 407
R inferior postcentral gyrus,

Rolandic operculum (BA 43)
68 −16 18 8.00 270

B medial orbitofrontal cortex (BA
10)

8 68 −4 7.76 786

R superior orbitofrontal cortex (BA
11)

16 30 −22 7.47 1410

R anterior cingulate cortex (BA 24) 4 32 6 6.66
R anterior putamen and caudate 24 12 −2 6.53
L middle frontal gyrus −38 48 30 5.70 251
R inferior frontal gyrus (operculum,

pars triangularis), superior
temporal sulcus

60 14 2 6.58 505

L anterior caudate −14 18 0 6.55 207
L inferior frontal gyrus (pars

triangularis)
−44 32 −14 6.08 652

L middle frontal gyrus (BA 8) −44 24 20 6.04 366
L middle temporal pole (BA 38) −52 14 −30 5.87 132

VBM: Patients < healthy volunteers
L precentral gyrus (BA 6, PMd) −28 15 50 3.41 241
L postcentral gyrus (BA 2, 3) −20 −44 77 3.08 274
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Fig. 2. Results of group comparison of rCBF PET and correlation analyses. A. Inferior prefrontal cortex, and caudate show an increase of rCBF in FHD patients compared to healthy
controls (p < 0.05 with FWE correction over the whole brain). B. Overlap of areas showing an increase of rCBF and an increase of FMZ-BP, involving only the left prefrontal cortex. C.
Correlation between rCBF in the left inferior prefrontal cortex and the FMZ-BP in the right cerebellar vermis (p = 0.004, Rho = −0.54). D. Correlation between rCBF in the left inferior
prefrontal cortex and the disease duration (p = 0.01, Rho =−0.46). The significance of the correlation takes into account repeated measures (see Methods).

Fig. 3. Results of VBM analysis in regions of interest. A. Decrease of grey matter volume in the precentral gyrus, located in the dorsal premotor cortex (left panels) and the postcentral
gyrus (right panels); p < 0.001, with FWE correction at the level of the cluster. B. In the left sensorimotor cortex, individual values of grey matter volume tended to correlate with
individual values of BP-FMZ (p = 0.06, Rho = 0.46).
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site of the right cerebellar vermis. The absence of change in grey matter
volume at that location of GABA-ergic abnormalities however does not
preclude the possibility of abnormal morphology. Indeed, synaptic loss
or dendritic transections are not fully captured by VBM analyses be-
cause of special sensitivity limitations. Moreover, our sample size might
be not large enough to detect morphometric changes. This, together
with differences in methodology or patient phenotypes, explain the
discrepancy found concerning changes of grey matter volume in the
primary sensorimotor cortex and the cerebellum, which some found
increased (Ramdhani et al., 2014; Garraux et al., 2004), or decreased
(Delmaire et al., 2007) or unchanged (Zeuner et al., 2015). Thus, a
decrease in the number of GABA-A receptors due to a reduced synthesis
of GABA neurotransmitter cannot be ruled out. Indeed, decreased GABA
levels were measured in the primary motor cortex of FHD patients
compared to control subjects using MR spectroscopy (Levy and Hallett,
2002), although another study failed to confirm it (Herath et al., 2010).
Decreases of FMZ-BP could also be due to excessive GABA synthesis
which would cause more competition with flumazenil in the synaptic
cleft. In that case, it would have to be associated with a dysfunctional
binding site.

The reduced grey matter volume and the decrease of FMZ-BP are
likely associated with the loss of GABAergic neurons in sensorimotor
cortices involved in controlling the symptomatic hand. GABA-ergic
abnormalities in the sensorimotor cortex might relate to impairment of
specific neurons with somatotopic representations. Previous studies
have reported that FHD patients showed somatotopic disorganization in
the motor cortex (Weise et al., 2011; Meunier et al., 2001; Nelson et al.,
2009). We suggest that a decrease of GABAergic function within M1
and S1 could underlie the changes of somatotopic representation by a
larger spread of neuronal excitation. In healthy volunteers, high fre-
quency repetitive somatosensory stimulation modulates short in-
tracortical inhibition within M1 (Rocchi et al., 2017), mediated by G-
ABA-A interneurons (Chen, 2004). Short intracortical inhibition within
M1 or between PMd and M1 is reduced in FHD (Currà et al., 2000;
Tinazzi et al., 2000; Beck and Hallett, 2011), and interpreted as a loss of
surround inhibition. The loss of GABA-A neurons in the sensorimotor
cortex could contribute to abnormal interactions between sensory and
motor areas, supporting the loss of surround inhibition and the patients'
inability to perform individuated finger movement (Moore et al., 2012).
To validate this hypothesis, future multimodal studies will have to test
whether the individual GABA-A binding potential in the sensorimotor
cortex would be related to individual values of short intracortical in-
hibition in M1.

