A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-498, 1961.
DOI : 10.1083/jcb.9.2.493

URL : http://jcb.rupress.org/content/jcb/9/2/493.full.pdf

E. Negroni, G. Butler-browne, and V. Mouly, Myogenic stem cells: regeneration and cell therapy in human skeletal muscle, Pathologie Biologie, vol.54, issue.2, pp.100-108, 2006.
DOI : 10.1016/j.patbio.2005.09.001

D. Cornelison and B. Wold, Single-Cell Analysis of Regulatory Gene Expression in Quiescent and Activated Mouse Skeletal Muscle Satellite Cells, Developmental Biology, vol.191, issue.2, pp.270-83, 1997.
DOI : 10.1006/dbio.1997.8721

H. Yin, F. Price, and M. Rudnicki, Satellite Cells and the Muscle Stem Cell Niche, Physiological Reviews, vol.93, issue.1, pp.23-67, 2013.
DOI : 10.1152/physrev.00043.2011

D. Gullberg, C. Tiger, and T. Velling, Laminins during muscle development and in muscular dystrophies, Cellular and Molecular Life Sciences, vol.56, issue.5, pp.442-60, 1999.
DOI : 10.1007/PL00000616

J. Saini, J. Mcphee, S. Al-dabbagh, C. Stewart, and N. Shanti, Regenerative function of immune system: Modulation of muscle stem cells, Ageing Research Reviews, vol.27, pp.67-76, 2016.
DOI : 10.1016/j.arr.2016.03.006

K. Thomas, A. Engler, and G. Meyer, Extracellular matrix regulation in the muscle satellite cell niche, Connective Tissue Research, vol.10, issue.22, pp.1-8, 2015.
DOI : 10.1089/ten.2006.0175

M. Brizzi, G. Tarone, and P. Defilippi, Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche, Current Opinion in Cell Biology, vol.24, issue.5, pp.645-51, 2012.
DOI : 10.1016/j.ceb.2012.07.001

C. Griffin, L. Apponi, K. Long, and G. Pavlath, Chemokine expression and control of muscle cell migration during myogenesis, Journal of Cell Science, vol.123, issue.18, pp.3052-60, 2010.
DOI : 10.1242/jcs.066241

J. Taipale and J. Keski-oja, Growth factors in the extracellular matrix, FASEB J, vol.11, pp.51-60, 1997.

Y. Torrente, E. Fahime, E. Caron, N. , D. Bo et al., Tumor Necrosis Factor-?? (TNF-??) Stimulates Chemotactic Response in Mouse Myogenic Cells, Cell Transplantation, vol.94, issue.1, pp.91-100, 2003.
DOI : 10.1073/pnas.94.4.1402

URL : http://journals.sagepub.com/doi/pdf/10.3727/000000003783985115

M. Sternlicht and Z. Werb, How Matrix Metalloproteinases Regulate Cell Behavior, Annual Review of Cell and Developmental Biology, vol.17, issue.1, pp.463-516, 2001.
DOI : 10.1146/annurev.cellbio.17.1.463

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792593/pdf

A. Page-mccaw, A. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling, Nature Reviews Molecular Cell Biology, vol.79, issue.3, pp.221-254, 2007.
DOI : 10.1172/JCI200113171

G. Digiacomo, I. Tusa, M. Bacci, M. Cipolleschi, D. Sbarba et al., Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway, Cell Adhesion & Migration, vol.110, issue.6, pp.327-364, 2017.
DOI : 10.1074/jbc.M606695200

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569968/pdf

H. Suh and H. Han, Laminin regulates mouse embryonic stem cell migration: involvement of Epac1/Rap1 and Rac1/cdc42, AJP: Cell Physiology, vol.298, issue.5, pp.1159-69, 2010.
DOI : 10.1152/ajpcell.00496.2009

L. Zou, S. Cao, N. Kang, R. Huebert, and V. Shah, Fibronectin Induces Endothelial Cell Migration through ??1 Integrin and Src-dependent Phosphorylation of Fibroblast Growth Factor Receptor-1 at Tyrosines 653/654 and 766, Journal of Biological Chemistry, vol.24, issue.10, pp.7190-202, 2012.
DOI : 10.3748/wjg.v16.i3.281

W. Savino, D. Mendes-da-cruz, D. Golbert, and I. Riederer, Cotta-de-Almeida V. Laminin-mediated interactions in thymocyte migration and development, Front Immunol, vol.6, p.579, 2015.

