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1 Introduction

Mock modular forms have an illustrious history in mathematics [1]. However, a systematic

understanding of mock modular forms is recent [2] and evolving. Mock modular forms also

appeared in physics in various guises [3–5]. A natural habitat for mock modular forms and

their non-holomorphic modular completion was provided by the demonstration that they

arise as elliptic genera of two-dimensional superconformal field theories with continuous

spectrum [6]. As such the completed forms appear also as duality covariant counterparts

to black hole entropy counting functions [7].

In this paper, we wish to clarify three aspects of non-compact elliptic genera. The

first comment we make is on the compact form of the elliptic genus of the cigar derived
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by Eguchi and Sugawara in [8]. It is a modular covariant sum over lattice points which is

an exponentially regulated Eisenstein series. Since it is manifestly modular covariant, one

can wonder whether it has a simple direct path integral derivation. We demonstrate that

a path integration of the non-linear sigma-model description of the cigar provides such a

derivation. The second remark, in section 3, is based on an analysis of the temperature

dependence of the weighted trace Tr(−1)F e−βH in supersymmetric quantum mechanics

with a continuous spectrum. Upon regularization, the trace becomes β-dependent in a

manner that hinges upon the choice of regulator. We demonstrate this in detail, analyze

the supersymmetric regulator and its path integral incarnation, and the role of infrared

boundary conditions. We use it to lay bare the unresolvable tension between right-moving

supersymmetry and modularity in the non-compact elliptic genus. In a third and final

part, we clarify the relation between the flat space superconformal field theory and the

infinite level limit of the cigar conformal field theory using their elliptic genera.

2 The path integral lattice sum

In this section, we wish to obtain a simpler path integral understanding of the compact for-

mula for the elliptic genus of the cigar in terms of a lattice sum, derived in [8]. To that end,

we provide a new derivation of the elliptic genus of the cigar, through its supersymmetric

non-linear sigma-model description. The latter has the advantage of being parameterized

in terms of the physical degrees of freedom only.

2.1 The guises of the genus

The cigar elliptic genus

χcig(τ, α) = TrRR(−1)FL+FRe2πiαQqL0− c
24 q̄L̄0− c

24 (2.1)

is a partition sum in the Ramond-Ramond sector, weighted by left- and right-moving

fermion numbers FL,R, as well as twisted by the left-moving R-charge Q. It was computed

manifestly covariantly through a path integral over maps from the torus into the coset

SL(2,R)/U(1) target space [6]. The result obtained in [6, 9, 10] was

χcig(τ, α) = k

∫ 1

0
ds1,2

∑
m,w∈Z

θ1(s1τ + s2 − αk+1
k , τ)

θ1(s1τ + s2 − α
k , τ)

e2πiαwe
− kπ
τ2
|(m+s2)+(w+s1)τ |2

, (2.2)

where the θ1 functions arise from partition functions of fermions and bosons with twisted

boundary conditions on the torus, the integers m,w are winding numbers for the maps

from the torus onto the target space angular direction, and the angles s1,2 are holonomies

on the torus for the U(1) gauge field used to gauge an elliptic isometry of SL(2,R). The

twist with respect to the left-moving R-charge is given by α. This modular Lagrangian

result was put into a Hamiltonian form in which the elliptic genus could be read directly

as a sum over right-moving ground states plus an integral over the differences of spectral

densities for the continuous spectrum of bosonic and fermionic right-movers [6, 10] . The

difference of spectral densities is determined by the asymptotic supercharge [6, 11, 12].
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In [8], a rewriting of the result (2.2) in terms of a lattice sum was obtained. The

resulting expression for the cigar elliptic genus is

χcig(τ, α) =
θ1(α, τ)

2πη3

∑
m,w∈Z

e
− π
kτ2

(α2+|m−wτ |2+2α(m−wτ̄))

α+m− wτ
. (2.3)

This expression is also manifestly modular covariant, because it is written as a sum over

a lattice Z + Zτ . Our goal in this section is to understand the formula (2.3) in a more

direct manner than through the route laid out in [6, 8–10]. We recall that a key step in

the derivation of the lattice sum (2.3) was to first compute the elliptic genus of the infinite

cover of the Zk orbifold of the trumpet geometry [8, 13].

2.2 The infinite cover of the orbifolded trumpet

We start our calculation from the cigar geometry [14–16]

ds2 = α′k(dρ2 + tanh2 ρ dθ2)

eΦ = eΦ0/ cosh ρ , (2.4)

where the angle θ is identified modulo 2π. The range of the radial coordinate ρ is from

0 to ∞. The metric and dilaton determine the couplings of a conformal two-dimensional

non-linear sigma-model. The T-dual geometry is the Zk orbifold of the trumpet:

ds2 = α′
(
kdρ2 +

1

k
coth2 ρ dθ2

)
eΦ = eΦ0/ sinh ρ (2.5)

where the angle θ is again identified modulo 2π. The trumpet geometry is singular at the

rim of the horn, at ρ = 0. The infinite cover of the orbifold of the trumpet is the geometry

in which we no longer impose any equivalence relation on the variable θ.

We perform the path integral on the cover as follows. Firstly, we consider the integral

over the zero modes and the oscillator modes separately. We suppose that the oscillator

contribution on the left is proportional to the free field result

Z∞osc =
1

4π2τ2

θ1(α, τ)

η3
, (2.6)

for a left-moving fermion of R-charge 1 and two uncharged bosonic fields. The factor

1/(4π2τ2) has two sources. One can be viewed as the result of the space-time covariant

integral over the radial momentum (at α′ = 1) while the second is the proper normalization

of the θ zero mode volume integral (to be performed shortly). The right-moving oscillators

cancel among each other.