FMZ-BP in the cerebellum was not found to be abnormal in the
previously reported patient population including DYT1 and sporadic
dystonia, with symptoms in multiple limbs (Garibotto et al., 2011). Our
patient population with homogeneous and focal symptoms affecting the
right dominant hand had focal GABA-ergic impairments of the cere-
bellar vermis. The cerebellar vermis is connected to cortical motor areas
and would participate in controlling the anticipatory postural adjust-
ments during hand movement initiation (Diedrichsen et al., 2005). It
was speculated that dysfunction of this system may underlie abnormal
postural control in dystonia (Coffman et al., 2011). Recently, an ab-
stract report of patients with cervical dystonia showed decreased GABA
binding in the cerebellar vermis and the dorsal premotor cortex (Pollard
et al., 2016), confirming that this network is relevant for focal dystonia.
In accordance with our findings, the cerebellar vermis is also a relevant
site to explain dystonic symptoms since microinjection of kainic acid
into this structure generates dystonia in mice (Pizoli et al., 2002).

The cerebellum may be one of the primary nodes underlying dys-
tonia (Shakkottai et al., 2016). If that is the case, how would the loss of
inhibitory control in the cerebellum affect the cerebello-cortical loop
and be related to dystonic symptoms? Defective GABA-ergic neuro-
transmission in the cerebellum could induce abnormal cerebello-cor-
tical dialog, particularly in the gamma frequency band, and explain
abnormal muscular activity. For instance, blockade or inactivation of

GABA-ergic neurons of the cerebellum abolishes or decreases gamma
rhythms of cerebellar output and of the sensorimotor cortex (Popa
et al., 2013; Middleton et al., 2008). The integrity of the GABAergic
system also influences neuroplasticity mechanisms, for example in long
term potentiation (LTP) of synaptic efficacy (Stefan et al., 2000; Wolters
et al., 2003). Patients with FHD have over-reactive LTP-like plasticity
(Quartarone et al., 2003), and cerebellar stimulation fails to induce
plastic modulation of M1 in this patient population (Hubsch et al.,
2013). We suggest that the loss of cerebellar modulation of M1 prob-
ably originates in the loss of GABAergic cells in the sensorimotor net-
work.

Neumann et al. (2015) found that the degree of pallido-cerebellar
coupling, in the sense that GPi drove the activity of the cerebellum,
showed an inverse correlation with dystonic symptom severity. This
suggests that striatal dysfunction impacts on cerebellar activation, re-
ducing the communication in striato-cerebellar circuits as disease se-
verity increases. Whether the resulting cerebellar output is adaptive or
maladaptive is difficult to say with certainty at this point. Variations of
cerebellar-cortical functional connectivity at rest could reflect both an
underlying abnormality or compensatory neuroplastic changes of net-
work architecture in focal hand dystonia (Dresel et al., 2014). A com-
pensatory role of the left cerebellar cortex (CrusI) was found during
motor sequence learning in DYT1 mutation carriers (Carbon et al.,
2011), a structure involved in the early phase of motor learning (Doyon
et al., 2003; Floyer-Lea and Matthews, 2005). In the light of these re-
sults, GABAergic changes in associative cerebellar structures such as the
CrusI could be compensatory or adaptative.

Increased resting state activity of prefrontal regions was observed in
our FHD patients. Changes of resting state activity was observed in
previous studies using PET (Ceballos-Baumann and Brooks, 1997;
Ceballos-Baumann et al., 1997; Ceballos-Baumann et al., 1995a, 1995b;
Playford et al., 1998) and fMRI (Bharath et al., 2015; Dresel et al.,
2014; Delnooz et al., 2013). In genetic dystonia, increased activation in
the inferior frontal gyrus cortex was interpreted as compensatory to
sensorimotor loop dysfunction (Carbon et al., 2004; Nakamura et al.,
2001). Our results seem to favor this view for FHD: inferior prefrontal
cortex has increased GABA-ergic neurotransmission, which correlated
negatively with GABA-ergic neurotransmission in the cerebellar vermis
and with disease duration. The relationship between GABA-ergic
function and dystonic symptoms suggests the existence of plastic
changes with time in the inferior frontal gyrus. These findings are in-
triguing because, despite the focal symptoms, they suggest the existence
of complex regulatory systems involving larger networks than the ones
involved in sensorimotor integration. The variability of disease severity
was small in our patients, which could be a reason why we did not find
a correlation with symptom severity. The inferior frontal gyrus is in-
volved in building sensorimotor schemes to adapt finger configuration
during grasping tasks (Jeannerod et al., 1995). This area is also in-
volved in the prevention of unwanted movement by ‘calling out’ or
compensating for motor areas responsible for the final motor output
(Duann et al., 2009; Obeso et al., 2013; Sharp et al., 2010; Swick et al.,
2008). Our study raises further evidence that local neurotransmitter
contents like GABA relate to functional specialization of brain regions
(Greenhouse et al., 2016), which are abnormal in FHD (Gallea et al.,
2016).

