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Abstract

This work deals with the first Trefftz Discontinuous Galerkin (TDG) scheme for a model prob-
lem of transport with relaxation. The model problem is written as a PN or SN model, and we
study in more details the P1 model in dimension 1 and 2. We show that TDG method provides
natural well-balanced (WB) and asymptotic preserving (AP) discretization since exact solutions
are used locally in the basis functions. High order convergence with respect to the mesh size in
two dimensions is proved together with the asymptotic property for P1 model in dimension one.
Numerical results in dimension 1 and 2 illustrate the theoretical properties.

1 Introduction
This work deals with the design and analysis of a new Trefftz Discontinuous Galerkin (TDG) method
proposed for the PN (spherical harmonic expansion) and SN (discrete ordinate method) approximation
of the transport equation which reads

∂tI(t,x,Ω) + Ω · ∇I(t,x,Ω) = −σa(x)I(t,x,Ω) + σs(x) (|I| − I(t,x,Ω)) , (1)

where I is the distribution function, t the time variable, x ∈ Rd the space variable, Ω the direction
and |I| = 1

4π

∫
S2 I(t,x,Ω

′
)dΩ

′
is the mean of I. Absorption and scattering coefficient are denoted as

σa(x) ≥ 0 and σs(x) ≥ 0.

For physical phenomena such as the transport of photons or other types of particles, it is indeed
common to use the PN and SN models [8, 16]. Numerical approximation of the transport equation is
challenging because of these two spatial dependent coefficients. It is known that boundary layers may
occur when σa, σs vary significantly and that the transport equation tends to a diffusion limit when
σs is high. Standard schemes fail to capture correctly both of these two phenomena. To capture the
diffusion limit with reasonable computational time, the idea of so called asymptotic preserving scheme
has been introduced [25] and applied to transport problems see [4, 24, 31] and reference therein.
For capturing boundary layers it may be a good idea to use well-balanced scheme which preserve,
for example, stationary state of the model. Schemes which are both asymptotic preserving and well
balanced have been designed and studied in one dimension [15, 26]. However, direct extension in higher
dimensions fails to capture boundary layer [32]. In general and except in some particular cases, two
dimensional asymptotic preserving schemes are not well balanced.
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The goal of this work is to discretize PN and SN models with TDG schemes which are both
asymptotic preserving and well balanced (in a sense that will be defined later). We will restrict the
study to homogenous coefficients which may nevertheless be stiff. Given a system of partial differential
equations (PDE), TDG method are discontinuous Galerkin type schemes that use solutions to the
model as basis functions. The name comes from the seminal 1926 paper’s of E. Trefftz which has
been recently translated in English [28]. Trefftz method has been widely used and studied for wave
propagation problem [6, 7, 14, 17, 27] see also the review [19] and reference therein. TDG method have
their pros and cons.

• Pros:

– Incorporate a priori knowledge in the basis functions which are therefore well adapted to
multiscale problems.

– Often need less degrees of freedom to reach a given accuracy. A typical example for the 2D
version of the P1 model (3) in the dominant absorption regime σa > 0 (with c = ε = 1) is
illustrated in the table below, where we compare the number p of basis functions needed to
achieve a given fractional order. The first line is for our TDG method. One gets pTDG =
2(order + 1) which is a rephrasing of the result of Proposition 27. The second line is the
optimal number of basis function for a general DG method pDG = 3

2 (order + 1
2 )(order + 3

2 ).

order 1/2 3/2 5/2 7/2 9/2
pTDG 3 5 7 9 11
pDG 3 9 18 30 45

In particular the number of basis functions is the same to get order= 1/2. One always gets
pTDG ≤ pDG.

– Is easy to incorporate in DG codes since one only needs to change the basis functions.

• Cons:

– May suffer ill-conditioning due to poor linear independence of the basis functions [7, 20].
For wave problems, some remedies exist in the literature [14].

– The practical calculation of the basis functions adds to the computational burden. If one
can calculate the basis functions analytically, the computational burden is moderate. If it is
not the case, the computational burden is heavier: several options could be consider such as
computing numerically the basis functions or relying on the general procedure [22, 21, 23].

In this work we adapt the TDG formalism to a general first order PDE with linear relaxation
which encompasses the PN and SN models with homogeneous coefficients. For first order PDE the
adjoint equations may differ from the direct equations, and therefore one can construct two kinds
of basis functions: using adjoint solutions or using direct solutions. It turns out that using adjoint
solutions is not an efficient method in our case and we will therefore focus on TDG method with direct
solutions. Another possibility is to adopt a Petrov-Galerkin approach choosing test functions as adjoint
solutions and trial functions as direct solutions [12, 13]. However, we have noticed stability issues with
this method for time dependent problem. Therefore the Petrov-Galerkin method will not be studied
hereafter.

We will present the method in a general framework to consider both stationary and time dependent
problem. Let ΩS be a bounded polygonal/polyhedral Lipschitz space domain in Rd and consider a time
interval [0, T ], T > 0. We denote Ω = ΩS for stationary problem and Ω = ΩS×[0, T ] for time dependent
problem. We first apply the method to Friedrichs systems [11] with linear relaxation{∑d

i=0Ai∂iu = −R(x)u, in Ω,

M−u = M−g, in ∂Ω,
(2)
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the dependent variable is u ∈ Rm, x = (x1, ..., xd) ∈ Rd is the space variable and t is the time variable.
The coefficients σa and σs in (1) are contained in the relaxation matrix R. Recalling that the problem
can be stationary or time dependent one may write u(t,x) or just u(x) depending on the situation.
The matrices Ai, R(x) ∈ Rm×m are symmetric and we assume R(x) ∈ Rm×m is a non negative matrix,
i.e. (R(x)v,v) ≥ 0 for all v ∈ Rm,x ∈ Rd. We use the notation ∂0 = ∂t, ∂i = ∂xi for i = 1, ..., d and we
will therefore take A0 = Im even if it is possible to consider more general non negative matrix for A0.
The outward normal unit vector is n(t,x) = (nt, nx1

, ..., nxd
) for x ∈ ∂Ω and of course for stationary

problem nt = 0 for all x ∈ ∂Ω. We set M(n) = A0nt +
∑d
i=1Ainxi

, on ∂Ω. Since M is symmetric one
has the standard decompositionM(n) = M+(n)+M−(n) whereM+ is a non negative matrix andM−
is a non positive matrix. We use the matrix M− to write the boundary conditions with g ∈ L2(∂Ω).
Finally we assume the problem (2) admits a unique solution. A fundamental example of Friedrichs
system in one dimension that we desire to treat is the P1 model{

∂tp+ c
ε∂xv = −σap,

∂tv + c
ε∂xp = −(σa + σs

ε2 )v,
(3)

here 1/ε represents the speed of light. The associated asymptotic model when ε→ 0 is{
∂tp− c2

σs
∂xxp = −σap,

v = − cε
σs
∂xp.