We want to focus on the remaining integral over zero modes, which contains the crucial

information on the modularly completed Appell-Lerch sum [2]. The left-moving fermionic

zero modes have been lifted by the R-charge twist. Thus, we can concentrate on the

integration over the bosonic zero modes as well as the right-moving fermionic zero modes,

with measure

dρdθdψ̃ρdψ̃θ . (2.7)
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The square root of the determinant in the diffeomorphism invariant measures has canceled

between the bosons and the fermions. The relevant action is the N = (1, 1) supersymmetric

extension of the non-linear sigma-model on the curved target space.1 The term in the action

that lifts the right moving fermion zero modes is [17]

Slift =
1

4π

∫
d2z Gµνψ̃

µΓνρσ∂X
ρψ̃σ (2.8)

and more specifically, the term proportional to the Christoffel connection symbols

Γθθρ = −Γρθθ =
1

2
∂ρGθθ . (2.9)

This leads to a term in the action equal to

Slift =
1

4π

∫
d2z ψ̃θψ̃ρ∂ρGθθ∂θ . (2.10)

We can descend this term once from the exponential in order to absorb the right-moving

zero modes and obtain a non-zero result.

We wish to introduce a twist in the worldsheet time direction for the target space

angular direction θ because we insert a R-charge twist operator in the elliptic genus, and

the field θ is charged under the R-symmetry [6, 8–10]. We thus must twist

θ(σ1 + 2πτ1, σ2 + 2πτ2) = θ(σ1, σ2) + 2πα , (2.11)

and we still have θ(σ1 + 2π) = θ(σ1). Since we study the infinite cover of the Zk orbifold

of the trumpet, there are no winding sectors. We thus obtain the classical configuration

θcl = σ2α/τ2 . (2.12)

We plug this classical solution (2.12) into the action for the infinite order orbifold of the

trumpet, and descend a single insertion of (2.10) to lift the right-moving zero mode, use

the Christoffel connection (2.9) and then find the zero mode integral

Z∞0 = 2πN∞

∫ ∞
0

dρα∂ρ

(
− π

k
coth2 ρ

)
e
−πα

2

kτ2
coth2 ρ

= 2πN∞
τ2

α
e
−πα

2

kτ2 . (2.13)

We have represented the integral over the variable θ by a factor of 2πN∞ where we think of

N∞ as the order of the cover, which goes to infinity. The singular geometry at ρ = 0 makes

for a vanishing contribution from this region. Putting this together with the oscillator

factor (2.6) we proposed previously, we find

Z∞ = N∞
θ1(α, τ)

η3

1

2πα
e
−πα

2

kτ2 . (2.14)

This precisely agrees with the elliptic genus of the infinite cover of the orbifolded trumpet

calculated in [8].2

1See e.g. formula (12.3.27) in [17].
2The factor N∞ is absorbed in the definition of Z∞ in [8, 13].
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2.3 The lattice sum

Our next step is the path integral incarnation of the procedure of the derivation of the

lattice sum formula in [8]. We undo the infinite order orbifold of the cigar, i.e. we undo the

infinite order cover of the orbifolded trumpet. This will reproduce the lattice sum elliptic

genus formula.

There are two changes that we need to carefully track. The first one is that since the

field θ becomes an angular variable with period 2π, we must sum over the world sheet

winding sectors. Thus, we introduce the identifications

θ(σ1 + 2πτ1, σ2 + 2πτ2) = θ(σ1, σ2) + 2π(α+m)

θ(σ1 + 2π, σ2) = θ(σ1, σ2) + 2πw , (2.15)

which lead to the classical solutions

θcl = σ1w + σ2(m+ α− wτ1)/τ2

=
−i
2τ2

(z(m+ α− wτ̄)− z̄(m+ α− wτ)) . (2.16)

We then have the classical contribution to the action

∂θcl∂̄θcl =
1

4τ2
2

(m+ α− wτ̄)(m+ α− wτ)

=
1

4τ2
2

(|λ|2 + α(λ+ λ̄+ α)) (2.17)

where λ = m−wτ . After tracking normalization factors, one finds that the action acquires

another overall factor of 4πτ2/k (see e.g. [27]).

The second effect we must take into account is that the left-moving R-charge corre-

sponds to the left-moving momentum of the angle field. When we introduce a winding

number w, we must properly take into account the contribution of the winding number to

the left-moving momentum. This amounts to adding a factor of e−2πiαw/k to a contribution

arising from winding number w. (Recall that the radius is R2/α′ = 1/k.) We rewrite

e−2πiαw/k = e
α(λ−λ̄) π

kτ2 (2.18)

which leads to a total contribution to the exponent equal to

− π

kτ2
(|λ|2 + α(λ+ λ̄) + α2 + α(−λ+ λ̄)) = − π

kτ2
(|λ|2 + 2αλ̄+ α2) . (2.19)

The denominator in the final expression is obtained from a factor (λ+α)(λ̄+α) in the de-

nominator that arises from the exponent (2.17) in the generalized zero mode integral (2.13)

on the one hand, and a factor of λ̄+α in the numerator from the z-derivative of the angular

variable θ on the other hand (arising from the zero mode lifting term (2.10)). Multiplying

these, we find the final formula

χcig(τ, α) =
θ1(α, τ)

2πη3

∑
m,w∈Z

e
− π
kτ2

(α2+|m−wτ |2+2α(m−wτ̄))

α+m− wτ
, (2.20)
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which is the compact lattice sum form [8] of the cigar elliptic genus. We have given a

direct derivation of the lattice sum form, using the non-linear sigma model description.

This concludes the first panel of our triptych.

