A. Figuerola, D. Corato, R. Manna, L. Pellegrino, and T. , From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications, Pharmacological Research, vol.62, issue.2, pp.126-169, 2010.
DOI : 10.1016/j.phrs.2009.12.012

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-110, 2008.
DOI : 10.1021/cr068445e

C. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, vol.63, issue.9, pp.789-808, 2011.
DOI : 10.1016/j.addr.2011.03.008

M. Bañobre-lópez, A. Teijeiro, and J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment, Reports of Practical Oncology & Radiotherapy, vol.18, issue.6, pp.397-400, 2013.
DOI : 10.1016/j.rpor.2013.09.011

K. Maier-hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme, Journal of Neuro-Oncology, vol.70, issue.2, pp.317-341, 2011.
DOI : 10.1158/0008-5472.CAN-10-1022

M. Hanihara, T. Kawataki, K. Oh-oka, K. Mitsuka, A. Nakao et al., Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model, Journal of Neurosurgery, vol.124, issue.6, pp.1594-601, 2016.
DOI : 10.3171/2015.5.JNS141901

A. Chakravarti, M. Erkkinen, U. Nestler, R. Stupp, M. Mehta et al., Temozolomide-Mediated Radiation Enhancement in Glioblastoma: A Report on Underlying Mechanisms, Clinical Cancer Research, vol.12, issue.15, pp.4738-4784, 2006.
DOI : 10.1158/1078-0432.CCR-06-0596

R. Stupp, W. Mason, M. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-96, 2005.
DOI : 10.1056/NEJMoa043330

H. Fine, P. Wen, E. Maher, E. Viscosi, T. Batchelor et al., Phase II Trial of Thalidomide and Carmustine for Patients With Recurrent High-Grade Gliomas, Journal of Clinical Oncology, vol.21, issue.12, pp.2299-304, 2003.
DOI : 10.1200/JCO.2003.08.045

C. Bennett, C. Angelotta, P. Yarnold, A. Evens, J. Zonder et al., Thalidomide- and Lenalidomide-Associated Thromboembolism Among Patients With Cancer, JAMA, vol.296, issue.21, pp.2558-60, 2006.
DOI : 10.1001/jama.296.21.2558-c

A. Authier, K. Farrand, K. Broadley, L. Ancelet, M. Hunn et al., Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells, International Journal of Cancer, vol.118, issue.11, pp.2566-78, 2015.
DOI : 10.1002/ijc.21616

T. Matsunaga, T. Suzuki, M. Tanaka, and A. Arakaki, Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology, Trends in Biotechnology, vol.25, issue.4, pp.182-190, 2007.
DOI : 10.1016/j.tibtech.2007.02.002

A. Araujo, F. Abreu, T. Silva, K. Bazylinski, D. Lins et al., Magnetotactic Bacteria as Potential Sources of Bioproducts, Marine Drugs, vol.2, issue.1, pp.389-430, 2015.
DOI : 10.1016/S0378-1119(03)00587-0

T. Orlando, S. Mannucci, E. Fantechi, G. Conti, S. Tambalo et al., as potential theranostics tools, Contrast Media & Molecular Imaging, vol.1, issue.9, pp.139-184, 2016.
DOI : 10.3978/j.issn.2223-4292.2011.08.03

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering, vol.100, issue.1, pp.1-11, 2005.
DOI : 10.1263/jbb.100.1

E. Alphandéry, S. Faure, O. Seksek, F. Guyot, and I. Chebbi, Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy, ACS Nano, vol.5, issue.8, pp.6279-96, 2011.
DOI : 10.1021/nn201290k

E. Alphandéry, M. Amor, F. Guyot, and I. Chebbi, The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties, Applied Microbiology and Biotechnology, vol.91, issue.3
DOI : 10.1385/ABAB:91-93:1-9:155

T. Matsunaga, F. Tadokoro, and N. Nakamura, Mass culture of magnetic bacteria and their application to flow type immunoassays, IEEE Transactions on Magnetics, vol.26, issue.5, pp.1557-59, 1990.
DOI : 10.1109/20.104444