One of our goal is to show that TDG method naturally captures those kind of asymptotic regimes.
To see if the scheme approaches correctly this one dimensional limit model we write the TDG method
as a finite difference scheme. Under this form one can formally show that this scheme is asymptotic
preserving and new compared to other popular one dimensional schemes [15]. The asymptotic result
can be stated as follows (all the hypotheses needed to make the theorem rigorous are given in Section
4).

Proposition 1 (Time dependent 1D case). Assume c = 1, σa = 0. When ε → 0 the formal limit of
the scheme (33) with two basis functions in dimension one is an asymptotic scheme consistent with
the P1 model limit.

The main convergence result about the stationary P1 model in two dimensions can be stated as
follows (all the hypotheses needed to make the theorem rigorous are given in section 5).

Theorem 1 (Stationary 2D case). Assume c = 1, ε = 1 and σa + σs > 0 which is the general regime.
Consider the stationary two dimensional P1 model and a basis of 2n+1 shape functions (not necessarily
equi-distributed). One has the h-convergence estimate

‖u− uh‖L2(Ω) ≤ Chn−1‖u‖Wn+1,∞(Ω),

where u stands for the exact solution and uh for the approximate solution calculated by the TDG
method.

For technical reasons, this L2 convergence estimate in the general regime looses one half order of
convergence compared with the one obtained in the absorption regime (Proposition 27). Nevertheless
Theorem 1 clearly shows one of the well-known advantages of the TDG method compared to other
more traditional scheme. Whereas the order is linear in terms of the number of basis functions for the
TDG method, it becomes quadratic when considering, for example, the finite element method. The
TDG method may therefore be computationally more efficient than the FEM at least in the 2D case.
Moreover and as it is often the case with discontinuous Galerkin method, numerical results actually
show better order of convergence than the one displayed in theorem 1. The estimate is sub-optimal
since the error is measured in quadratic norm and the right hand side is measured in maximum norm.
The convergence order n − 1 is the worst case allowed by the physical hypothesis σa + σs > 0. The
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proof shows that it corresponds to vanishing absorption σa = 0 and positive scattering σs > 0, which
results in vanishing damping of the first variable p, see (3). Therefore the main point of the proof in
the general regime is to get L2 control of the first variable p using the properties of the TDG method.

This paper is organized as follows: in section 2 we present the TDG method for Friedrich systems.
Section 3 is devoted to the analysis the method, in particular we give in this section a quasi-optimality
result and the well-balanced property of the scheme. Section 4 and 5 give some applications to the P1

model in one and two dimensions. In section 4, we focus on the one dimensional P1 model, show how
to construct the basis functions and study formally the asymptotic behavior of the scheme. In section
5, we focus on the two dimensional P1 model, show how to construct the basis functions and study the
h convergence of the method for the stationary case. Finally numerical results are given in one and two
dimensions in section 6. In particular some numerical results evidence that TDG methods naturally
capture internal boundary layers and so are well adapted to multiscale problems.

2 Presentation of the method
All the vector will be noted in bold. For v(x) ∈ Rm we will also use the simplified notation v ∈ L2(Ω)
instead of v ∈ L2(Ω)m. Moreover we may write v = (v1, ..., vm)T where T denotes the transpose and
denote v2 = vTv to facilitate the distinction with other types of norms or semi-norms.

2.1 Mesh notation and generic discontinuous Galerkin formulation

t

x

tn

tn+1

Ωk

ΩS

Figure 1: Illustration of the partition Th for a time dependent problem.

The partition or mesh of the space domain Ω = ΩS ⊂ Rd is denoted as Th. It is made of polyhedral
non overlapping subdomains ΩS,r, that is Th = ∪rΩS,r. For a space time problem we first split the
time interval into smaller time intervals (tn, tn+1) with 0 = t0 < t1 < ... < tN = T . Making an
abuse of notation, the mesh of the space time domain Ω = ΩS × [0, T ] ⊂ Rd+1 is still denoted as
Th = ∪r,nΩS,r × (tn, tn+1). One must therefore be careful that Th denotes either a purely spatial mesh
for stationary model or a space-time mesh for time dependent model. Moreover the cells or subdomains
will be referred to with the same notation, that is Ωk = ΩS,r or Ωk = ΩS,r × (tn, tn+1). In summary
one can write in both cases Th = ∪kΩk and the context makes these notations non ambiguous.

The broken Sobolev space is

H1(Th) := {v ∈ L2(Ω), v|Ωk
∈ H1(Ωk) ∀Ωk ∈ Th}.

In the following we assume u ∈ H1(Th). For convenience we may rewrite (2) under the form Lu = 0
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and consider also the adjoint operator

L =
∑
i

Ai∂i +R, L∗ = −
∑
i

Ai∂i +R.

All matrices are constant (do not depend nor on the time variable neither on the space variables).
Multiplying (2) by v ∈ H1(Th) and integrating gives on Ω∑

k

∫
Ωk

vTk Luk = 0, (4)

where vk = v|Ωk
, uk = u|Ωk

. Integrating by parts one gets∑
k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∫
∂Ωk

vTkMkuk = 0,

where ∂Ωk is the contour of the element Ωk with an outward unit normal nk = (nt, nx1 , ..., nxd
)T ,

M = A0nt+
∑
iAini andMk = M(nk). Denoting Σkj the edge oriented from Ωk to Ωj , one can writes∑

k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vTMu)k + (vTMu)j

+
∑
k

∫
Σkk

vTkM
+
k uk = −

∑
k

∫
Σkk

vTkM
−
k g.

For u satisfying the equation (2), the normal flux is

Mkuk = −Mjuj = fkj(uk,uj), on Σkj (5)

where fkj is a numerical flux on Σkj defined below. One has∑
k

∑
j<k

∫
Σkj

(vTMu)k + (vTMu)j =
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T fkj(uk,uj).