3 Supersymmetric quantum mechanics on a half line

In this section, we wish to render the fact that the non-holomorphic term in non-compact

elliptic genera arises from a contribution due to the continuum of the right-moving su-

persymmetric quantum mechanics [6] even more manifest. For that purpose, we discuss

to what extent the right-moving supersymmetric quantum mechanics can be regularized

in a supersymmetric invariant way, or a modular covariant manner, but not both. That

fact leads to the holomorphic anomaly [6]. The plan of this section is to first review how

boundary conditions in ordinary quantum mechanics show up in its path integral formula-

tion. We then extend this insight to supersymmetric quantum mechanics. We illustrate the

essence of the phenomenon in the simplest of systems. We end with a discussion of how the

regulator of the non-compact elliptic genus cannot be both modular and supersymmetric,

which leads to an anomaly.

3.1 Quantum mechanics on a half line

We are used to path integrals that map spaces with boundaries into closed manifolds.

Less frequently, we are confronted with path integrals from closed spaces to spaces with

boundaries. It is the latter case that we study in the following in the very simple setting

of quantum mechanics.

In particular, we discuss quantum mechanics on a half line, its path integral for-

mulation, and pay particular attention to the path integral incarnation of the boundary

conditions. The easiest way to proceed will be to relate the problem to quantum mechanics

on the whole real line. What follows is a review of the results derived in e.g. [18–20], albeit

from an original perspective.

3.1.1 Quantum mechanics on the line

Firstly, we rapidly review quantum mechanics on the real line. We work with a Hilbert

space which consists of quadratically integrable functions on the line parameterized by a

coordinate x. We have a Hamiltonian operator H of the form

H = −1

2
∂2
x + V (x) , (3.1)

where V (x) is a potential. We can define a Feynman amplitude to go from an initial

position xi to a final position xf in time t through the path integral

A(xi, xf , t) =

∫ x(t)=xf

x(0)=xi

dx eiS[x] , (3.2)

where the action is equal to

S =

∫ t

0
dt′
(
ẋ2

2
− V (x)

)
. (3.3)
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The Schrödinger equation for the wave-function of the particle reads

i∂tΨ = HΨ , (3.4)

and we work with normalized wave-functions Ψ. We can also write the amplitude in terms

of an integral over energy eigenstates ΨE :

A(xi, xf , t) =

∫
dEe−iEtΨE(xi)ΨE(xf ) , (3.5)

and the amplitude satisfies the δ-function completeness relation at t = 0, as well as the

Schrödinger equation (3.4) in the initial and final position variables xi and xf .

3.1.2 Quantum mechanics on the half line

The subtleties of quantum mechanics on the open real half line x ≥ 0 have been understood

for a long time [21]. Boundary conditions compatible with unitarity have been classified.

The path integral formulation for quantum mechanics on the half line has resurfaced several

times over the last decades [18–20], and is also well-understood. We review what is known.

The half-line has a boundary, and we must have that the probability current vanishes

at the boundary. This is guaranteed by the Robin boundary conditions

∂xΨ(0) = cΨ(0) . (3.6)

When the constant c is zero, we have a Neumann boundary condition and when it is

infinite, the boundary condition is in effect Dirichlet, Ψ(0) = 0. Suppose we are given a

Hamiltonian H of the form (3.1) with a potential V (x) on the half line x > 0. We can

extend the quantum mechanics on the half line to the whole real line by extending the

potential in an even fashion, declaring that V (−x) = V (x). It is important to note that

this constraint leaves the potential to take any value at the origin x = 0. We can then think

of the quantum mechanics on the half line as a folded version of the quantum mechanics

on the real line.3 The even quantum mechanics that we constructed on the real line has

a global symmetry group Z2. We can divide the quantum mechanics problem on the real

line, including its Hilbert space, by the Z2 operation, and find a well-defined quantum

mechanics problem on the half line, which is the original problem we wished to discuss.

An advantage of this way of thinking is that the measure for quantum mechanics on

the whole line is canonical. It leads to the Green’s function (3.5). Since the quantum

mechanics that we constructed has a global Z2 symmetry, we can classify eigenfunctions

in terms of the representation they form under the Z2 symmetry, namely, we can classify

them into even and odd eigenfunctions of the Hamiltonian. We then obtain the whole

line Green’s function in the form that separates the even and odd energy eigenfunction

contributions

A(xi, xf , t) =

∫
dEe−iEt(ΨE,e(xi)ΨE,e(xf ) + ΨE,o(xi)ΨE,o(xf )) . (3.7)

3In string theory, one would say that we think of the half line as an orbifold of the real line.
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The Green’s function

A
1
2
,D(xi, xf , t) =

1

2
(A(xi, xf , t)−A(xi,−xf , t)) =

∫
dEe−iEtΨE,o(xi)ΨE,o(xf ) , (3.8)

is well-defined on the half-line and satisfies Dirichlet boundary conditions. We divide by

a factor of two since we are projecting onto Z2 invariant states. From the path integral

perspective, the subtraction corresponds to a difference over paths that go from xi to xf
and that go from xi to −xf , on the whole real line, with the canonical measure (divided

by two). This prescription generates a measure on the half line which avoids the origin,

since we subtract all paths that cross to the other side [18, 19].4 If we represent the Z2

action oppositely on the odd wave-functions, we arrive at the Green’s function that satisfies

Neumann boundary conditions:

A
1
2
,N (xi, xf , t) =

1

2
(A(xi, xf , t) +A(xi,−xf , t)) =

∫
dEe−iEtΨE,e(xi)ΨE,e(xf ) . (3.9)

In this second option, we add paths to the final positions xf and −xf with their whole line

weights (divided by two). This path integral represents a sum over paths that reflect an

even or an odd number of times off the origin x = 0, and in particular, allows the particle

to reach the end of the half line.