F. Pinto-mariz, R. Carvalho, L. , P. De-queiroz-campos-araujo, A. et al., CD49d is a disease progression biomarker and a potential target for immunotherapy in Duchenne muscular dystrophy, Skeletal Muscle, vol.179, issue.1, p.45, 2015.
DOI : 10.1016/j.ajpath.2011.03.050

URL : https://hal.archives-ouvertes.fr/hal-01241371

S. Silva-barbosa, G. Butler-browne, W. De-mello, I. Riederer, D. Santo et al., Human Myoblast Engraftment Is Improved in Laminin-Enriched Microenvironment, Transplantation, vol.85, issue.4, pp.566-75, 2008.
DOI : 10.1097/TP.0b013e31815fee50

R. Vaz, G. Martins, S. Thorsteinsdóttir, and G. Rodrigues, Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model, Cell and Tissue Research, vol.108, issue.3, pp.569-78, 2012.
DOI : 10.1369/jhc.6R6995.2006

S. Chowdhury, Y. Muneyuki, Y. Takezawa, M. Kino-oka, A. Saito et al., Synergic stimulation of laminin and epidermal growth factor facilitates the myoblast growth through promoting migration, Journal of Bioscience and Bioengineering, vol.108, issue.2, pp.174-181, 2009.
DOI : 10.1016/j.jbiosc.2009.03.005

I. Riederer, A. Bonomo, V. Mouly, and W. Savino, Laminin therapy for the promotion of muscle regeneration, FEBS Letters, vol.7, issue.22, pp.3449-53, 2015.
DOI : 10.4161/cam.22827

C. Bentzinger, Y. Wang, N. Dumont, and M. Rudnicki, Cellular dynamics in the muscle satellite cell niche, EMBO reports, vol.99, issue.12, pp.1062-72, 2013.
DOI : 10.1007/s004010051172

C. Penton, V. Badarinarayana, J. Prisco, E. Powers, P. M. Allen et al., Laminin 521 maintains differentiation potential of mouse and human satellite cell-derived myoblasts during long-term culture expansion. Skelet Muscle, p.44, 2016.

E. Sonnenberg, D. Meyer, K. Weidner, and C. Birchmeier, Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development, The Journal of Cell Biology, vol.123, issue.1, pp.223-258, 1993.
DOI : 10.1083/jcb.123.1.223

R. Allen, S. Sheehan, R. Taylor, T. Kendall, and G. Rice, Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro, Journal of Cellular Physiology, vol.49, issue.2, pp.307-319, 1995.
DOI : 10.1007/978-1-4684-5865-7_17

R. Gal-levi, Y. Leshem, S. Aoki, T. Nakamura, and O. Halevy, Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1402, issue.1, pp.39-51, 1998.
DOI : 10.1016/S0167-4889(97)00124-9

K. Miller, D. Thaloor, S. Matteson, and G. Pavlath, Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle, Am J Physiol Cell Physiol, vol.278, pp.174-81, 2000.

M. Webster and C. Fan, c-MET Regulates Myoblast Motility and Myocyte Fusion during Adult Skeletal Muscle Regeneration, PLoS ONE, vol.4, issue.11, p.81757, 2013.
DOI : 10.1371/journal.pone.0081757.s005

URL : https://doi.org/10.1371/journal.pone.0081757

K. Catlow, J. Deakin, Z. Wei, M. Delehedde, D. Fernig et al., Interactions of Hepatocyte Growth Factor/Scatter Factor with Various Glycosaminoglycans Reveal an Important Interplay between the Presence of Iduronate and Sulfate Density, Journal of Biological Chemistry, vol.266, issue.9, pp.5235-5283, 2008.
DOI : 10.1074/jbc.275.7.4599

S. Lee, R. Dickson, and C. Lin, Activation of Hepatocyte Growth Factor and Urokinase/Plasminogen Activator by Matriptase, an Epithelial Membrane Serine Protease, Journal of Biological Chemistry, vol.73, issue.47, pp.36720-36725, 2000.
DOI : 10.1530/ror.0.0010144

T. Shimomura, J. Kondo, M. Ochiai, D. Naka, K. Miyazawa et al., Activation of the zymogen of hepatocyte growth factor activator by thrombin, J Biol Chem, vol.268, pp.22927-22959, 1993.