Because M is symmetric one can decompose M under the form M = M+ + M− where M+ is a non
negative matrix and M− is a non positive matrix. In the following we will consider the upwind flux
fkj(uk,uj) = M+

kjuk +M−kjuj , where Mkj = Mk|Σkj
. Finally one has∑

k

∫
Ωk

(
L∗vk

)T
uk +

∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj) (6)

+
∑
k

∫
Σkk

vTkM
+
k uk = −

∑
k

∫
Σkk

vTkM
−
k g. (7)

We define the bilinear form aDG : H1(Th)×H1(Th)→ R and the linear form l : H1(Th)→ R as

aDG(u,v) =
∑
k

∫
Ωk

(L∗vk)Tuk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk, u,v ∈ H1(Th),

l(v) =−
∑
k

∫
Σkk

vTkM
−
k g, v ∈ H1(Th).

(8)

One can rewrite (6) as aDG(u,v) = l(v), ∀v ∈ H1(Th). We can now define the classic discontinuous
Galerkin method for Friedrichs systems with polynomial basis functions [9, 30]. Define Pdq the space of
polynomials of d variables, of total degree at most q and the broken polynomial space

Pdq(Th) := {v ∈ L2(Ω),v|Ωk
∈ Pdq ∀Ωk ∈ Th} ⊂ H1(Th).
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Definition 1. Assume Pm(Th) is a finite subspace of H1(Th), for example Pm(Th) = Pdq(Th). The
standard upwind discontinuous Galerkin method for Friedrichs systems is formulated as follows{

find uh ∈ Pm(Th) such that
aDG(uh,vh) = l(vh), ∀vh ∈ Pm(Th).

(9)

Note that because of the conservation equation (5), the exact solution to (2) also verify

aDG(u,vh) = l(vh), ∀vh ∈ H1(Th). (10)

2.2 Trefftz Discontinous Galerkin formulation
Since our goal is to use Trefftz method we take basis functions which are solutions to (2) in each cell

V (Th) = {v ∈ H1(Th), Lvk = 0 ∀Ωk ∈ Th} ⊂ H1(Th). (11)

The space V (Th) is a genuine subspace of H1(Th) except in the case L = 0 which is of no interest.
Starting from the bilinear form aDG from (8), one notices that the volume term can be written for all
functions in V (Th) as ∫

Ωk

(
L∗vk

)T
uk = 2

∫
Ωk

vTkRuk, ∀u,v ∈ V (Th). (12)

One can therefore define a bilinear form aT : V (Th)× V (Th)→ R as

aT (u,v) =
∑
k

2

∫
Ωk

vTkRuk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk, u,v ∈ V (Th).

(13)

Thanks to an integration by part for functions v ∈ V (Th) which are piecewise homogeneous solutions
of the equation, one gets an equivalent formulation of the bilinear form aT (·, ·)

aT (u,v) = −
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk, u,v ∈ V (Th). (14)

The relaxation term R completely disappeared in the formulation (14). It might seem a paradox at
first sight but is not because, for a Trefftz method, some information about R is encoded in the
basis functions. Since there is no volume term in the formulation (14) compared to (13) it may be
easier to implement. The convenient bilinear form l : V (Th) → R is the same as in (8), that is
l(v) = −

∑
k

∫
Σkk

vTkM
−
k g for all v ∈ V (Th).

Definition 2. Assume Vm(Th) is a finite subspace of V (Th). The upwind Trefftz discontinuous Galerkin
method for the model problem (2) is formulated as follows{

find uh ∈ Vm(Th) such that
aT (uh,vh) = l(vh), ∀vh ∈ Vm(Th).

(15)

We give some examples of subspace Vm(Th).
- Example 1: the P1 model in one dimension reads{

∂tp+ c
ε∂xv = −σap,

∂tv + c
ε∂xp = −σtv,
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the dependent variable is u = (p, v)T and c, σa, σs ∈ R+, ε ∈ R+
∗ , σt = σa + σs

ε2 . Assume solutions
are under the form zeλx one gets λ by solving det(A1λ + R) = 0 and then study the kernel of the
matrix A1λ + R to find the vector z. A possible choice for Vm is then Span(Vm) = {e1, e2} with

e1(x) =

(
−√σt√
σa

)
e

ε
c

√
σaσtx, e2(x) =

(√
σt√
σa

)
e−

ε
c

√
σaσtx.

- Example 2: consider the one dimensional case A1∂xu = −Ru. If the matrix A1 is non singular
one can write V under the form V = {v(x) s.t. v(x) = e−A

−1
1 Rx}. For a two dimensional model

A1∂x1
u +A2∂x2

u = −Ru, one can make the rotation x
′

= x1 cos(θ) + x2 sin(θ), θ ∈ [0, 2π[. Assuming
the solution depends only on x

′
one has A

′

1∂x′u = −Ru which can be solve in a identical way as the
one dimensional case if the matrix A

′

1 is non singular.
- Example 3: however most of the time when considering physical model the matrix A1 will be
singular. For example the hyperbolic heat equation in two dimensions is{

∂tp+ c
ε div v = 0,

∂tv + c
ε∇p = −σs

ε2 v,

the unknown is u = (p,v)T ∈ R3 and c, σs ∈ R+, ε ∈ R+
∗ . For simplicity we consider stationary

solutions. Deriving the second equation and inserting in the first equation, one gets ∆p = 0. Therefore
denoting the harmonic polynomial in two dimensions as qk(x) for k ∈ N, a possible choice for Vm is

Span(Vm) = {ei, i = 1, ...,m} with ei =

(
σs

ε qi
−c∇qi

)
.

Remark 1. In case of a time dependent problem, even if the classic upwind discontinuous Galerkin
formulation (9) and the upwind Trefftz discontinuous Galerkin formulation (15) are posed on the
whole space-time domain Ω, they still can be decoupled time step after time step. It comes from the
fact that the matrix A0 is definite positive and therefore M−(n) = 0 if n = (1, 0, ..., 0). Define anT :
V (Th)× V (Th)→ R (related to the general bilinear form (14)) and ln : V (Th)→ R as

anT (u,v) =−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk +M+
knjnvnj )T (unk − unj )−

∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk

−
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n
k , u,v ∈ V (Th),

ln(v) =−
∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TgS −
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n−1
k , v ∈ V (Th),

(16)

where we used the convention Σk1k0 = ∂Ωk1 ∩ (∂Ω × {0}) and ΣkN+1kN = ∂ΩkN ∩ (∂Ω × {T}). The
formulation (15) is equivalent to the series of space problems{

find unh, n = 1, ..., N, such that
anT (unh,v

n
h) = ln(vnh), ∀vnh ∈ Vm(Th).