We clearly see that the naive folding operation projects the states of the quantum

mechanics onto those states that are even, or those that are odd.5 However, concentrating

on these two possibilities only fails to fully exploit the loop hole that the even potential

V (x) allows, which is an arbitrary value V (0) at the fixed point x = 0 of the folding

operation.6 We can make use of this freedom by taking as the total potential an even

potential V (x), zero at x = 0, complemented with a δ-function:

Hc(x) = −∂2
x/2 + V (x) + c δ(x) . (3.10)

We take the wave-function on the whole line to be even and continuous, with a discontinuous

first derivative at the origin. When we consider the one-sided derivative at zero, we find

that the wave-function satisfies the Robin boundary condition [19]

∂xΨ(0+) = cΨ(0) . (3.11)

We have gone from a purely even continuous and differentiable wave-function on the real

line that satisfies the Neumann boundary condition (at c = 0) to an even wave-function

that satisfies mixed Robin boundary conditions, by influencing the wave-function near zero

with a delta-function interaction.7 It is intuitively clear, and argued in detail in [19] that

4This is a common manipulation in probability theory.
5These are states in the untwisted sector of an orbifold, projected onto invariants under the gauged

discrete symmetry.
6In string theory orbifolds, the fixed point hosts extra degrees of freedom which in that case are very

strongly constrained by consistency.
7The even wave-function on the side x > 0 corresponds to the linear combination Ψ(x) ∝ (ΦE,e(x) +

cΦE,o(x)) in terms of even and odd solutions to the problem on the real line without the delta-function

interaction [19]. It is an invariant under the Z2 action with discontinuous derivative at the origin.
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it is harder to push an initial problem with Dirichlet boundary conditions at the origin

towards a mixed boundary condition problem. In order to achieve this, one needs a very

deep well [19]. For later purposes, we note in particular that an ordinary delta-function

insertion at the origin will not influence an initial Dirichlet boundary value problem.

As an intuitive picture, we can imagine that the delta-function is generated by possi-

ble extra degrees of freedom that are localized at the origin, and whose interaction with

the quantum mechanical degree of freedom we concentrate on induces the delta-function

potential localized at the origin.

Thus far, we briefly reviewed the results of [18, 19] on path integrals on the half line

and discussed how they are consistent with folding. Next, we render these techniques

compatible with supersymmetry.

3.2 Supersymmetric quantum mechanics on the half line

In this section, we extend our perspective on quantum mechanics on the half line to a quan-

tum mechanical model with supersymmetry. We again start from a quantum mechanics on

the whole of the real line, with extra fermionic degrees of freedom and supersymmetry. In

a second stage, we fold the quantum mechanics onto the half line in a manner consistent

with supersymmetry.

3.2.1 Supersymmetric quantum mechanics on the line

We discuss the supersymmetric system with Euclidean action (see e.g. [22])

SE =

∫ t

0
dτ

(
1

2
∂τx

2 +
1

2
W 2 − ψ∗(∂τ −W ′)ψ

)
, (3.12)

where W ′(x) = ∂xW (x). The action permits two supersymmetries with infinitesimal vari-

ations

δx = ε∗ψ + ψ∗ε

δψ∗ = −ε∗(∂τx+W )

δψ = ε(∂τx−W ) . (3.13)

When we quantize the fermionic degrees of freedom, we tensor the space of quadratically

integrable functions with a two component system. We call one component bosonic and

the other fermionic. The two components have the Hamiltonians [22]8

H± = p2 +W 2 ∓W ′ . (3.14)

We introduced the operator

p = −i∂x (3.15)

8We follow standard conventions for supersymmetric quantum mechanics in this section. These differ

by a factor of two from the standard conventions for quantum mechanics used in section 3.1.
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and can represent the supercharges by

Q = (p+ iW )

(
0 0

1 0

)

Q† = (p− iW )

(
0 1

0 0

)
. (3.16)

When we trace over the fermionic degrees of freedom, we need to compute the fermionic

determinant with anti-periodic boundary conditions. It evaluates to [22]

Zanti−per
f (x) =

∫
dψdψ∗anti−per exp(ψ∗(∂τ −W ′)ψ) = cosh

(∫ t

0
dτ
W ′(x)

2

)
, (3.17)

after regularization. This is the path integral counterpart to the calculation of the Hamil-

tonians (3.14).

3.2.2 Supersymmetric quantum mechanics on the half line

We study the supersymmetric quantum mechanics on the half line by folding the super-

symmetric quantum mechanics on the whole line. We wish for the folding Z2 symmetry

to preserve supersymmetry. Since the particle position x is odd under the Z2 action (as

is its derivative with respect to time, since we choose world line time to be invariant), we

demand that the superpotential W (x) is odd under parity, and that the fermionic variables

ψ and ψ∗ are odd as well. See equation (3.13). Thus, we have the Z2 action

(x, ψ, ψ∗)→ (−x,−ψ,−ψ∗) , (3.18)

and the superpotential W is odd. For the moment, we consider the superpotential to be

continuous, and therefore zero at zero.

We project onto states invariant under the Z2 action (3.18). Thus, in any path integral,

we will insert a projection operator PZ2 that consists of

PZ2 =
1

2
(1 + P (−1)F ) (3.19)

where P is the parity operator that maps P : x→ −x and (−1)F maps fermions to minus

themselves. When we trace over the fermionic degrees of freedom with a (−1)F insertion,

we must impose periodic boundary conditions on the fermions. The fermionic determinant

in this case evaluates to [22]

Zper
f (x) =

∫
dψdψ∗per exp(ψ∗(∂τ −W ′)ψ) = sinh

(∫ T

0
dτ
W ′(x)

2

)
, (3.20)

which leads to the same Hamiltonians (3.14) for the two component system, and when

we compare to equation (3.17) we find a minus sign up front in the path integral over

the second component. As a consequence, for the first component of the two component
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system, from the insertion of the projection operator PZ2 in equation (3.19), we will obtain

a path integral measure

1

2

(∫ xf

xi

dx+

∫ −xf
xi

dx

)
, (3.21)

while for the second component, we obtain a path integral measure

1

2

(∫ xf

xi

dx−
∫ −xf
xi

dx

)
. (3.22)