L. Naldini, E. Vigna, R. Ferracini, P. Longati, L. Gandino et al., The tyrosine kinase encoded by the MET proto-oncogene is activated by autophosphorylation., Molecular and Cellular Biology, vol.11, issue.4, pp.1793-803, 1991.
DOI : 10.1128/MCB.11.4.1793

M. Yamada, Y. Sankoda, R. Tatsumi, W. Mizunoya, Y. Ikeuchi et al., Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner, The International Journal of Biochemistry & Cell Biology, vol.40, issue.10, pp.2183-91, 2008.
DOI : 10.1016/j.biocel.2008.02.017

M. Yamada, R. Tatsumi, T. Kikuiri, S. Okamoto, S. Nonoshita et al., Matrix metalloproteinases are involved in mechanical stretch???induced activation of skeletal muscle satellite cells, Muscle & Nerve, vol.31, issue.3, pp.313-322, 2006.
DOI : 10.1002/aja.1002020109

S. Corti, S. Salani, D. Bo, R. Sironi, M. Strazzer et al., Chemotactic Factors Enhance Myogenic Cell Migration across an Endothelial Monolayer, Experimental Cell Research, vol.268, issue.1, pp.36-44, 2001.
DOI : 10.1006/excr.2001.5267

A. Barbero, R. Benelli, S. Minghelli, F. Tosetti, A. Dorcaratto et al., Growth factor supplemented matrigel improves ectopic skeletal muscle formation?a cell therapy approach, Journal of Cellular Physiology, vol.10, issue.2, pp.183-92, 2001.
DOI : 10.1002/1097-4652(200102)186:2<183::AID-JCP1020>3.0.CO;2-Q

T. Partridge, J. Morgan, G. Coulton, E. Hoffman, and L. Kunkel, Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts, Nature, vol.337, issue.6203, pp.176-185, 1989.
DOI : 10.1038/337176a0

E. Gussoni, G. Pavlath, A. Lanctot, K. Sharma, R. Miller et al., Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation, Nature, vol.356, issue.6368, pp.435-443, 1992.
DOI : 10.1038/356435a0

D. Skuk, Myoblast transplantation for inherited myopathies: a clinical approach, Expert Opinion on Biological Therapy, vol.160, issue.12, pp.1871-85, 2004.
DOI : 10.1083/jcb.131.4.975

J. Tremblay, F. Malouin, R. Roy, J. Huard, J. Bouchard et al., Results of a Triple Blind Clinical Study of Myoblast Transplantations without Immunosuppressive Treatment in Young Boys with Duchenne Muscular Dystrophy, Cell Transplantation, vol.333, issue.2, pp.99-112, 2013.
DOI : 10.1038/333466a0

S. Périé, C. Trollet, V. Mouly, V. Vanneaux, K. Mamchaoui et al., Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study, Mol Ther. Nature Publishing Group, vol.22, pp.219-244, 2014.