(17)

A fully different choice of basis functions is also possible using the adjoint operator L∗. Assume
V ∗(Th) = {v ∈ H1(Th), L∗vk = 0 ∀Ωk ∈ Th} ⊂ H1(Th), define aAT : V ∗(Th)× V ∗(Th)→ R as

aAT (u,v) =
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj) +
∑
k

∫
Σkk

vTkM
+
k uk, (18)

and consider V ∗m(Th) a finite subspace of V ∗(Th). The upwind adjoint Trefftz discontinuous Galerkin
method for the model problem (2) writes{

find uh ∈ V ∗m(Th) such that
aAT (uh,vh) = l(vh), ∀vh ∈ V ∗m(Th),

(19)
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with l a linear form as in (8). Even if when R = 0 these two approaches coincide, the problems we
are interested in are such that R = RT 6= 0, so this two methods are different in our case. Therefore
the final solution will be in the space V ∗ 6= V and it is not clear if a finite subspace of V ∗ can give
a good approximation of V using standard norms. Another possibility is to adopt a Petrov-Galerkin
approach choosing trial functions in V (Th) and test functions in V ∗(Th) [12, 13]. However, we have
noticed some stability issue with this method for time dependent problem. Therefore these methods
will not be studied further.

3 Analysis of the Trefftz Discontinuous Galerkin method

3.1 Well posedness and quasi-optimality
In this section we show well posedness of (15) and a quasi-optimality bound in mesh-dependent norms.
Our analysis follows some results of [27] where special case with R = 0 was studied. We define two
semi-norms on H1(Th)

‖u‖2DG =
∑
k

∫
Ωk

uTkRuk +
∑
k

∑
j<k

1

2

∫
Σkj

(uk − uj)
T |Mkj |(uk − uj) +

∑
k

1

2

∫
Σkk

uTk |Mk|uk,

‖u‖2DG∗ =
∑
k

∫
∂Ωk

−uTkM
−
k uk,

(20)

with |Mkj | = |Mjk| = M+
kj −M

−
kj . First we show that these two semi-norms are in fact norms on the

Trefftz space. We will need the following Lemmas.

Lemma 1. One has the inequality ‖v‖DG ≤ c‖v‖DG∗ for all v ∈ V (Th), with c =
√

5
2 .

Proof. Assume v ∈ V (Th) then Lvk = 0, ∀Ωk ∈ Th. Multiplying by vk and integrating over Ωk one
gets

1

2

∫
∂Ωk

vkMkvk +

∫
Ωk

vkRvk = 0. (21)

Therefore one has ∑
k

∫
Ωk

vkRvk ≤ −
1

2

∑
k

∫
∂Ωk

vkM
−
k vk =

1

2
‖v‖2DG∗ , (22)

which is a bound for the first term in the definition of the DG norm (20). Moreover because R is
non negative one also finds using (21)

∫
∂Ωk

vkMkvk ≤ 0 that is
∫
∂Ωk

vkM
+
k vk ≤ −

∫
∂Ωk

vkM
−
k vk and

consequently ∫
∂Ωk

vk|Mk|vk ≤ −2

∫
∂Ωk

vkM
−
k vk. (23)

An elementary inequality gives 1
2 (vk−vj)

T |Mkj |(vk−vj) ≤ vTk |Mkj |vk+vTj |Mkj |vj thus
∑
k

∑
j<k

1
2

∫
Σkj

(vk−
vj)

T |Mkj |(vk − vj) +
∑
k

1
2

∫
Σkk

vk|Mk|vk ≤
∑
k

∫
∂Ωk

vTk |Mk|vk and therefore using (23)∑
k

∑
j<k

1

2

∫
Σkj

(vk − vj)
T |Mkj |(vk − vj) +

∑
k

1

2

∫
Σkk

vk|Mk|vk ≤ −2
∑
k

∫
∂Ωk

vkM
−
k vk = 2‖v‖2DG∗ ,

(24)
which is a bound for the second and third term in the definition of theDG norm (20). Finally combining
(22) and (24) with the definition of the DG norm (20) one gets ‖v‖2DG ≤ 5

2‖v‖
2
DG∗ .

Lemma 2. Assume M ∈ Rn×n is a symmetric matrix. Then one has

zTM2z ≤ CzT |M |z, ∀z ∈ Rn,

where we have used the decomposition of M = M+ +M−, M+ is a non negative matrix, M− is a non
positive matrix and |M | = M+ −M−.
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Proof. First we notice that zT |M |z = zTM+z− zTM−z and zTM2z = zT (M+)2z + zT (M−)2z.
Let λ+ be the maximum eigenvalue ofM+. Denoting λi and ri the eigenvalue and eigenvector ofM+

one has λ+zTM+z = λ+
∑
λi≥0 λi(z, ri)

2 ≥
∑
λi≥0 λ

2
i (z, ri)

2 = zT (M+)2z.A similar inequality applies
to the matrix M− gives finally zT |M |z ≥ 1

ρ(M)+1zTM2z, ∀z ∈ Rn. This completes the proof.

We can now show that the two semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are in fact norms on the Trefftz
space V (Th).

Proposition 2. The semi-norms ‖ · ‖DG and ‖ · ‖DG∗ are norms on the Trefftz space V (Th).

Proof. Assume u ∈ V (Th) and ‖u‖DG = 0. Lemma 2 imply that Mu has vanishing jump across each
edge of Th. Thus u is a solution to the general problem Lu = 0 in Ω. Moreover

∫
∂Ω

uT |M |u = 0.
Therefore u is solution of {

Lu = 0, in Ω,

M−u = 0, on ∂Ω.

We conclude u = 0 in Ω using the uniqueness of the solution. Thus ‖ ·‖DG is a norm on V (Th). Thanks
to lemma 1 we also conclude that ‖ · ‖DG∗ is also a norm on V (Th). This completes the proof.

Next, we study the coercivity and the continuity of the bilinear form a(·, ·) regarding the norms
‖ · ‖DG and ‖ · ‖DG∗ .

Proposition 3 (Coercivity). For all u ∈ H1(Th) one has aDG(u,u) = ‖u‖2DG. For all u ∈ V (Th) one
has aDG(u,u) = aT (u,u).

Proof. The proof is taken from [30]. Let u,v ∈ H1(Th). The bilinear form (8) reads

aDG(u,v) =
∑
k

∫
Ωk

(
[−
∑
i

Ai∂i +R]vk
)T

uk +
∑
k

∑
j<k

∫
Σkj

(vk − vj)
T (M+

kjuk +M−kjuj)

+
∑
k

∫
Σkk

vTkM
+
k uk.