This study has several limitations. For instance, we found only a
tendency toward GABA-ergic abnormalities in the striatum, despite the
well-known striatal alterations in this disorder (Marsden et al., 1985;
Delmaire et al., 2009; Delnooz et al., 2013). It is also possible that
cerebellar interactions with the striatum contribute to the dystonic
symptoms through other neurotransmitters. Cerebellar activity can di-
rectly influence the dynamics of striatal dopamine (Neychev et al.,
2008), and it is known that FHD has striatal dopaminergic impairments
(Berman et al., 2013; Karimi et al., 2011). Another limitation is the lack
of serial blood sampling for plasma input function to fit compartmental
models. However, the modelling technique used in the present study
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allows quantifying BP using a reference tissue in which no specific
binding of the radioligand occurs, without arterial blood sampling
(Lerner et al., 2012). The individual values of BP in the regions of in-
terest were normalized with the BP of the pons, which also cancelled
out the influence of individual level of blood concentration. Therefore,
the correlations between FMZ-BP and rCBF seem to be likely related to
the functional relationship between the changes of GABAergic neuro-
transmission and perfusion. Last, correlation between symptom severity
and FMZ-BP or rCBF could not be evaluated due to the lack of sensi-
tivity of the Burke-Fahn-Marsden scale to task-specific focal hand dys-
tonia and resulted in a narrow range of scores.

Acknowledgements

This study was supported by the NINDS intramural program (in-
cluding fellowships to CG and VV) and the Fondation pour la Recherche
Médicale (FRM, grant to CG). We thank Elaine Considine for patient
care and logistics, and the PET department (http://www.cc.nih.gov/
pet/) for help with the data acquisition.

Contributions

CG participated in the conception, study design, data analysis and
editing;
PH, VV, SGH participated in the study design and editing;
AL, JO, ZS, ST and JF participated in the conception and data
analysis;
MH participated in the conception, study design and editing.

References

Andersson, J.L., Vagnhammar, B.E., Schneider, H., 1995. Accurate attenuation correction
despite movement during PET imaging. J. Nucl. Med. 36, 670–678.

Ashburner, J., Friston, K.J., 1999. Nonlinear spatial normalization using basis functions.
Hum. Brain Mapp. 7, 254–266.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neuroimage 26 (3), 839–851
PMID:15955494.

Beck, S., Hallett, M., 2011. Surround inhibition in the motor system. Exp. Brain Res. 210
(2), 165–172.

Berman, B.D., Hallett, M., Herscovitch, P., Simonyan, K., 2013. Striatal dopaminergic
dysfunction at rest and during task performance in writer's cramp. Brain 136,
3645–3658.

Bharath, R.D., Biswal, B.B., Bhaskar, M.V., Gohel, S., Jhunjhunwala, K., Panda, R.,
George, L., Gupta, A.K., Pal, P.K., 2015. Repetitive transcranial magnetic stimulation
induced modulations of resting state motor connectivity in writer's cramp. Eur. J.
Neurol. 22 (5), 796–805.

Boecker, H., Weindl, A., Brooks, D.J., Ceballos-Baumann, A.O., Liedtke, C., Miederer, M.,
Sprenger, T., Wagner, K.J., Miederer, I., 2010. GABAergic dysfunction in essential
tremor: an 11C-flumazenil PET study. J. Nucl. Med. 51, 1030–1035.

Butz, M., Timmermann, L., Gross, J., Pollok, B., Dirks, M., Hefter, H., et al., 2006.
Oscillatory coupling in writing and writer's cramp. J. Physiol. Paris 99, 14–20.