K. Urish, Y. Kanda, and J. Huard, Initial Failure in Myoblast Transplantation Therapy Has Led the Way Toward the Isolation of Muscle Stem Cells: Potential for Tissue Regeneration, Curr Top Dev Biol, vol.68, pp.263-80, 2005.
DOI : 10.1016/S0070-2153(05)68009-X

I. Riederer, E. Negroni, M. Bencze, A. Wolff, A. Aamiri et al., Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice Correlates With Increased Proliferation and Migration, Molecular Therapy, vol.20, issue.1, pp.146-54, 2012.
DOI : 10.1038/mt.2011.193

D. Briggs and J. Morgan, Recent progress in satellite cell/myoblast engraftment - relevance for therapy, FEBS Journal, vol.22, issue.17, pp.4281-93, 2013.
DOI : 10.1016/j.nmd.2011.09.008

S. Decary, V. Mouly, H. Ben, A. Sautet, J. Barbet et al., Replicative Potential and Telomere Length in Human Skeletal Muscle: Implications for Satellite Cell-Mediated Gene Therapy, Human Gene Therapy, vol.8, issue.12, pp.1429-1467, 1997.
DOI : 10.1089/hum.1997.8.12-1429

K. Mamchaoui, C. Trollet, A. Bigot, E. Negroni, S. Chaouch et al., Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders, Skeletal Muscle, vol.1, issue.1, p.34, 2011.
DOI : 10.1089/hum.2008.163

URL : https://hal.archives-ouvertes.fr/inserm-00651121

H. Lee, A. Huang, G. Huang, P. Yang, P. Chen et al., Hepatocyte growth factor stimulates the growth and activates mitogen-activated protein kinase in human hepatoma cells, Journal of Biomedical Science, vol.121, issue.3, pp.180-184, 1998.
DOI : 10.1007/BF02253467

E. Koivunen, R. Pasqualini, W. Arap, H. Valtanen, A. Rainisalo et al., Tumor targeting with a selective gelatinase inhibitor, Nature Biotechnology, vol.17, issue.8, pp.768-74, 1999.
DOI : 10.1038/11703

H. Nagase, K. Suzuki, T. Morodomi, J. Enghild, and G. Salvesen, Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3, Matrix Suppl, vol.1, pp.237-281, 1992.

M. Katz, I. Amit, and Y. Yarden, Regulation of MAPKs by growth factors and receptor tyrosine kinases, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.8, pp.1161-76, 2007.
DOI : 10.1016/j.bbamcr.2007.01.002

S. Organ and M. Tsao, An overview of the c-MET signaling pathway, Therapeutic Advances in Medical Oncology, vol.5, issue.2, pp.7-19, 2011.
DOI : 10.1038/sj.onc.1205004

G. Dimchev, N. Shanti, and C. Stewart, Phospho-tyrosine phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast migration in vitro. Requirement of PI3K/AKT and MAPK/ERK pathways, Journal of Muscle Research and Cell Motility, vol.173, issue.1, pp.125-161, 2013.
DOI : 10.1164/rccm.200507-1058OC

E. Negroni, T. Gidaro, A. Bigot, G. Butler-browne, V. Mouly et al., Invited review: Stem cells and muscle diseases: advances in cell therapy strategies, Neuropathology and Applied Neurobiology, vol.16, issue.3, pp.270-87, 2015.
DOI : 10.1016/j.nmd.2006.07.022

A. Siegel, P. Kuhlmann, and D. Cornelison, Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging, Skeletal Muscle, vol.1, issue.1, p.7, 2011.
DOI : 10.1186/2044-5040-1-7

URL : https://skeletalmusclejournal.biomedcentral.com/track/pdf/10.1186/2044-5040-1-7?site=skeletalmusclejournal.biomedcentral.com

D. Stark, R. Karvas, A. Siegel, and D. Cornelison, Eph/ephrin interactions modulate muscle satellite cell motility and patterning, Development, vol.138, issue.24, pp.5279-89, 2011.
DOI : 10.1242/dev.068411

URL : http://dev.biologists.org/content/develop/138/24/5279.full.pdf

L. Alfaro, S. Dick, A. Siegel, A. Anonuevo, K. Mcnagny et al., CD34 Promotes Satellite Cell Motility and Entry into Proliferation to Facilitate Efficient Skeletal Muscle Regeneration, STEM CELLS, vol.5, issue.12, pp.2030-2071, 2011.
DOI : 10.1371/journal.pone.0010920

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.759/pdf

R. Bischoff, Chemotaxis of skeletal muscle satellite cells, Developmental Dynamics, vol.137, issue.4, pp.505-520, 1997.
DOI : 10.1084/jem.137.2.387