Integrating by part and using Mkj = −Mjk one has

aDG(u,v) =
∑
k

∫
Ωk

vTk (
∑
i

Mi∂i +R)uk +
∑
k

∑
j<k

∫
Σkj

−vTkMkjuk + vTj Mkjuj

+ (vk − vj)
T (M+

kjuk +M−kjuj) +
∑
k

∫
Σkk

vTkM
+
k uk − vTkMkjuk.

Using M = M+ +M− one finds

aDG(u,v) =
∑
k

∫
Ωk

vTk Luk −
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk.

Since L = −L∗ + 2R one gets

aDG(u,v) =−
∑
k

∫
Ωk

vTk L
∗uk +

∑
k

2

∫
Ωk

vTkRuk

−
∑
k

∑
j<k

∫
Σkj

(M−kjvk +M+
kjvj)

T (uk − uj)−
∑
k

∫
Σkk

vTkM
−
k uk.

Summing the above expression of a(·, ·) and the one in (8) one gets with v = u the equality 2aDG(u,u) =
2‖u‖2DG. Moreover from (12) one deduces aDG(u,u) = aT (u,u), ∀u ∈ V (Th). This completes the
proof.
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Proposition 4 (Continuity). The continuity bound aT (u,v) ≤
√

2‖u‖DG‖v‖DG∗ holds for all u,v ∈
V (Th).

Proof. Using −M−jk = M+
kj , the norm DG∗ can be recast into the form

‖u‖2DG∗ =
∑
k

∑
j<k

∫
Σkj

−uTkM
−
kjuk + uTj M

+
kjuj −

∑
k

∫
Σkk

uTkM
−
k uk. (25)

Since |M−| = −M− and M+,M− are respectively non negative and non positive symmetric matrix,
the bilinear form aT (14) can be written as

aT (u,v) =
√

2
[∑

k

∑
j<k

∫
Σkj

(√
|M−kj |vk

)T√
|M−kj |

(uk − uj√
2

)
+
(
−
√
M+
kjvj

)T√
M+
kj

(uk − uj√
2

)
+
∑
k

∫
Σkk

(√
|M−k |vk

)T(√
|M−k |

uk√
2

)]
.

Using the Cauchy-Schwartz inequality, one sees that the first term of each scalar product is bounded
by ‖v‖DG∗ and the second term by ‖u‖DG. This completes the proof.

We can now give the following classical quasi-optimality result.

Proposition 5 (Quasi-optimality). For any finite dimensional space Vm(Th) ⊂ V (Th), the TDG
formulation (15) admits a unique solution uh ∈ Vm(Th). Moreover, the following quasi-optimality
bounds holds

‖u− uh‖DG ≤
√

2 inf
vh∈Vm(Th)

‖u− vh‖DG∗ ,

where u stands for the exact solution to (2).

Proof. From proposition 2 and 3 one deduces uniqueness of the discrete solution uh. Existence of uh
follows from uniqueness. Moreover ∀vh ∈ Vm(Th) one has

‖u− uh‖2DG = aT (u− uh,u− uh) = aT (u− uh,u− vh) ≤
√

2‖u− uh‖DG‖u− vh‖DG∗ ,

thanks to propositions 3 and 4, to the consistency equality (10) and to (15).

Using the quasi-optimality proposition one has the well-balanced property of the scheme. How-
ever there is a important difference between the one-dimensional case and higher dimensions. In one
dimension a scheme is well-balanced if it captures all the stationary states of a hyperbolic system.
This is possible because, in one dimension, the number of linearly independent stationary solutions
is finite. However in two dimensions the space of stationary solutions becomes infinite. It has a huge
impact on what is a well-balanced scheme in space dimensions higher than one. One must choose a
finite subset of solutions for which the scheme is supposed to be exact. This is our practical definition
of a well-balanced scheme and that’s why it is immediately deduce from the quasi-optimality result of
proposition 5. Of course a standard DG scheme has the same quasi-optimality result, but it can be
well-balanced only for some particular polynomial functions. On the contrary a TDG method can be
well-balanced for more general solutions which contain for example exponential factors as in Example
1 in Section 2.2 for which σa > 0.

Proposition 6 (Well-balanced scheme). The scheme (15) is well-balanced in the sense that if the
solution u ∈ H1(Ω) of (2) is locally (in each cell) a linear combination of the basis functions (which
are by construction exact solutions), then uh = u.

Proof. One can take vh = u in proposition 5. Therefore one has ‖u−uh‖DG = 0. Since u−uh ∈ V (Th)
one concludes using proposition 2.
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3.2 Estimate in standard norms
In the previous section, the error is bounded in terms of DG-norm. It is of course desirable to have
estimation in a more standard norm. In this section we present some elementary L2 lower bounds of
the DG norm which take advantage of the relaxation matrix R and an L2 upper bound of the DG∗
norm.

Proposition 7. Assume Ωk ∈ Th, Rk = R(x)|Ωk
, and ∀k Rk is definite positive. One has

1

supk∈Th ‖
√
Rk
−1‖2

‖u‖L2(Ω) ≤ ‖u‖DG, ∀u ∈ H1(Th).

Proof. A basic inequality is v2 ≤ ‖
√
Rk
−1‖2

(
vTRkv

)
. Let v ∈ H1(Th). Integrating over Ωk, summing

over all cells and using the definition of the DG-norm (20), one gets the assertion.

This inequality holds when R is definite positive but degenerate when R → 0. For non stationary
problems, one can give a L2 lower bound at the final time that does not depend on R.

Proposition 8. For time dependent problems one has

‖u‖L2(ΩS×{T}) ≤ ‖u‖DG, ∀u ∈ H1(Th).

Proof. Consider n(t,x) on ∂Ω with n(t,x) = (nt, nx1
, ..., nxd

)T = (1, 0, ..., 0)T one has |M |((1, 0, ..., 0)T ) =
A0= I. So∑

k

∫
ΩS,k×{T}

u2
k ≤

∑
k

1

2

∫
ΩS,k×{T}

uTkA0uk ≤
∑
k

1

2

∫
Σkk

uTk |Mkj |uk, ∀u ∈ H1(Th),

the assertion follows from the definition of the DG-norm.

Let us define the semi-norm |u|21,Ω :=
∫

Ω

∑n
i=1

∑d
j=1(∂jui)

2.