Carbon, M., Ma, Y., Barnes, A., Vijay, Dhawan, Chaly, T., Felice, Ghilardi Maria, et al.,
2004. Caudate nucleus: influence of dopaminergic input on sequence learning and
brain activation in Parkinsonism. NeuroImage 21, 1497–1507.

Carbon, M., Argyelan, M., Ghilardi, M.F., Mattis, P., Dhawan, V., Bressman, S., Eidelberg,
D., 2011. Impaired sequence learning in dystonia mutation carriers: a genotypic ef-
fect. Brain 134 (5), 1416–1427.

Ceballos-Baumann, A.O., Brooks, D.J., 1997. Basal ganglia function and dysfunction re-
vealed by PET activation studies. Adv. Neurol. 74, 127–139.

Ceballos-Baumann, A.O., Passingham, R.E., Marsden, C.D., Brooks, D.J., 1995a. Motor
reorganization in acquired hemidystonia. Ann. Neurol. 37, 746–757.

Ceballos-Baumann, A.O., Passingham, R.E., Warner, T., Playford, E.D., Marsden, C.D.,
Brooks, D.J., 1995b. Overactive prefrontal and underactive motor cortical areas in
idiopathic dystonia. Ann. Neurol. 37, 363–372.

Ceballos-Baumann, A.O., Sheean, G., Passingham, R.E., Marsden, C.D., Brooks, D.J.,
1997. Botulinum toxin does not reverse the cortical dysfunction associated with
writer's cramp. A PET study. Brain 120 (Pt 4), 571–582.

Chen, R., 2004. Interactions between inhibitory and excitatory circuits in the human
motor cortex. Exp. Brain Res. 154, 1–10.

Coffman, K.A., Dum, R.P., Strick, P.L., 2011 Sep 20. Cerebellar vermis is a target of
projections from the motor areas in the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A.
108 (38), 16068–16073.

Currà, A., Romaniello, A., Berardelli, A., Cruccu, G., Manfredi, M., 2000. Shortened
cortical silent period in facial muscles of patients with cranial dystonia. Neurology
54, 130–135.

Delmaire, C., Vidailhet, M., Elbaz, A., Bourdain, F., Bleton, J.P., Sangla, S., et al., 2007.

Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp.
Neurology 69, 376–380.

Delmaire, C., Vidailhet, M., Wassermann, D., Descoteaux, M., Valabregue, R., Bourdain,
F., Lenglet, C., Sangla, S., Terrier, A., Deriche, R., Lehéricy, S., 2009. Diffusion ab-
normalities in the primary sensorimotor pathways in writer's cramp. Arch. Neurol.
66, 502–508.

Delnooz, C.C., Pasman, J.W., Beckmann, C.F., van de Warrenburg, B.P., 2013. Task-free
functional MRI in cervical dystonia reveals multi-network changes that partially
normalize with botulinum toxin. PLoS One 8 (5), e62877 (May 1).

Diedrichsen, J., Verstynen, T., Lehman, S.L., Ivry, R.B., 2005. Cerebellar involvement in
anticipating the consequences of self-produced actions during bimanual movements.
J. Neurophysiol. 93, 801–812.

Doyon, J., Penhune, V., Ungerleider, L.G., 2003. Distinct contribution of the cortico-
striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41,
252–262.

Dresel, C., Li, Y., Wilzeck, V., Castrop, F., Zimmer, C., Haslinger, B., 2014 Nov. Multiple
changes of functional connectivity between sensorimotor areas in focal hand dys-
tonia. J. Neurol. Neurosurg. Psychiatry 85 (11), 1245–1252.

Duann, J.R., Ide, J.S., Luo, X., Li, C.S., 2009. Functional connectivity delineates distinct
roles of the inferior frontal cortex and presupplementary motor area in stop signal
inhibition. J. Neurosci. 29 (32), 10171e9.

Floyer-Lea, A., Matthews, P.M., 2005. Distinguishable brain activation networks for short-
and long-term motor skill learning. J. Neurophysiol. 94, 512–518.

Gallea, C., Horovitz, S.G., Ali Najee-Ullah, M., Hallett, M., 2016. Impairment of a parieto-
premotor network specialized for handwriting in writer's cramp. Hum. Brain Mapp.
http://dx.doi.org/10.1002/hbm.23315. (Jul 28).

Garibotto, V., Romito, L.M., Elia, A.E., Soliveri, P., Panzacchi, A., Carpinelli, A., et al.,
2011. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in
primary dystonia. Mov. Disord. 26, 852–857.

Garraux, Gaëtan, Bauer, A., Takashi, Hanakawa, Wu, T., Kansaku, K., Mark, Hallett, 2004.
Changes in brain anatomy in focal hand dystonia. Ann. Neurol. 55, 736–739.

