M. Anisimova, J. Bielawski, and Z. Yang, Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution, Molecular Biology and Evolution, vol.18, issue.8, pp.1585-1592, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003945

M. Anisimova, Detecting positive selection in the protein coding genes. Dissertation, p.642, 2003.

K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, vol.22, issue.2, pp.195-201, 2006.
DOI : 10.1093/bioinformatics/bti770

A. Arp and J. Childress, Sulfide Binding by the Blood of the Hydrothermal Vent Tube Worm 646, 1983.

M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Research, vol.42, issue.W1, pp.42-252, 2014.
DOI : 10.1093/nar/gku340

URL : https://doi.org/10.1093/nar/gku340

L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, and J. Battey, Protein structure 659 homology modelling using SWISS-MODEL Workspace, Nature Protocols, vol.41, 2009.
DOI : 10.1038/nprot.2008.197

R. Carrico, W. Blumberg, and J. Peisach, The reversible binding of oxygen to 661 sulfhemoglobin, J Biol Chem, vol.253, pp.7212-7215, 1978.

J. Childress and C. Fisher, The biology of hydrothermal vent animals: physiology, 663 biochemistry, and autotrophic symbioses, Oceanogr Mar Biol -An Annual Review, vol.30, pp.337-664, 1992.

D. Darriba, G. Taboada, R. Doallo, and D. Posada, ProtTest 3: fast selection of best-fit models of protein evolution, Bioinformatics, vol.27, issue.8, p.1164, 2011.
DOI : 10.1093/bioinformatics/btr088

D. Darriba, G. Taboada, R. Doallo, and D. Posada, jModelTest 2: more models, new heuristics and parallel computing, Nature Methods, vol.9, issue.8, p.772, 2012.
DOI : 10.1109/TAC.1974.1100705

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594756/pdf

H. Davenport, M. Perutz, L. Kiger, M. Marden, and C. Poyart, Ascaris Haemoglobin as an indicator of the oxygen produced by isolated De Baere I Formation of two hydrogen bonds 672 from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin, 1949.

W. Delano, The PyMOL Molecular Graphics System, DeLano Scientific LLC, p.676, 2008.

J. Doyle and J. Doyle, A rapid DNA isolation procedure for small quantities of 680 fresh leaf tissue, Phytochem Bull, vol.19, pp.11-15, 1987.

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

Q. Gibson and M. Smith, Rates of Reaction of Ascaris Haemoglobins with 684, 1965.

D. Walz and S. Vinogradov, An evolutionary tree for invertebrate globin 687 sequences, J Mol Evol, vol.27, pp.236-249, 1988.

S. Guidon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

S. Hourdez, F. Lallier, B. Green, and A. Toulmond, Hemoglobins from deep-sea 691, 1999.

S. Hourdez and F. Lallier, Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates, Reviews in Environmental Science and Bio/Technology, vol.41, issue.4, pp.143-159, 2007.
DOI : 10.1086/physzool.60.1.30158634

S. Hourdez and R. Weber, Molecular and functional adaptations in deep-sea hemoglobins, Journal of Inorganic Biochemistry, vol.99, issue.1, p.700, 2005.
DOI : 10.1016/j.jinorgbio.2004.09.017

. Seepensis, Polychaeta: Polynoidae), J Mar Biol, vol.80, pp.55-68

J. P. Huelsenbeck and F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, vol.17, issue.8, p.706, 2001.
DOI : 10.1093/bioinformatics/17.8.754

J. Koshi and R. Goldstein, Probabilistic reconstruction of ancestral protein sequences, Journal of Molecular Evolution, vol.43, issue.3, p.708, 1996.
DOI : 10.1007/BF00163811

R. Nielsen and Y. Z. , Likelihood models for detecting positively selected amino acid sites 712 and applications to the HIV-1 envelope gene, Genetics, vol.148, pp.929-936, 1998.

E. Norlinder, A. Nygren, H. Wiklund, and F. Pleijel, Phylogeny of scale-worms 714 (Aphroditiformia, Annelida), assessed from 18SrRNA, 28SrRNA, 16SrRNA, 715 mitochondrial cytochrome c oxidase subunit I (COI), and morphology, 2012.

T. Okazaki and J. Wittenberg, The Hemoglobin of Ascaris Perienteric Fluid, 1965.

A. Pascual-garcía, D. Abia, R. Méndez, G. Nido, and U. Bastolla, Quantifying the evolutionary 720 divergence of protein structures: the role of function change and function conservation, Proteins, vol.78, pp.721181-96, 2010.