Proposition 9. One has

‖u‖2DG∗ ≤ C
∑
k

‖u‖L2(Ωk)

( 1

hk
‖u‖L2(Ωk) + |u|1,Ωk

)
, ∀u ∈ H1(Th), (26)

where hk = diam(Ωk) and the constant C depends on the Ai.

More precisely if one Ai is in O( 1
ε ) with respect to ε, the constant C scales like 1

ε .

Proof. Let u ∈ Th one has ‖u‖2DG∗ =
∑
k

∫
∂Ωk
−uTkM

−
kjuk and therefore ‖u‖2DG∗ ≤ C

∑
k

∫
∂Ωk

u2
k. We

now use the trace inequality from theorem 1.6.6 in [3] in each cell Ωk on each component of the vector
u

‖u‖2L2(∂Ωk) ≤ C‖u‖L2(Ωk)

( 1

hk
‖u‖L2(Ωk) + |u|1,Ωk

)
, ∀u ∈ H1(Ωk),

summing over all cells one finally gets the equation (26). This completes the proof.

4 Application in one dimension
We consider a concrete example, the P1 model which is a first simple approximation of the transport
equation using spherical harmonic expansion of the solution. An interesting properties of the P1 model
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is that like the transport equation it admits a diffusive limit when ε→ 0. The time dependent version
of the P1 model in one dimension writes{

∂tp+ c
ε∂xv = −σa(x)p,

∂tv + c
ε∂xp = −σt(x)v,

(27)

the unknown is u = (p, v)T and c, σa, σs ∈ R+, ε ∈ R+
∗ , σt = σa+ σs

ε2 . The reader should be aware that
σt depends on ε and behave as 1

ε2 when σs > 0 and ε → 0. When ε → 0 the variable p of the system
(27) follows a diffusion equation.

Proposition 10. When ε→ 0, the variable p and v of (27) behave formally as∣∣∣∣∣∣∣∣
∂tp−

c2

σs
∂xxp = −σap,

v = − cε
σs
∂xp.

(28)

Proof. Multiplying the second equation of (31) by ε2 and neglecting the term in ε2 one gets v =

− cε
σs
∂xp. Inserting this expression in the first equation of (31) one finds ∂tp− c2

σs
∂xxp = −σap.

4.1 Construction of the basis functions for high order time dependent
scheme

In order to use the Trefftz method (15) one needs to find solutions to the model (27). In particular we
would like to give a general procedure to increase the number of basis functions in order to get high
order of convergence, if needed. In the following we search for particular solutions to (27) under the
form u(t, x) = q(t, x)eλx where q(t, x) is a polynomial in space and time. For simplicity we consider a
polynomial of degree at most one in space and time. For brevity the proofs of this section are postponed
in the appendix.

Proposition 11. Assume constant coefficients σa and σt, c 6= 0 and σa 6= 0. The P1 model (27)
admits the following solutions

e±1 (x) =

( √
σt

∓√σa

)
e±

ε
c

√
σaσtx,

e±2 (t, x) =

(
−c σt−σa

4σa
√
σt
± εσa+σt

2
√
σa
x+ c

√
σtt

∓c σt−σa

4σt
√
σa
− εσa+σt

2
√
σt
x∓ c√σat

)
e±

ε
c

√
σaσtx.

(29)

Proof. The proof is given in appendix A.

Because the basis functions (29) are solutions to (27), one can use them in the case σa 6= 0. The
problem with such basis comes from the limit cases. Indeed they degenerate to the same limit as σa → 0
which cause some numerical instability. However, one can construct new solutions which remains stable
in the limit case σa → 0.

Proposition 12. There exists ẽ1, ẽ2, ẽ3, ẽ4, linear combinations of the solutions (29) such that

ẽ1(x) →
σa→0

(
εσt

c x
−1

)
,

ẽ2(x) →
σa→0

(
1
0

)
,

ẽ3(t, x) →
σa→0

(
− ε

2σt

2c x
2 − ct

εx

)
,

ẽ4(t, x) →
σa→0

(
− ε

3σ2
t

6c2 x
3 − εσttx− εx

ε2σt

2c x
2 + ct

)
.

(30)
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Proof. The proof is given in appendix A.

Remark 2. Note that the solutions (29) are only defined in the case c 6= 0. However, up to a multi-
plication by c or c2 if needed, the limit solutions (30) can also be used in the case c = 0.

4.2 Asymptotic preserving properties
In this section we study the behavior of the scheme when ε → 0. One cannot use directly the L2

estimates of the previous section mainly because the parameter ε appears in the ‖ · ‖DG and ‖ ·
‖DG∗ norms. Here we choose to interpret the scheme (15) as a finite difference scheme which has
several advantages. Under this form we observe that the scheme is new compared to other popular one
dimensional finite difference schemes [15]. Moreover one can study, at least formally, the asymptotic
behavior of a finite difference scheme by means of a Hilbert expansion. We consider the P1 model with
no absorption {

∂tp+ c
ε∂xv = 0,

∂tv + c
ε∂xp = −σs

ε2 v,
(31)

with ε ∈ R+
∗ , σs, c ∈ R+. For the sake of simplicity assume σs is constant in the domain. We use the

stationary basis functions e1 and e2 defined in each cells as

ek,1(t, x) =

(
1
0

)
, ek,2(t, x) =

(
−σs

cε (x− xk)
1

)
, (32)

where xk is the abscissa of the center of the cell k. For simplicity assume the step space h = xk+1−xk is
constant for all k. Using the basis functions (32) in (9) and considering x = xk with periodic boundary
condition one gets the following scheme (see appendix C for details)

pn+1
k − pnk

∆t
+

c

2εh

[
− pk+1 + 2pk − pk−1 + (1− a)(vk+1 − vk−1)

]n+1

= 0,

(1 +
a2

3
)
vn+1
k − vnk

∆t
+

c

2εh

[
a2(vk+1 + 2vk + vk−1) + (−vk+1 + 2vk − vk−1)

+(1 + a)(pk+1 − pk−1)
]n+1

= −σs
ε2
vn+1
k ,

(33)

with a = σsh
2cε .

Remark 3. One can interpret the first component of the basis function ek,2(t, x) in (32) as a correction
to the standard finite volume method. Indeed the standard finite volume method is equivalent to consider
the formulation (9) with the two basis functions ek,1 = (1, 0)T , ek,2 = (0, 1)T . The scheme is then (33)
with a = 0. This scheme is not asymptotic preserving when ε→ 0.