P. Usatyuk, P. Fu, V. Mohan, Y. Epshtein, J. Jacobson et al., Role of c-Met/Phosphatidylinositol 3-Kinase (PI3k)/Akt Signaling in Hepatocyte Growth Factor (HGF)-mediated Lamellipodia Formation, Reactive Oxygen Species (ROS) Generation, and Motility of Lung Endothelial Cells, Journal of Biological Chemistry, vol.282, issue.19, pp.13476-91, 2014.
DOI : 10.1371/journal.pone.0010189

H. Tsou, H. Chen, Y. Hung, C. Chang, T. Li et al., HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells, PLoS ONE, vol.30, issue.1, p.53974, 2013.
DOI : 10.1371/journal.pone.0053974.s001

URL : https://doi.org/10.1371/journal.pone.0053974

F. Maina, F. Casagranda, E. Audero, A. Simeone, P. Comoglio et al., Uncoupling of Grb2 from the Met Receptor In Vivo Reveals Complex Roles in Muscle Development, Cell, vol.87, issue.3, pp.531-573, 1996.
DOI : 10.1016/S0092-8674(00)81372-0

F. Bladt, D. Riethmacher, S. Isenmann, A. Aguzzi, and C. Birchmeier, Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud, Nature, vol.376, issue.6543, pp.768-71, 1995.
DOI : 10.1038/376768a0

M. Yamada, R. Tatsumi, K. Yamanouchi, T. Hosoyama, S. Shiratsuchi et al., High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo, AJP: Cell Physiology, vol.298, issue.3, pp.465-76, 2010.
DOI : 10.1152/ajpcell.00449.2009

N. Walker, T. Kahamba, N. Woudberg, K. Goetsch, and C. Niesler, Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and downstream signalling pathways, Growth Factors, vol.44, issue.3, pp.229-270, 2015.
DOI : 10.1093/ps/81.8.1191

J. Sanes, Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane, The Journal of Cell Biology, vol.93, issue.2, pp.442-51, 1982.
DOI : 10.1083/jcb.93.2.442

A. Helbling-leclerc, X. Zhang, H. Topaloglu, C. Cruaud, F. Tesson et al., Mutations in the laminin ??2???chain gene (LAMA2) cause merosin???deficient congenital muscular dystrophy, Nature Genetics, vol.19, issue.2, pp.216-224, 1995.
DOI : 10.1016/0960-8966(94)90051-5

P. Van-ry, P. Minogue, B. Hodges, and D. Burkin, Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy, Human Molecular Genetics, vol.23, issue.2, pp.383-96, 2014.
DOI : 10.1093/hmg/ddt428

J. Rooney, J. Knapp, B. Hodges, R. Wuebbles, and D. Burkin, Laminin-111 Protein Therapy Reduces Muscle Pathology and Improves Viability of a Mouse Model of Merosin-Deficient Congenital Muscular Dystrophy, The American Journal of Pathology, vol.180, issue.4, pp.1593-602, 2012.
DOI : 10.1016/j.ajpath.2011.12.019

J. Rooney, P. Gurpur, and D. Burkin, Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy, Proceedings of the National Academy of Sciences, vol.4, issue.12, pp.7991-7997, 2009.
DOI : 10.1038/4033

J. Sanes, The Basement Membrane/Basal Lamina of Skeletal Muscle, Journal of Biological Chemistry, vol.4, issue.15, pp.12601-12605, 2003.
DOI : 10.1016/S0896-6273(02)00739-0

C. Bentzinger, Y. Wang, J. Von-maltzahn, V. Soleimani, H. Yin et al., Fibronectin Regulates Wnt7a Signaling and Satellite Cell Expansion, Cell Stem Cell, vol.12, issue.1, pp.75-87, 2013.
DOI : 10.1016/j.stem.2012.09.015

URL : https://doi.org/10.1016/j.stem.2012.09.015

C. Hartman, B. Isenberg, S. Chua, and J. Wong, Extracellular matrix type modulates cell migration on mechanical gradients, Experimental Cell Research, vol.359, issue.2, pp.361-367, 2017.
DOI : 10.1016/j.yexcr.2017.08.018