M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida et al., Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: Ex vivo Study, Japanese Journal of Cancer Research, vol.10, issue.7, pp.463-472, 1998.
DOI : 10.3191/thermalmedicine.10.168

M. Suzuki, M. Shinkai, H. Honda, and T. Kobayashi, Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes, Melanoma Research, vol.13, issue.2, pp.129-164, 2003.
DOI : 10.1097/00008390-200304000-00004

K. Tanaka, A. Ito, T. Kobayashi, T. Kawamura, S. Shimada et al., Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma, Journal of Bioscience and Bioengineering, vol.100, issue.1, pp.112-117, 2005.
DOI : 10.1263/jbb.100.112

M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldöfner et al., Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer, The Prostate, vol.9, issue.1, pp.97-104, 2006.
DOI : 10.1148/radiology.169.1.3420266

S. Toraya-brown, M. Sheen, P. Zhang, L. Chen, J. Baird et al., Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.6, pp.1273-85, 2014.
DOI : 10.1016/j.nano.2014.01.011

P. Zadnik, C. Molina, R. Sarabia-estrada, M. Groves, M. Wabler et al., Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease, Journal of Neurosurgery: Spine, vol.20, issue.6, pp.740-50, 2014.
DOI : 10.3171/2014.2.SPINE13142

C. Dennis, A. Jackson, J. Borchers, P. Hoopes, R. Strawbridge et al., Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology, vol.20, issue.39, p.395103, 2009.
DOI : 10.1088/0957-4484/20/39/395103

D. Schultheiss and D. Schüler, Development of a genetic system for Magnetospirillum gryphiswaldense, Archives of Microbiology, vol.179, issue.2, pp.89-94, 2003.
DOI : 10.1007/s00203-002-0498-z

U. Heyen and D. Schüler, Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor, Applied Microbiology and Biotechnology, vol.29, issue.5-6, pp.5-6, 2003.
DOI : 10.1016/S0141-0229(01)00343-X

Y. Zhang, X. Zhang, W. Jiang, Y. Li, and J. Li, Semicontinuous Culture of Magnetospirillum gryphiswaldense MSR-1 Cells in an Autofermentor by Nutrient-Balanced and Isosmotic Feeding Strategies, Applied and Environmental Microbiology, vol.77, issue.17, pp.5851-5857, 2011.
DOI : 10.1128/AEM.05962-11

J. Yang, S. Li, X. Huang, T. Tang, W. Jiang et al., A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factors, Frontiers in Microbiology, vol.4, p.210, 2013.
DOI : 10.3389/fmicb.2013.00210

J. Sun, F. Zhao, T. Tang, W. Jiang, J. Tian et al., High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air, Applied Microbiology and Biotechnology, vol.94, issue.5, pp.389-97, 2008.
DOI : 10.1016/S0723-2020(11)80386-3

D. Bordelon, C. Cornejo, C. Grüttner, F. Westphal, T. Deweese et al., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, vol.3, issue.12, p.124904, 2011.
DOI : 10.1016/j.jmmm.2006.10.1151

K. Kekalo, I. Baker, R. Meyers, and J. Shyong, Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field, Nano LIFE, vol.8, issue.02, p.1550002, 2015.
DOI : 10.1088/0022-3727/40/2/006

/. Patent and . Us20150306246a1, Magnetic nanoparticles, composites, suspensions and colloids with high specific absorption rate (sar) Issued 6, 2013.

M. Tomayko and C. Reynolds, Determination of subcutaneous tumor size in athymic (nude) mice, Cancer Chemotherapy and Pharmacology, vol.45, issue.3, pp.148-54, 1989.
DOI : 10.1038/bjc.1985.57

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Heat-inducible TNF-?? gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy, Cancer Gene Therapy, vol.8, issue.9, pp.649-54, 2001.
DOI : 10.1038/sj.cgt.7700357

D. Heitjan, A. Manni, and R. Santen, Statistical analysis of in vivo tumor growth experiments, Cancer Res, vol.53, issue.24, pp.6042-50, 1993.