Thus, from the discussion in subsection 3.1, the upper component, which we will call

fermionic and indicate with a minus sign, will satisfy a Neumannn boundary condition

at zero, while the bosonic component will satisfy the Dirichlet boundary condition. We

carefully crafted our set-up to be consistent with supersymmetry, and must therefore expect

the boundary conditions we obtain to be consistent with supersymmetry as well. Indeed,

the operator Q maps the derivative of the fermionic wave-function to the bosonic wave-

function (when evaluated at the boundary, and using W (0) = 0). Thus, the operator Q

maps the boundary conditions into one another.9

The next case we wish to study is when the superpotential is well-defined on the half-

line for x > 0, and approximates a non-zero constant as we tend towards x = 0. Since the

superpotential is odd on the line, the distributional derivative of the superpotential will be

a delta-function with coefficient twice the limit of the superpotential as it tends towards

zero. If we call the latter value W0, then we have the equation

W ′(0) = 2W0 δ(x) . (3.23)

The derivative of the superpotential arises as a term in the component Hamiltonians (3.14).

The δ-function interaction at the origin will result in a change in the Neumann (but not

the Dirichlet) boundary conditions, as we saw in subsection 3.1. If we follow through the

consequences, we find that the supersymmetric quantum mechanics on the half line that

we obtain by folding now satisfies the boundary conditions

Ψ+(0) = 0

∂xΨ−(0) = W0Ψ−(0) . (3.24)

These boundary conditions are consistent with supersymmetry.

3.2.3 An interval

We have used the folding technique to obtain a supersymmetric or ordinary quantum

mechanics problem on a half line. We can use the same technique to generate quantum

mechanics problems on an interval. We perform a second folding by the reflection symmetry

x→ 2L−x where L is the length of the desired interval. The fermions also transform with

9Note that the choice of action of (−1)F on the two components (assigning to one component a plus

sign) broke the symmetry between Q and Q† in this discussion. In other words, the opposite assignment

would have resulted in the operator Q† mapping one boundary condition into the other.
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a minus sign under the second Z2 generator. Again, we can render the superpotential odd

under the second flip, take into account a possible delta-function potential on the second

end of the interval, and find boundary conditions consistent with supersymmetry on both

ends. Our application of these ideas lies in regulating a weighted trace, and we proceed

immediately to apply them in that particular context.

3.3 Infrared regulators and the weighted trace

We wish to discuss the trace

Z(β) = Tr(−1)F e−βH (3.25)

over the Hilbert space of states, weighted with a sign (−1)F corresponding to their fermion

number F . It is well-known that this weighted trace is equal to the supersymmetric (Wit-

ten) index when the spectrum of the supersymmetric quantum mechanics is discrete [23].

It then reduces to the index which equals the number of bosonic minus the number of

fermionic ground states.10

When the spectrum of the supersymmetric quantum mechanics is continuous, the

situation is considerably more complicated (see e.g. [11, 24, 25]), and the debate in the

literature on this quantity may not have culminated in a clear pedagogical summary. We

attempt to improve the state of affairs in this subsection. The origin of the difficulties is

that the trace over a continuum of states is an ill-defined concept. An infinite set of states

contributing a finite amount gives rise to a divergent sum. A proper definition requires

a regulator. An infrared regulator will reduce the continuum to a discretuum and render

the trace finite. The alternating sum can remain finite in the limit where we remove the

regulator. There has been a discussion on whether and how the resulting weighted trace

Z(β) depends on the inverse temperature β, and on the infrared regulator. To understand

the main issues at stake, and to draw firm conclusions, it is sufficient to consider the

example of a free supersymmetric particle on the half line.

3.3.1 The free supersymmetric particle on the half line

Let us consider a supersymmetric quantum mechanics, based on the superpotential which

is equal to a constant for x > 0, namely W (x > 0) = W0. We obtain the half line

supersymmetric quantum mechanics by folding the problem on the whole line, and induce

supersymmetric boundary conditions at the end of the half line. We recall the Hamiltonians

H± = p2 +W 2
0 ∓ 2W0 δ(x) , (3.26)

with boundary conditions

∂xΨ− = W0Ψ−

Ψ+(0) = 0 . (3.27)

We can then solve for the wave-functions on the half line. The solutions for energy E =

p2 + W 2
0 are given by reflecting waves. The phase shift is set by the boundary condition.

10We use the name weighted trace because we will soon encounter contexts in which it is not an index.
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We have the wave-functions on the half line x ≥ 0

Ψ+(x) = c+(eipx − e−ipx) ,

Ψ−(x) = c−

(
eipx +

ip−W0

ip+W0
e−ipx

)
. (3.28)

We find that the supercharge Q maps the wave-function Ψ− into Ψ+ if we identify c−(p+

iW0) = c+. Thus, we have computed the space of eigenfunctions for bosons and fermions

and how they are related.

3.3.2 The weighted trace

Our intermediate goal is to evaluate the weighted trace Z(β) in this model. To evaluate

the trace, we need an infrared regulator. Moreover, the weighted trace depends on the

infrared regulator, as we will demonstrate. In any case, we need to introduce an infrared

regulator to make the trace well-defined. We cut off the space at large x = xIR. We need to

impose boundary conditions at this second end, at xIR. As a result, the spectrum becomes

discrete, and we will be able to perform the trace over states weighted by the corresponding

fermion number. We consider two regulators in detail.