S. Rahman, Y. Patel, J. Murray, K. Patel, R. Sumathipala et al., Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells, BMC Cell Biology, vol.6, issue.1, p.8, 2005.
DOI : 10.1186/1471-2121-6-8

A. Siegel, K. Atchison, K. Fisher, G. Davis, and D. Cornelison, 3D Timelapse Analysis of Muscle Satellite Cell Motility, Stem Cells, vol.7, issue.10, pp.2527-2565, 2009.
DOI : 10.1091/mbc.9.8.2185

S. Sakaguchi, J. Shono, T. Suzuki, S. Sawano, J. Anderson et al., Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: Promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle, The International Journal of Biochemistry & Cell Biology, vol.54, pp.272-85, 2014.
DOI : 10.1016/j.biocel.2014.05.032

S. Sheehan and R. Allen, Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor, Journal of Cellular Physiology, vol.194, issue.3, pp.499-506, 1999.
DOI : 10.1006/bbrc.1993.1849

R. Ross, Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors*1, Cardiovascular Research, vol.63, issue.3, pp.381-90, 2004.
DOI : 10.1016/j.cardiores.2004.04.027

J. Ivaska and J. Heino, Cooperation Between Integrins and Growth Factor Receptors in Signaling and Endocytosis, Annual Review of Cell and Developmental Biology, vol.27, issue.1, pp.291-320, 2011.
DOI : 10.1146/annurev-cellbio-092910-154017

M. Fujita, K. Ieguchi, P. Davari, S. Yamaji, Y. Taniguchi et al., Crosstalk between integrin ?6?4 and insulin-like growth factor-1 receptor (IGF1R) through direct ?6?4 binding to IGF1 and subsequent ?6?4-IGF1-IGF1R ternary complex formation in anchorage-independent conditions

P. Comoglio, C. Boccaccio, and L. Trusolino, Interactions between growth factor receptors and adhesion molecules: breaking the rules, Current Opinion in Cell Biology, vol.15, issue.5, pp.565-71, 2003.
DOI : 10.1016/S0955-0674(03)00096-6

A. Bertotti, P. Comoglio, and L. Trusolino, Integrin Is a Transforming Molecule that Unleashes Met Tyrosine Kinase Tumorigenesis, Cancer Research, vol.65, issue.23, pp.10674-10683, 2005.
DOI : 10.1158/0008-5472.CAN-05-2827

URL : http://cancerres.aacrjournals.org/content/canres/65/23/10674.full.pdf

L. Trusolino, A. Bertotti, and P. Comoglio, A Signaling Adapter Function for ??6??4 Integrin in the Control of HGF-Dependent Invasive Growth, Cell, vol.107, issue.5, pp.643-54, 2001.
DOI : 10.1016/S0092-8674(01)00567-0

K. Bandow, T. Ohnishi, M. Tamura, I. Semba, and Y. Daikuhara, Hepatocyte growth factor/scatter factor stimulates migration of muscle precursors in developing mouse tongue, Journal of Cellular Physiology, vol.175, issue.2, pp.236-279, 2004.
DOI : 10.1128/MCB.12.9.3665

W. Wang, H. Pan, K. Murray, B. Jefferson, and Y. Li, Matrix Metalloproteinase-1 Promotes Muscle Cell Migration and Differentiation, The American Journal of Pathology, vol.174, issue.2, pp.541-550, 2009.
DOI : 10.2353/ajpath.2009.080509

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630562/pdf

R. Holt, U. Fagerli, V. Baykov, T. Rø, H. Hov et al., Hepatocyte growth factor promotes migration of human myeloma cells, Haematologica, vol.93, issue.4, pp.619-641, 2008.
DOI : 10.3324/haematol.11867

R. Holt, V. Baykov, T. Ro, S. Brabrand, A. Waage et al., Human myeloma cells adhere to fibronectin in response to hepatocyte growth factor, Haematologica, vol.90, pp.479-88, 2005.