C. Lang, D. Schüler, and D. Faivre, Synthesis of Magnetite Nanoparticles for Bio- and Nanotechnology: Genetic Engineering and Biomimetics of Bacterial Magnetosomes, Macromolecular Bioscience, vol.122, issue.2, pp.144-51, 2007.
DOI : 10.1016/S1389-1723(03)80143-3

L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin et al., Magnetotactic bacteria, magnetosomes and their application, Microbiological Research, vol.167, issue.9, pp.507-526, 2012.
DOI : 10.1016/j.micres.2012.04.002

S. Staniland and . Magnetosomes, Magnetosomes: Bacterial Biosynthesis of Magnetic Nanoparticles and Potential Biomedical Applications, pp.399-430, 2009.
DOI : 10.1002/1097-0290(20001220)70:6<704::AID-BIT14>3.0.CO;2-E

S. Andrade, R. Silveira, C. Schmidt, and S. Dalmora, Comparative evaluation of the human whole blood and human peripheral blood monocyte tests for pyrogens, International Journal of Pharmaceutics, vol.265, issue.1-2, pp.115-139, 2004.
DOI : 10.1016/j.ijpharm.2003.07.005

X. Wang, F. Wei, A. Liu, L. Wang, J. Wang et al., Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles, Biomaterials, vol.33, issue.14, pp.3719-3751, 2012.
DOI : 10.1016/j.biomaterials.2012.01.058

M. Rozenberg and G. Shoham, FTIR spectra of solid poly-l-lysine in the stretching NH mode range, Biophysical Chemistry, vol.125, issue.1, pp.166-71, 2007.
DOI : 10.1016/j.bpc.2006.07.008

S. Tam, J. Dusseault, S. Polizu, M. Ménard, J. Hallé et al., Physicochemical model of alginate???poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS, Biomaterials, vol.26, issue.34
DOI : 10.1016/j.biomaterials.2005.05.007

K. Isaksson, D. Akerberg, M. Posaric-bauden, R. Andersson, and B. Tingstedt, In vivo toxicity and biodistribution of intraperitoneal and intravenous poly-l-lysine and poly-l-lysine/poly-l-glutamate in rats, Journal of Materials Science: Materials in Medicine, vol.35, issue.Suppl 1, pp.1293-1302, 2014.
DOI : 10.1038/ki.1989.115

E. Freireich, E. Gehan, D. Rall, L. Schmidt, and H. Skipper, Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man, Cancer Chemother Rep, vol.50, issue.4, pp.219-263, 1966.

K. Maier-hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust et al., Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme, Journal of Neuro-Oncology, vol.40, issue.1, pp.53-60, 2007.
DOI : 10.1016/0360-3016(93)90351-U

L. Branquinho, M. Carrião, A. Costa, N. Zufelato, M. Sousa et al., Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports, vol.122, issue.230, p.2887, 2013.
DOI : 10.1006/jmra.1996.0184

K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki et al., Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment, Theranostics, vol.3, issue.6, pp.366-76, 2013.
DOI : 10.7150/thno.5860

Q. Zhao, L. Wang, R. Cheng, L. Mao, R. Arnold et al., Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models, Theranostics, vol.2, issue.1, pp.113-134, 2012.
DOI : 10.7150/thno.3854

L. Hu, F. Zhang, F. Wang, X. You, L. Nie et al., Comparison of the <formula formulatype="inline"> <tex Notation="TeX">${^{1}{\rm H}}$</tex></formula> NMR Relaxation Enhancement Produced by Bacterial Magnetosomes and Synthetic Iron Oxide Nanoparticles for Potential Use as MR Molecular Probes, IEEE Transactions on Applied Superconductivity, vol.20, issue.3, pp.822-825, 2011.
DOI : 10.1109/TASC.2010.2041218