Proposition 13. When ε→ 0 the scheme (33) admits the formal limit∣∣∣∣∣∣∣∣∣∣∣

(v0
k+1 + v0

k)n+1 = 0,(v1
k+1 + 2v1

k + v1
k−1

4

)n+1

= − c

σs

(p0
k+1 − p0

k−1

2h

)n+1

,

(p̄0
k)n+1 − (p̄0

k)n

∆t
− c2

σs

(p0
k+2 − 2p0

k + p0
k−2

4h2

)n+1

= 0,

(34)

with p̄0
k = ( 2

3p
0
k+2 + 4p0

k+1 + 20
3 p

0
k + 4p0

k−1 + 2
3p

0
k−2)/16 is a local mean value of p0

k. The limit scheme
(34) is consistent with the limit model (28) and therefore the scheme is asymptotic preserving.
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Proof. We adopt the notations {{f}}k+ 1
2

= fk+1+fk
2 , [[f ]]k+ 1

2
= fk+1−fk

2 and δtf = fn+1−fn

∆t . With these
notations the scheme (33) can be written under the form

δtpk +
c

εh

[
− ([[p]]k+ 1

2
− [[p]]k− 1

2
) + (1− a)({{v}}k+ 1

2
− {{v}}k− 1

2
)
]n+1

= 0, (35)

(1 +
a2

3
)δtvk +

c

εh

[
a2({{v}}k+ 1

2
+ {{v}}k− 1

2
) + 2avk − ([[v]]k+ 1

2
− [[v]]k− 1

2
)

+(1 + a)([[p]]k+ 1
2

+ [[p]]k− 1
2
)
]n+1

= 0.

(36)

Let p =
∑
i=0 p

iεi and v =
∑
i=0 v

iεi. We inject these expressions in (35) and (36) and we expand all
coefficients and variables with respect to ε. The important step is to expand a with respect to ε using
the definition a = σsh

2cε . The terms O( 1
ε2 ) in (35) and O( 1

ε3 ) in (36) are

{{v}}0k+ 1
2
− {{v}}0k− 1

2
= 0,

{{v}}0k+ 1
2

+ {{v}}0k− 1
2

= 0.

These two equations together give
{{v}}0k+ 1

2
= 0,∀k. (37)

Now we study the terms in O( 1
ε ) in (35) and in O( 1

ε2 ) in (36). Using (37) one has

−([[p]]0k+ 1
2
− [[p]]0k− 1

2
)− σsh

2c
({{v}}1k+ 1

2
− {{v}}1k− 1

2
) = 0,

σsh

6c
δtv

0
k +

c

h

[
[[p]]0k+ 1

2
+ [[p]]0k− 1

2
+
σsh

2c
({{v}}1k+ 1

2
+ {{v}}1k− 1

2
) + 2v0

k

]
= 0,

therefore subtracting these two equations one finds

h

3c
δtv

0
k + {{v}}1k+ 1

2
+

4c

σsh
v0
k = − 2c

σsh
[[p]]0k+ 1

2
,∀k.

Adding this equality for k and k − 1 and using (37) one deduces

{{v}}1k+ 1
2

+ {{v}}1k− 1
2

= − 2c

σsh
([[p]]0k+ 1

2
+ [[p]]0k− 1

2
),∀k. (38)

Finally with the terms in O(1) for (35) and in O( 1
ε ) for (36)

δtp
0
k +

c

h

[
−([[p]]1k+ 1

2
− [[p]]1k− 1

2
) + ({{v}}1k+ 1

2
− {{v}}1k− 1

2
)− σsh

2c
({{v}}2k+ 1

2
− {{v}}2k− 1

2
)

]n+1

= 0,

σ2
sh

2

12c2
δtv

1
k +

c

h

[
σsh

2c
(2v1

k + [[p]]1k+ 1
2

+ [[p]]1k− 1
2
) + [[p]]0k+ 1

2
+ [[p]]0k− 1

2
− ([[v]]0k+ 1

2
− [[v]]0k− 1

2
)

+
σ2
sh

2

4c2
({{v}}2k+ 1

2
+ {{v}}2k− 1

2
)

]n+1

= 0.

Dividing the first equation by σs, using (37), (38) and multiply by 2c
σ2
sh

the second equation one gets

1

σs
δtp

0
k +

[
c

σsh

(
− ([[p]]1k+ 1

2
− [[p]]1k− 1

2
) + {{v}}1k+ 1

2
− {{v}}1k− 1

2

)
−
{{v}}2

k+ 1
2

− {{v}}2
k− 1

2

2

]n+1

= 0,

14



h

6c
δtv

1
k +

[
c

σsh

(
− {{v}}1k+ 1

2
+ 2v1

k − {{v}}1k− 1
2

+ [[p]]1k+ 1
2

+ [[p]]1k− 1
2

+
4c

σsh
v0
k

)
+
{{v}}2

k+ 1
2

+ {{v}}2
k− 1

2

2

]n+1

= 0.

Adding and subtracting these two equations one finds

{{v}}2k− 1
2

+
2c

σsh
[[p]]1k− 1

2
+

4c2

σ2
sh

2
v0
k = − 1

σs
δtp

0
k −

h

6c
δtv

1
k −

2c

σsh
(v1
k − {{v}}1k− 1

2
)n+1, (39)

and

{{v}}2k+ 1
2

+
2c

σsh
[[p]]1k+ 1

2
+

4c2

σ2
sh

2
v0
k =

1

σs
δtp

0
k −

h

6c
δtv

1
k −

2c

σsh
(v1
k − {{v}}1k+ 1

2
)n+1. (40)

Using (39) in k + 1 and subtracting (40) to (39) one gets

1

σs
δt(p

0
k+1 + p0

k) +
h

6c
δt(v

1
k+1 − v1

k) +
2c

hσs
(v1
k+1 − v1

k)n+1 =
4c2

σ2
sh

2
(v0
k − v0

k+1).

Adding this equation for k and k − 1 and using (37) one has

1

σs
δt(p

0
k+1 + 2p0

k + p0
k−1) +

h

3c
δt({{v}}1k+ 1

2
− {{v}}1k− 1

2
) − 4c

σsh
({{v}}1k+ 1

2
− {{v}}1k− 1

2
)n+1 = 0.

Summing this equation for k and k + 1 one gets

1

σs
δt(p

0
k+2 + 3p0

k+1 + 3p0
k + p0

k−1) +
h

3c
δt({{v}}1k+ 3

2
−{{v}}1k− 1

2
)− 4c

σsh
({{v}}1k+ 3

2
−{{v}}1k− 1

2
)n+1 = 0.