Gibb, W.R., Kilford, L., Marsden, C.D., 1992. Severe generalised dystonia associated with
a mosaic pattern of striatal gliosis. Mov. Disord. 7, 217–223.

Giovacchini, G., Toczek, M.T., Bonwetsch, R., Anto, Bagic, Lang, L., Fraser, C., et al.,
2005. 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume
correction. J. Nucl. Med. 46, 1128–1135.

Greenhouse, I., Noah, S., Maddock, R.J., Ivry, R.B., 2016. Individual differences in GABA
content are reliable but are not uniform across the human cortex. NeuroImage 139,
1–7. http://dx.doi.org/10.1016/j.neuroimage.2016.06.007. (Jun 9).

Hallett, M., 2011. Neurophysiology of dystonia: the role of inhibition. Neurobiol. Dis. 42,
177–184.

Herath, P., Gallea, C., van der Veen, J.W., Horovitz, S.G., Mark, Hallett, 2010. In vivo
neurochemistry of primary focal hand dystonia: a magnetic resonance spectroscopic
neurometabolite profiling study at 3T. Mov. Disord. 25, 2800–2808.

Herscovitch, P., Markham, J., Raichle, M.E., 1983. Brain blood flow measured with in-
travenous H2(15)O. I. Theory and error analysis. J. Nucl. Med. 24, 782–789.

Hinkley, L.B., Sekihara, K., Owen, J.P., Westlake, K.P., Byl, N.N., Nagarajan, S.S., 2013.
Complex-value coherence mapping reveals novel abnormal resting-state functional
connectivity networks in task-specific focal hand dystonia. Front. Neurol. 4, 149.

Hubsch, C., Roze, E., Popa, T., Russo, M., Balachandran, A., Pradeep, S., Mueller, F.,
Brochard, V., Quartarone, A., Degos, B., Vidailhet, M., Kishore, A., Meunier, S., 2013.
Defective cerebellar control of cortical plasticity in writer's cramp. Brain 136,
2050–2062.

Jeannerod, M., Arbib, M.A., Rizzolatti, G., Sakata, H., 1995. Grasping objects: the cortical
mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320.

Karimi, M., Moerlein, S.M., Videen TO, Luedtke, R.R., Taylor, M., Mach, R.H., Perlmutter,
J.S., 2011. Decreased striatal dopamine receptor binding in primary focal dystonia: a
D2 or D3 defect? Mov. Disord. 26, 100–106.

Krystkowiak, P., Martinat, P., Defebvre, L., Pruvo, J.P., Leys, D., Destée, A., 1998.
Dystonia after striatopallidal and thalamic stroke: clinicoradiological correlations
and pathophysiological mechanisms. J. Neurol. Neurosurg. Psychiatry 65, 703–708.

Küper, M., Thürling, M., Stefanescu, R., Maderwald, S., Roths, J., Elles, H.G., et al., 2012.
Evidence for a motor somatotopy in the cerebellar dentate nucleus–an FMRI study in
humans. Hum. Brain Mapp. 33, 2741–2749.

LeDoux, M.S., Lorden, J.F., 2002. Abnormal spontaneous and harmaline-stimulated
Purkinje cell activity in the awake genetically dystonic rat. Exp. Brain Res. 145,
457–467.

Lehéricy, S., Vidailhet, M., Dormont, D., Piérot, L., Chiras, J., Mazetti, P., et al., 1996.
Striatopallidal and thalamic dystonia. A magnetic resonance imaging anatomoclinical
study. Arch. Neurol. 53, 241–250.

Lehéricy, S., Bardinet, E., Tremblay, L., Van de Moortele, P.F., Pochon, J.B., Dormont, D.,
Kim, D.S., Yelnik, J., Ugurbil, K., 2006. Motor control in basal ganglia circuits using
fMRI and brain atlas approaches. Cereb. Cortex 16, 149–161.

Lerner, A., Bagic, A., Boudreau, E.A., Hanakawa, T., Pagan, F., Mari, Z., et al., 2007.
Neuroimaging of neuronal circuits involved in tic generation in patients with
Tourette syndrome. Neurology 68, 1979–1987.

Lerner, A., Bagic, A., Simmons, J.M., Mari, Z., Bonne, O., Xu, B., Kazuba, B., Herscovitch,
P., Carson, R.E., Murphy, D.L., Drevets, W.C., Hallett, M., 2012. Widespread ab-
normality of the GABA-ergic system in Tourette syndrome. Brain.