N. Lee, H. Kim, S. Choi, M. Park, D. Kim et al., Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets, Proceedings of the National Academy of Sciences, vol.18, issue.1, pp.2662-2669, 2011.
DOI : 10.3727/096368909788237113

D. Corato, R. Espinosa, A. Lartigue, L. Tharaud, M. Chat et al., Magnetic hyperthermia efficiency in the cellular environment for??different nanoparticle designs, Biomaterials, vol.35, issue.24, pp.6400-6411, 2014.
DOI : 10.1016/j.biomaterials.2014.04.036

P. Guardia, D. Corato, R. Lartigue, L. Wilhelm, C. Espinosa et al., Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment, ACS Nano, vol.6, issue.4, pp.3080-91, 2012.
DOI : 10.1021/nn2048137

K. Chu and D. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nature Reviews Cancer, vol.37, issue.3, pp.199-208, 2014.
DOI : 10.1006/cryo.1998.2115

S. Toraya-brown and S. Fiering, Local tumour hyperthermia as immunotherapy for metastatic cancer, International Journal of Hyperthermia, vol.8, issue.8, pp.531-539, 2014.
DOI : 10.1371/journal.pone.0069073

A. Ito, M. Shinkai, H. Honda, K. Yoshikawa, S. Saga et al., Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles, Cancer Immunol Immunother, vol.52, issue.2, pp.80-88, 2003.

E. Hall, THE BYSTANDER EFFECT, Health Physics, vol.85, issue.1, pp.31-36, 2003.
DOI : 10.1097/00004032-200307000-00008

A. Jordan, R. Scholz, K. Maier-hauff, F. Van-landeghem, N. Waldoefner et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of Neuro-Oncology, vol.89, issue.1, pp.7-14, 2006.
DOI : 10.1111/j.1349-7006.1998.tb00586.x

T. Ohno, T. Wakabayashi, A. Takemura, J. Yoshida, A. Ito et al., Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study, Journal of Neuro-Oncology, vol.56, issue.3, pp.233-242, 2002.
DOI : 10.1023/A:1015080808031

S. Dutz and R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, International Journal of Hyperthermia, vol.25, issue.8, pp.790-800, 2013.
DOI : 10.1080/02656730902803118

E. Alphandéry, P. Grand-dewyse, L. Fèvre, R. Mandawala, C. Durand-dubief et al., Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects, Expert Review of Anticancer Therapy, vol.7, issue.10, pp.1233-1255, 2015.
DOI : 10.1200/JCO.2012.43.7384

E. Alphandéry, L. Lijeour, Y. Lalatonne, and L. Motte, Different signatures between chemically and biologically synthesized nanoparticles in a magnetic sensor: A new technology for multiparametric detection, Sensors and Actuators B: Chemical, vol.147, issue.2, pp.786-790, 2010.
DOI : 10.1016/j.snb.2010.04.009

E. Alphandéry, A. Idbaih, C. Adam, J. Delattre, C. Schmitt et al., Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field, Journal of Controlled Release, vol.262, pp.259-272, 2017.
DOI : 10.1016/j.jconrel.2017.07.020

E. Alphandéry, A. Idbaih, C. Adam, J. Delattre, C. Schmitt et al., Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia, Biomaterials, vol.141, pp.210-222, 2017.
DOI : 10.1016/j.biomaterials.2017.06.026

C. Mandawala, I. Chebbi, M. Durand-dubief, L. Fèvre, R. Hamdous et al., -lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors, J. Mater. Chem. B, vol.262, issue.3
DOI : 10.1016/j.jconrel.2017.07.020

Y. Hamdous, I. Chebbi, C. Mandawala, L. Fèvre, R. Guyot et al., Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field, Journal of Nanobiotechnology, vol.2, issue.5, pp.10-1186, 2017.
DOI : 10.1016/j.biomaterials.2017.06.026

URL : https://hal.archives-ouvertes.fr/hal-01620248