In a first regularization, we construct the supersymmetric quantum mechanics on the

interval as we described previously. The result will be a Hamiltonian

H∓ = p2 +W 2
0 ± 2W0 δ(x)∓ 2W0 δ(x− xIR) , (3.29)

and boundary conditions

∂xΨf (0+) = W0Ψf

Ψb(0) = 0

∂xΨf (x−IR) = W0Ψf

Ψb(xIR) = 0 . (3.30)

The reason that the boundary condition on both sides is the same despite the sign flip in the

δ function coefficient in (3.29) is because we are evaluating either the derivative with a left

or a right approach to the singular point. Because the Z2×Z2 folding procedures commute

with supersymmetry, the infrared regulated model preserves supersymmetry. Explicitly,

we have a spectrum determined by the infrared boundary condition

eipnxIR − e−ipnxIR = 0 , (3.31)

which implies

pn =
πn

xIR
(3.32)

where n is an integer. All states are two-fold degenerate. The state with the lowest energy

has energy equal to E = W 2
0 . The weighted trace reduces to a supersymmetric index and

the Witten index is equal to zero.
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A second regularization of the weighted trace proceeds as follows. We rather put Dirich-

let boundary conditions at the infrared cut-off xIR for both component wave-functions. We

can intuitively argue that we expect a normalizable wave-function to drop off at infinity,

and that the Dirichlet boundary condition is a good approximation to this expectation.

It has the added advantage of not introducing extra degrees of freedom at the end point

which we imagine to be responsible for a delta-function potential. The disadvantage is that

this infrared regulator breaks supersymmetry. The regulated weighted trace will now sum

over bosonic and fermionic states determined by the respective conditions (see (3.28))

eip
b
nxIR − eipbnxIR = 0 ,

eip
f

n′xIR +
ipfn′ −W0

ipfn′ +W0

e−ip
f

n′xIR = 0 . (3.33)

We define the phase shift

eiδ(p) =
ip+W0

ip−W0
(3.34)

of the fermionic wave-function. Then the solutions to the bosonic and fermionic boundary

conditions are

pbn =
πn

xIR

2pfn′xIR + δ(pfn′) = 2π

(
n′ +

1

2

)
. (3.35)

As the infrared cut-off is taken larger, the number of states per small dp interval will

grow, to finally reach the continuum we started out with. To measure this growth, we can

compute the bosonic and fermionic densities of states

ρb(p) =
dn

dp
=
xIR

π

ρf (p) =
dn′

dp
=

1

2π

(
2xIR +

dδ(p)

dp

)
. (3.36)

Thus, when we approximate the weighted trace at large infrared cut-off by the appropriate

integral formula, we find [11]

Tr(−1)F e−βH =

∫ ∞
0

dp(ρb(p)− ρf (p))e−βE(p) (3.37)

where the difference of densities of states is given by

∆ρ = ρb(p)− ρf (p) =
1

2π
δ′(p)

=
1

2πi

d

dp
log

ip+W0

ip−W0
=

1

2π

(
1

ip+W0
− 1

ip−W0

)
. (3.38)

This second way of regularizing shows that the boundary condition we impose at the

infrared end of our interval is crucial in determining the end result. When we put, as
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we did in the first case, a boundary condition consistent with supersymmetry, then the

difference of spectral densities is zero for all values of the cut-off, and therefore also in

the limit of infinite cut-off. When we put identical boundary conditions for fermions and

bosons at the infrared endpoint, then the spectral densities differ by the phase shift in the

continuum problem. It should now be clear that one can choose another mix of boundary

conditions that will lead to yet another outcome for the spectral measure. Before a choice

of regulator, the weighted trace is ill-defined. The final result depends on the regulator

choice, even after we remove the regulator. We have illustrated this effect in two cases,

but there is an infinite number of choices, and the β-dependence of the final result Z(β)

is determined by the choice of regulator. We should rather think of the weighted trace

Z(β, regulator) as a function of both the inverse temperature β and the regulator.

The first regulator is interesting, since it preserves supersymmetry. The second reg-

ulator, with identical boundary conditions for bosons and fermions is also interesting, it

turns out. Although we computed the spectral density in our particular model of the free

particle on a half line, the final result is universal in an appropriate sense. The relative

phase shift of bosons and fermions at large xIR is determined by the asymptotic form of the

supercharge Q alone. This can be seen from the fact that the fermionic wave function in

the infrared is determined by the bosonic wave function in the infrared and the asymptotic

supercharge. Thus, only the asymptotic value of the superpotential limx→∞W (x) = W0,

which we assume to be constant, will enter the phase shift and spectral density formula [11].

Thus, the result for the β-dependent weighted trace is universal, given the regularization

procedure. Both the universality and the caveat are crucial.

The final result for our free particle on the half line with Dirichlet infrared regulator

becomes [11]

Z(β,Dirichlet) =

∫ ∞
0

dp
1

2π

(
1

ip+W0
− 1

ip−W0

)
e−β(p2+W 2

0 )

=

∫ +∞

−∞
dp

1

2π

1

ip+W0
e−β(p2+W 2

0 ) . (3.39)

Conclusion. Of course, we recuperated the standard wisdom that any supersymmet-

ric regulator makes the weighted trace into a supersymmetric Witten index which is β-

independent. However, another choice of infrared regulator can give rise to a β-dependent

weighted trace, and the β-dependence is dictated by the regulator.

It is quite striking that there are applications of supersymmetric quantum mechanics on

a half line in which the infrared regulator is dictated by another symmetry of an overarching,

higher dimensional model. In such circumstances, the weighted trace and its β-dependence

become well-defined and useful concepts.