Levy, L.M., Hallett, Mark, 2002. Impaired brain GABA in focal dystonia. Ann. Neurol. 51,
93–101.

Manjón, J.V., Tohka, J., Robles, M., 2010. Improved estimates of partial volume coeffi-
cients from noisy brain MRI using spatial context. NeuroImage 53, 480–490.

Marsden, C.D., 1995. Psychogenic problems associated with dystonia. Adv. Neurol. 65,
319–326.

Marsden, C.D., Obeso, J.A., Zarranz, J.J., Lang, A.E., 1985. The anatomical basis of

C. Gallea et al. NeuroImage: Clinical 17 (2018) 90–97

96

http://www.cc.nih.gov/pet
http://www.cc.nih.gov/pet
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0005
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0005
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0010
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0010
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf2005
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf2005
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0015
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0015
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0020
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0020
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0020
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0025
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0025
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0025
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0025
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0030
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0030
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0030
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0035
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0035
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0040
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0040
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0040
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0045
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0045
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0045
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0050
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0050
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0055
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0055
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0060
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0060
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0060
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0065
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0065
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0065
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0070
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0070
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0075
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0075
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0075
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0080
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0080
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0080
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0085
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0085
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0085
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0090
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0090
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0090
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0090
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0095
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0095
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0095
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0100
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0100
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0100
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0105
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0105
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0105
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0110
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0110
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0110
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0115
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0115
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0115
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0120
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0120
http://dx.doi.org/10.1002/hbm.23315
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0130
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0130
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0130
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0135
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0135
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0140
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0140
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0145
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0145
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0145
http://dx.doi.org/10.1016/j.neuroimage.2016.06.007
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0155
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0155
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0160
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0160
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0160
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0165
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0165
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0170
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0170
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0170
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0175
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0175
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0175
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0175
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0180
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0180
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0185
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0185
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0185
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0190
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0190
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0190
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0195
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0195
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0195
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0200
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0200
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0200
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0205
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0205
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0205
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0210
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0210
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0210
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0215
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0215
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0215
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0220
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0220
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0220
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0225
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0225
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0230
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0230
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0235
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0235
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0240


symptomatic hemidystonia. Brain 108 (Pt 2), 463–483.
Meunier, S., Garnero, L., Ducorps, A., Mazières, L., Lehéricy, S., du Montcel, S.T., et al.,

2001. Human brain mapping in dystonia reveals both endophenotypic traits and
adaptive reorganization. Ann. Neurol. 50, 521–527.

Middleton, S.J., Racca, C., Cunningham, M.O., Traub, R.D., Monyer, H., Knöpfel, T.,
Schofield, I.S., Jenkins, A., Whittington, M.A., 2008. High-frequency network oscil-
lations in cerebellar cortex. Neuron 58 (5), 763–774.

Millet, P., Graf, C., Buck, A., Walder, B., Ibanez, V., 2002. Evaluation of the reference
tissue models for PET and SPECT benzodiazepine binding parameters. NeuroImage
17, 928–942.

Mink, J.W., 2003. The basal ganglia and involuntary movements: impaired inhibition of
competing motor patterns. Arch. Neurol. 60, 1365–1368.

Moore, R.D., Gallea, C., Horovitz, S.G., Hallett, M., 2012. Individuated finger control in
focal hand dystonia: an fMRI study. NeuroImage 61, 823–831.

Nakamura, T., Ghilardi, M.F., Mentis, M., Dhawan, V., Fukuda, M., Hacking, A., et al.,
2001. Functional networks in motor sequence learning: abnormal topographies in
Parkinson's disease. Hum. Brain Mapp. 12, 42–60.

Nelson, A.J., Blake, D.T., Chen, R., 2009. Digit-specific aberrations in the primary so-
matosensory cortex in Writer's cramp. Ann. Neurol. 66 (2), 146–154.

Neumann, W.J., Jha, A., Bock, A., Huebl, J., Horn, A., Schneider, G.H., Sander, T.H.,
Litvak, V., Kühn, A.A., 2015. Cortico-pallidal oscillatory connectivity in patients with
dystonia. Brain 138 (7), 1894–1906.

Neychev, V.K., Fan, X., Mitev, V.I., Hess, E.J., Jinnah, H.A., 2008. The basal ganglia and
cerebellum interact in the expression of dystonic movement. Brain 131, 2499–2509.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional neu-
roimaging: a primer with examples. Hum. Brain Mapp. 15 (1), 1–25.