O. Penn, E. Privman, H. Ashkenazy, G. Landan, D. Graur et al., GUIDANCE: a web server for assessing alignment confidence scores, Nucleic Acids Research, vol.38, issue.Web Server, pp.23-28, 2010.
DOI : 10.1093/nar/gkq443

E. Peterson, S. Huang, J. Wang, L. Miller, G. Vidugiris et al., A comparison of functional and 729 structural consequences of the tyrosine B10 and glutamine E7 motifs in two 730 invertebrate hemoglobins (Ascaris suum and Lucina pectinata), Biochemistry, vol.731, issue.36, pp.13110-13121, 1997.

J. Projecto-garcia, N. Zorn, J. Didier, S. Shaeffer, F. Lallier et al., Origin 733 and evolution of the unique tetra-domain hemoglobin from the hydrothermal vent forces acting during multidomain protein evolution: the case of multi-domain globins, p.737, 2010.

F. Ronquist and J. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, vol.19, issue.12, pp.1572-1574, 2003.
DOI : 10.1093/bioinformatics/btg180

URL : https://academic.oup.com/bioinformatics/article-pdf/19/12/1572/715881/btg180.pdf

R. Jr, W. Strand, K. Van-heel, M. Hendrickson, and W. , Structural hierarchy in 741 erythrocruorin, the giant respiratory assemblage of annelids, P Natl Acad Sci, vol.97, pp.7107-7111, 2000.

R. Jr, W. Knapp, J. Strand, K. Heaslet, and H. , Cooperative Hemoglobins: Conserved 744, 2001.

. Fold, Diverse Quaternary Assemblies and Allosteric Mechanisms, Trends Biochem Sci, vol.26, pp.745-297

R. Jr, W. Zhu, H. Gorr, T. Flores, J. Knapp et al., Allosteric hemoglobin assembly: 747 Diversity and similarity, J Biol Chem, vol.280, pp.27477-27480, 2005.

J. Sambrook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

H. Sick and K. Gersonde, Method for Continuous Registration of O2-Binding Curvesof Hemoproteins by Means of a Diffusion Chamber, Analytical Biochemistry, vol.32, issue.3, pp.362-376, 1969.
DOI : 10.1016/S0003-2697(69)80002-3

V. Tunnicliffe, The Biology of Hydrothermal Vents: Ecology and Evolution, p.754, 1991.

R. Weber, Respiratory Pigments, Physiology of Annelids. Mill, P. J, 1978.

R. Weber, Adaptations for Oxygen Transport: Lessons from Fish Hemoglobins, p.761, 2000.
DOI : 10.1007/978-88-470-2111-2_2

R. Weber, G. Lykkeboe, and K. Johansen, Physiological properties of eel haemoglobin : 765 hypoxic acclimation, phosphate effects and multiplicity, J. Exp. Bio, vol.64, pp.75-88, 1976.

R. Weber and S. Vinogradov, Nonvertebrate hemoglobins: functions and molecular, pp.345-362, 2001.

W. Wong, Z. Yang, N. Goldman, and R. Nielsen, Accuracy and Power of Statistical 771, 2004.

Z. Yang, Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution, Molecular Biology and Evolution, vol.15, issue.5, pp.568-573, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025957

Z. Yang, Computational Molecular Evolution, 2008.
DOI : 10.1093/acprof:oso/9780198567028.001.0001

Z. Yang and R. Nielsen, Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages, Molecular Biology and Evolution, vol.19, issue.6, pp.908-917, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004148

Z. Yang, W. Wong, and R. Nielsen, Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection, Molecular Biology and Evolution, vol.22, issue.4, pp.1107-1125, 2005.
DOI : 10.1093/molbev/msi097

Y. Zhang, J. Sun, C. Chen, H. Watanabe, D. Feng et al., Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): 782 insights from transcriptome comparison with a shallow-water species pachyptila intracellular globin; Lam: Lamellibrachia sp.; Amarina: Arenicola marina, 2017.

. Alvinella, Alvinella pompejana; Ophelia: Ophelia bicornis; Asuum: Ascaris suum

. Omashikoi, Oligobrachia mashikoi Phyca: Physeter catodon SD: single-domain; D1-D4: 849 multi-domain globin type; Ng: neuroglobin; Mb: myoglobin; Hb: hemoglobin, pp.149-29374