3.4 The application to the elliptic genus

In the calculation of the cigar elliptic genus (2.1), there is a weighted trace over the right-

moving supersymmetric quantum mechanics. For each sector labeled by the right-moving

momentum m̄ on the asymptotic circle of the cigar, there is a supersymmetric quantum

mechanics with superpotential W that asymptotes to W0 = m̄ [12]. The point is now that,
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as we saw, each of the right-moving supersymmetric quantum mechanics labeled by the

right-moving momentum can be cut-off supersymmetrically using a δ-function potential

with coefficient depending on the right-moving momentum m̄. The resulting elliptic genus

would be equal to the mock modular Appell-Lerch sum. The cut-off depending on the

right-moving momentum is not modular covariant though. The right-moving momentum

is a combination of a winding number of torus maps, and the Poisson dual of the other

winding number of torus maps, and as a result does not transform modular covariantly. The

second alternative (and the one generically preferred in the context of a two-dimensional

theory of gravity in which we wish to preserve large diffeomorphisms as a symmetry group)

is to have a Dirichlet cut-off for all these supersymmetric quantum mechanics labeled by

the right-moving momentum. This choice is covariant under modular transformations,

but is not supersymmetric, as we have shown. The result of the second regularization is

a modular completion of the mock modular form. We have thus shown that an anomaly

arises in the combination of right-moving supersymmetry and modular covariance.

Let us comment on how generic the anomaly is. In cases where the asymptotic super-

charge relates a radial direction to a circle (as is the case in conical geometries), we expect

the supercharge to depend on radial and angular momentum. This momentum dependence

entails a difference in the density of states as well. In such a rather generic set-up, there is

an anomaly.11

Our analysis of supersymmetric quantum mechanics is interesting in itself. It also

provides the technical details of the reasoning in [6, 10], and thus produces a second panel

in our elliptic triptych. Moreover, our technical tinkering paints the background to contin-

uum contributions to indices, or rather their continuous counterparts in two-dimensional

theories [28] as well as in four-dimensional theories with eight supercharges [29, 30]. In par-

ticular, it clarifies both the regulator dependence as well as the universality of the results

on weighted traces in the presence of supersymmetry and a continuum.

4 A flat space limit conformal field theory

In [26], we studied the infinite level limit of the cigar elliptic genus. In this limit, the target

space is flattened. One is tempted to interpret the resulting conformal field theory as a flat

space supersymmetric conformal field theory at central charge c = 3. Still, the theory has

features that distinguish it from a mundane flat space theory. In this third panel, we add

remarks to the discussion provided in [26], to which we also refer for further context.

4.1 Flat space regulated

Firstly, we consider a flat space conformal field theory on R2, with two free bosonic scalar

fields, and two free Majorana fermions, for a total central charge of c = 3, and with

N = (2, 2) supersymmetry. We consider the Ramond-Ramond sector of the left- and

right-moving fermions.

11Exceptionally, the integral over the density of states can still be zero. An example is provided by the

cigar conformal field theory at level one.
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The ordinary bosonic partition function is divergent. There is an overall volume factor

arising from the integral over bosonic zero modes which makes the partition function ill-

defined. We can regulate the divergence in various ways. One regulator would be to

compactify the target space on a torus of volume V , and then take the radii of the torus

to infinity. The result is that the partition function approximates (see e.g. [27])

ZV =
V

α′
(4π2τ2)−1|η|−4 , (4.1)

where V/α′ represents the volume divergence. Alternatively, we can compute the partition

function through zeta-function regularization and the first Kronecker limit formula. See

e.g. [31]. The result is identical. If we regulate the bosons in this manner, and leave the

finite fermionic partition function unaltered, both the right-moving fermions and the left-

moving fermions will provide a zero mode in the Ramond-Ramond sector partition sum.

Thus, we will find that the regulated supersymmetric Witten index is zero for all finite

values of the volume regulator V . The limit of the supersymmetric index will be zero

under these circumstances.

A different way of regularizing is to twist the phase of the complex boson Z = X1+iX2.

In the path integral calculation of the complex boson partition function, this is implemented

in a modular covariant way by demanding that the field configurations we integrate over

pick up a phase as we go around a cycle of the torus. The phase is a character of the Z2

homotopy group of the torus. If we parameterize the phases by e2πium+2πivw (for winding

numbers m,w on the two cycles of the torus), the result can be obtained either as the Ray-

Singer analytic torsion [32] (to the power minus two) or by using the second Kronecker

limit formula. The modular invariant result is

Ztwist =

∣∣∣∣e−π(Im(β))2

τ2
θ1(β, τ)

η

∣∣∣∣−2

, (4.2)

where β = u− vτ is the complexified twist. Near zero twist, there is a second order diver-

gence that is proportional to |β|−2|η|−4 in accord with equation (4.1). The twist regulator

breaks the translation invariance in space-time and preserves the rotational invariance.

In fact, it uses the rotation invariance to twist the angular direction and to remove all

bosonic zero modes. (The idea is generic in that one can use twists by global symmetries

to lift divergences in numerous contexts.) If we leave the fermions undisturbed, we again

have the fermionic zero modes that give rise to a zero elliptic genus for the full conformal

field theory.

The twist regulator suggests an interesting alternative. We can twist the bosons and

preserve world sheet supersymmetry at the same time. The (tangent indexed) fermions

naturally transform under the SO(2) rotating the two space-time directions, and if we twist

with respect to the complete action of the space-time rotations, we twist the fermions as

well. In that case, we find a partition function that equals one

Ztwist =

∣∣∣∣e−π(Im(β))2

τ2
θ1(β, τ)

η

∣∣∣∣2 × ∣∣∣∣e−π(Im(β))2

τ2
θ1(β, τ)

η

∣∣∣∣−2

= 1 . (4.3)
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The two fermionic zero modes have canceled the quadratic volume divergence. The super-

symmetric partition function (or Witten index) is now equal to one for all values of the

twist, and therefore equals one in the limit where we remove the twist.

Again, as in section 3, we see that the final result is regulator dependent (as is infinity

times zero). We have two regulators that preserve world sheet supersymmetry as well

modular invariance, and they give rise to index equal to zero, or to one.