Obeso, I., Cho, S.S., Antonelli, F., Houle, S., Jahanshahi, M., Ko, J.H., Strafella, A.P., 2013.
Stimulation of the pre-SMA influences cerebral blood flow in frontal areas involved
with inhibitory control of action. Brain Stimul. 6 (5), 769–776. http://dx.doi.org/10.
1016/j.brs.2013.02.002.

Odano, I., Halldin, C., Karlsson, P., et al., 2009. [18F]flumazenil binding to central
benzodiazepine receptor studies by PET—quantitative analysis and comparisons with
[11C]flumazenil. NeuroImage 45, 891–902.

Pizoli, C.E., Jinnah, H.A., Billingsley, M.L., Hess, E.J., 2002. Abnormal cerebellar sig-
naling induces dystonia in mice. J. Neurosci. 22, 7825–7833.

Playford, E.D., Passingham, R.E., Marsden, C.D., Brooks, D.J., 1998. Increased activation
of frontal areas during arm movement in idiopathic torsion dystonia. Mov. Disord.
13, 309–318.

Pollard, R., Shelton, E., Koo, P., Berman, B., 2016. GABA-A receptor binding is abnormal
in cervical dystonia (P1.030). Neurology 86 (16 Supplement), P1.030 (April 5,
Abstract).

Popa, D., Spolidoro, M., Proville, R.D., Guyon, N., Belliveau, L., Léna, C., 2013. Functional
role of the cerebellum in gamma-band synchronization of the sensory and motor
cortices. J Neurosci. 33 (15), 6552–6556. http://dx.doi.org/10.1523/JNEUROSCI.
5521-12.2013.

Quartarone, A., Bagnato, S., Rizzo, V., Siebner, H.R., Dattola, V., Scalfari, A., et al., 2003.
Abnormal associative plasticity of the human motor cortex in writer's cramp. Brain
126, 2586–2596.

Ramdhani, R.A., Kumar, V., Velickovic, M., Frucht, S.J., Tagliati, M., Simonyan, K., 2014.
What's special about task in dystonia? A voxel-based morphometry and diffusion
weighted imaging study. Mov. Disord. 29 (9), 1141–1150. http://dx.doi.org/10.
1002/mds.25934. (Aug).

Rocchi, L., Erro, R., Antelmi, E., Berardelli, A., Tinazzi, M., Liguori, R., Bhatia, K.,
Rothwell, J., 2017. High frequency somatosensory stimulation increases sensori-

motor inhibition and leads to perceptual improvement in healthy subjects. Clin.
Neurophysiol. 128 (6), 1015–1025.

Schlerf, J.E., Verstynen, T.D., Ivry, R.B., Spencer, R.M.C., 2010. Evidence of a novel so-
matopic map in the human neocerebellum during complex actions. J. Neurophysiol.
103, 3330–3336.

Schmahmann, J.D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A.S., et al.,
1999. Three-dimensional MRI atlas of the human cerebellum in proportional ste-
reotaxic space. NeuroImage 10, 233–260.

Shakkottai, V.G., Batla, A., Bhatia, K., Dauer, W.T., Dresel, C., Niethammer, M., Eidelberg,
D., Raike, R.S., Smith, Y., Jinnah, H.A., Hess, E.J., Meunier, S., Hallett, M., Fremont,
R., Khodakhah, K., LeDoux, M.S., Popa, T., Gallea, C., Lehericy, S., Bostan, A.C.,
Strick, P.L., 2016. Current opinions and areas of consensus on the role of the cere-
bellum in dystonia. Cerebellum 16 (2), 577–594. http://dx.doi.org/10.1007/s12311-
016-0825-6. (Oct 12, Review).

Sharp, D.J., Bonnelle, V., De Boissezon, X., Beckmann, C.F., James, S.G., Patel, M.C.,
et al., 2010. Distinct frontal systems for response inhibition, attentional capture, and
error processing. Proc. Natl. Acad. Sci. U. S. A. 107 (13), 6106e11.

Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., Classen, J., 2000. Induction of plasticity
in the human motor cortex by paired associative stimulation. Brain 123 (Pt 3),
572–584.

Swick, D., Ashley, V., Turken, A.U., 2008. Left inferior frontal gyrus is critical for response
inhibition. BMC Neurosci. 9, 102.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotactic Atlas of the Human Brain: 3-
Dimensional Proportional System, An Approach to Cerebral Imaging Stuttgart.
George Thieme Verlag.

Tinazzi, M., Priori, A., Bertolasi, L., Frasson, E., Mauguière, F., Fiaschi, A., 2000.
Abnormal central integration of a dual somatosensory input in dystonia. Evidence for
sensory overflow. Brain 123 (Pt 1), 42–50.

Tohka, J., Zijdenbos, A., Evans, A., 2004. Fast and robust parameter estimation for sta-
tistical partial volume models in brain MRI. NeuroImage 23, 84–97.

Weise, D., Schramm, A., Beck, M., Reiners, K., Joseph, Classen, 2011. Loss of topographic
specificity of LTD-like plasticity is a trait marker in focal dystonia. Neurobiol. Dis. 42,
171–176.

Wolters, A., Sandbrink, F., Schlottmann, A., Erwin, Kunesch, Katja, Stefan, Cohen
Leonardo, G., et al., 2003. A temporally asymmetric Hebbian rule governing plasti-
city in the human motor cortex. J. Neurophysiol. 89, 2339–2345.

Wu, Y., Carson, R.E., 2002. Noise reduction in the simplified reference tissue model for
neuroreceptor functional imaging. J. Cereb. Blood Flow Metab. 22, 1440–1452.

Wu, C.C., Fairhall, S.L., McNair, N.A., Hamm, J.P., Kirk, I.J., Cunnington, R., et al., 2010.
Impaired sensorimotor integration in focal hand dystonia patients in the absence of
symptoms. J. Neurol. Neurosurg. Psychiatry 81, 659–665.

Yousry, T.A., Schmid, U.D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al., 1997.
Localization of the motor hand area to a knob on the precentral gyrus. A new land-
mark. Brain 120 (Pt 1), 141–157.

Zeuner, K.E., Knutzen, A., Granert, O., Götz, J., Wolff, S., Jansen, O., Dressler, D., Hefter,
H., Hallett, M., Deuschl, G., van Eimeren, T., Witt, K., 2015. Increased volume and
impaired function: the role of the basal ganglia in writer's cramp. Brain Behav. 5 (2),
e00301. http://dx.doi.org/10.1002/brb3.301. (Feb).

Zhang, L., Yokoi, F., Jin, Y.H., DeAndrade, M.P., Hashimoto, K., Standaert, D.G., Li, Y.,
2011. Altered dendritic morphology of Purkinje cells in Dyt1 ΔGAG knock-in and
purkinje cell-specific Dyt1 conditional knockout mice. PLoS One 6 (3), e18357.

Zhao, Y., Sharma, N., LeDoux, M.S., 2011. The DYT1 carrier state increases energy de-
mand in the olivocerebellar network. Neuroscience 177, 183–194 (Epub 2011
Jan 14).

C. Gallea et al. NeuroImage: Clinical 17 (2018) 90–97

97

http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0240
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0250
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0250
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0250
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0255
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0255
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0255
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0260
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0260
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0260
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0265
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0265
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0270
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0270
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0275
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0275
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0275
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0280
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0280
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0285
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0285
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0285
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0290
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0290
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0295
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0295
http://dx.doi.org/10.1016/j.brs.2013.02.002
http://dx.doi.org/10.1016/j.brs.2013.02.002
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0300
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0300
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0300
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0305
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0305
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0310
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0310
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0310
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0315
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0315
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0315
http://dx.doi.org/10.1523/JNEUROSCI.5521-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.5521-12.2013
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0325
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0325
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0325
http://dx.doi.org/10.1002/mds.25934
http://dx.doi.org/10.1002/mds.25934
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0335
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0335
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0335
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0335
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0340
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0340
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0340
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0345
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0345
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0345
http://dx.doi.org/10.1007/s12311-016-0825-6
http://dx.doi.org/10.1007/s12311-016-0825-6
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0355
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0355
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0355
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0360
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0360
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0360
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0365
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0365
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0370
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0370
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0370
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0375
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0375
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0375
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0380
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0380
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0385
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0385
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0385
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0390
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0390
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0390
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0395
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0395
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0400
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0400
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0400
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0405
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0405
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0405
http://dx.doi.org/10.1002/brb3.301
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0415
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0415
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0415
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0420
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0420
http://refhub.elsevier.com/S2213-1582(17)30252-8/rf0420

	Loss of inhibition in sensorimotor networks in focal hand dystonia
	Introduction
	Methods
	Subjects
	MRI and PET procedures
	Data analysis
	PET
	Voxel-based morphometry
	Statistical threshold


	Results
	PET FMZ-BP
	PET rCBF
	VBM

	Discussion
	Acknowledgements
	Contributions
	References