4.2 Twist two

We analyze how the above remarks influence our reading of the infinite level limit of the

cigar elliptic genus [26]. First off, we further twist the left-moving fermions (only) by their

left-moving R-charge, and wind up with the modular invariant flat space partition sum

Ztwist two =

∣∣∣∣∣e
−π(Im(α+β))2

τ2 θ1(α+ β, τ)

e
−π(Im(β))2

τ2 θ1(β, τ)

∣∣∣∣∣ . (4.4)

This chiral partition function suffers from a chiral anomaly. We have again decided (for

now) on a modular invariant choice of phase. The regulating twist β has canceled the right-

moving zero mode against the anti-holomorphic pole due to the infinite volume. The left-

moving R-charge twist α (when non-equivalent to zero) has reintroduced the holomorphic

pole in β, also associated to the divergent volume. When we take the limit β → 0, we

therefore again find an infinite result.

Once more, there are various ways to regularize the expression. One straightforward

way to obtain the result in [26] is to perform a modular covariant minimal subtraction.

We expand the expression (4.4) near β = 0, and subtract the pole. Given the dictum of

a modular covariant transformation rule for the constant term (e.g. the desired modular

covariant transformation rule for the elliptic genus [33]) one then obtains the result [26]

Zms,cov = − 1

2π

∂αθ11(α, τ)

η3
− α

2τ2

θ11(α, τ)

η3
. (4.5)

We note that the elliptic properties are lost in the large level limit since the periodicity

grows with the level. This contrasts sharply with the (alternatively regulated) zero result

for the flat space elliptic genus which exhibits a very large symmetry group. 12

The cigar elliptic genus manages to regulate the pole at β = 0 in a more subtle manner

than the covariant minimal subtraction advocated above [6]. It goes as follows. One

introduces an extra circle. Then, one couples the circle to the angular direction of the

plane (or the cigar), and gauges a U(1) such as to identify the two circular directions. The

net effect on the toroidal partition function is to incorporate the twist β into a modular

covariant holonomy integral. The integral over the angle of the twist kills the divergent

holomorphic pole, and renders the final result finite. The result is identical to the one

obtained by covariant minimal subtraction (see [26] for the detailed derivation of this

statement).

12The lack of periodicity makes the partition function hard to interpret as an infinite set of Dirac indices.

To recuperate such an interpretation as an infinite set of Dirac indices, one reverts to the holomorphically

regulated expression, i.e. the mock modular part of the partition function.
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4.3 A miniature

Finally, we wish to assemble a miniature triptych. Firstly, we revisit the path integral

approach of section 2 and apply it to flat space. We T-dualize flat space, consider the

infinite covering, and find instead of the zero mode factor (2.13)

Z∞,flat
0 = 2πN∞

∫ R

0
dr∂r(−πr−2)αe

−r−2 π
τ2
α2

= 2πN∞
τ2

α
e
− π
R2τ2

α2

, (4.6)

where we have introduced an infrared cut-off R on the radial integral. Thus, we find for

the infinite cover of the T-dual of flat space the infrared regulated elliptic genus

Z∞,flat(R) = N∞
θ1(α, τ)

η3

1

2πα
e
− πα2

R2τ2 . (4.7)

For flat space then, we find the same lattice sum (see equation (2.20)) as for the cigar

elliptic genus, with the level k replaced by the infrared cut-off R2.

Our second panel, in section 3, makes it manifest that we have implicitly used the same

boundary conditions for bosons and fermions, since we considered a single measure, a hard

infrared cut-off R, and no delta-function insertion. Hence we find the anti-holomorphic

τ̄ dependence in our result (4.7). Furthermore, our discussion in this section agrees with

the fact that if we take the limit R → ∞ term by term, neglecting the exponential factor

in (4.7), then we find a divergent result. Indeed, the lattice sum will be divergent.

Finally, we note that (at R = ∞) the genus can be regulated in the manner of the

Weierstrass ζ-function (which is the regulated lattice sum of 1/α). If we take that ad hoc

route, the result can be made holomorphic and non-modular, and equal to only the first

term in (4.5), using the formula

ζ(α, τ)−G2(τ)α =
∂αθ1(α, τ)

θ1(α, τ)
, (4.8)

where G2 is the second Eisenstein series (and multiplying in the prefactor θ1(α, τ)/η3)).

On the other hand, if we infrared regulate with a radial cut-off as in (4.7), or using the

cigar model in the large level limit, we obtain the modular covariant, non-holomorphic

result (4.5) which equals the exponentially regulated Eisenstein series as proven in [8, 26].

This final miniature illustrates how our conceptual triptych folds together seamlessly.

5 Conclusion

Our aim in this paper was to further explain conceptual features of completed mock mod-

ular non-compact elliptic genera [6] with elementary means. Using the supersymmetric

cigar conformal field theory as an example, we provided a simple path integral derivation

of the lattice sum formula [8] for the completed mock modular form. We derived the elliptic

genus from the non-linear sigma-model.13 We also laid bare the unresolvable tension be-

tween right-moving supersymmetry and modular covariance in defining the weighted trace

13Other derivations are based on the coset conformal field theory or the gauged linear sigma-model [34, 35]

descriptions.
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with an infrared regulator, and we analyzed the quirks of the identification of the large

level limit of the cigar model [26] with a flat space conformal field theory.

We believe these conceptual pointers provide a looking glass with which to revisit higher

dimensional elliptic genera, including the K3, the ALE [36] and the higher dimensional

linear dilaton space genera [37]. The ubiquitous possibility to factor the appropriate powers

of θ1/η
3 bodes well for this enterprise. For four-dimensional examples, for instance, we

expect the doubling of the number of right-moving zero modes to be correlated to an

elliptic Weierstrass ℘ factor in the result, et cetera. It will be interesting to study these

generalizations.
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