Summing this equation for k and k − 1 one finally finds

1

σs
δt(p

0
k+2 + 4p0

k+1 + 6p0
k + 4p0

k−1 + p0
k−2) +

h

3c
δt({{v}}1k+ 3

2
+ {{v}}1k+ 1

2
− {{v}}1k− 1

2
− {{v}}1k− 3

2
)

− 4c

σsh
({{v}}1k+ 3

2
+ {{v}}1k+ 1

2
− {{v}}1k− 1

2
− {{v}}1k− 3

2
)n+1 = 0.

Using (38) one deduces

({{v}}1k+ 3
2

+ {{v}}1k+ 1
2
)− ({{v}}1k− 1

2
+ {{v}}1k− 3

2
) = − c

σsh
(p0
k+2 − 2pk + p0

k−2).

Therefore one finally has

δt(
2

3
p0
k+2 + 4p0

k+1 +
20

3
p0
k + 4p0

k−1 +
2

3
p0
k−2)− 4c2

σs

(
p0
k+2 − 2p0

k + p0
k−2

h2

)n+1

= 0.

This equality is consistent with the first equation of the limit model (28). Moreover the equality (38)
is also consistent with the second equation of (28). This completes the proof.

5 Application to the P1 model in two dimensions
In the previous section we have studied the well balanced and asymptotic preserving properties of the
TDG method in one dimension for the P1 approximation of the transport equation. Other schemes
which satisfy these two properties have already been designed in one dimension (see for example
[15]) but fundamentals difficulties arise when trying to extend those schemes to higher dimensions
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(unstructured mesh, infinite dimension of the stationary state space, . . . ). One advantage of the TDG
method (15) is that, given the approximation space V (Th), it can be directly extended to the two
dimensional case. The scheme will be well balanced (in the sense of proposition 6) and one can hope
the asymptotic behavior of the two dimensional scheme will come naturally from the basis functions:
numerical evidence shows it is indeed the case. In the following we study the P1 model in two dimensions{

∂tp(t,x) + c
ε div v(t,x) = −σa(x)p(t,x),

∂tv(t,x) + c
ε∇p(t,x) = −σt(x)v(t,x),

(41)

with the unknown u = (p,v)T ∈ R3. The coefficients σt = σa + σs

ε2 , σa, σs ∈ R+ depends on x while
ε ∈ R+

∗ , c ∈ R+ are constants. We write x = (x, y)T . The system (41) can be recast into the form (2)
with d = 2, n = 3 and

A0 = Im, A1 =
c

ε

0 1 0
1 0 0
0 0 0

 , A2 =
c

ε

0 0 1
0 0 0
1 0 0

 , R(x) =

σa(x) 0 0
0 σt(x) 0
0 0 σt(x)

 .

The reader should be aware that σt depends on ε and behave as 1
ε2 when σs > 0 and ε→ 0.

5.1 Stationary solutions
Stationary solutions to the P1 model (41) with constant coefficients are candidate to be basis functions.

Proposition 14 (A first family of basis functions). Take dk = (cos(φk), sin(φk))T ∈ R2, c 6= 0 and
assume constant coefficients σa, σt. The functions

ek =

( √
σt

−√σadk

)
e

ε
c

√
σaσt(dk,x), (42)

are solution to the model problem (41).

Proof. Assume the solution of (41) is under the form ek(x) = zke
λ(dk,x) for some zk ∈ R3. Denoting

Mλ = λ(A1 cos(φk) + A2 sin(φk)) +R, one obtains the eigenproblem Mλzk = 0. The values of λ such
that det(Mλ) = 0 are λ = ± εc

√
σaσt. Taking λ = ε

c

√
σaσt one has Ker(M ε

c

√
σaσt

) = Span(w) with
w = (

√
σt,−

√
σa cos(φk),−√σa sin(φk))T . Taking zk = w and ek(x) = zke

λ(dk,x), one finds a non
trivial solution to the model (41). This ends the proof.

Proposition 15 (A second family of basis functions). Assume σa = 0 and σt is constant. Denote
qk(x), k ∈ N, the scaled harmonic polynomial in two dimensions

q1 = 1 and q2l =
21−l

l!
<(x+ iy)l with q2l+1 =

21−l

l!
=(x+ iy)l for l ∈ N∗. (43)

The following functions are solutions to the P1 model (41)

ek =

(
σs

ε qk
−c∇qk

)
, k = 1, ...,m. (44)

Proof. Consider the stationary version of (41). Deriving the second and third equation and inserting it
in the first equation, one sees that p follows a second order equation ∆p = 0. By definition the scaled
harmonic polynomials qk(x) are solutions and one gets the first component of the solution. It is then
easy to deduce the second and third component of the solution. This completes the proof.
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Because the basis functions (42) are solution to (41), one can use them in the case σa 6= 0. The
problem with such basis comes from the limit cases. Indeed the vectors degenerate to the same limit
as σa → 0. Our goal is to show there exist a stable basis which degenerates correctly when σa → 0. We
proceed as in [14] section 3.1 and consider the matrix M2n+1 := Mθ1,θ2,...,θ2n+1 ∈ R2n+1×2n+1 defined
as

M2n+1 := Mθ1,θ2,...,θ2n+1 :=



1 1 ... 1
cos(θ1) cos(θ2) ... cos(θ2n+1)
sin(θ1) sin(θ2) ... sin(θ2n+1)

cos(2θ1) cos(2θ2) ... cos(2θ2n+1)
sin(2θ1) sin(2θ2) ... sin(2θ2n+1)

...
... ...

...
cos(nθ1) cos(nθ2) ... cos(nθ2n+1)
sin(nθ1) sin(nθ2) ... sin(nθ2n+1)


, (45)

This matrix is invertible under general conditions.

Proposition 16. Let θ1, ..., θ2n+1 ∈ [0, 2π[ with θi 6= θj if i 6= j. Then the matrix M2n+1 is invertible.

Proof. We take the proof given in [14]. Assume ψ = (ψ0, ..., ψ2n+1)T and MT
2n+1ψ = 0 then

ψ0 +

n∑
l=1

ψ2l−1 cos(lθk) + ψ2l sin(lθk) = 0, for k = 1, ..., 2n+ 1.

Therefore, ψ is the coefficient vector for a real valued trigonometric polynomial of degree n with 2n+1
different zeros θk, k = 1, ..., 2n + 1. This polynomial is zero everywhere and one can conclude ψ = 0.
This completes the proof.

We give a new family of basis functions which degenerate correctly when σa → 0.

Definition 3 (A third family of basis functions). Let n ∈ N and consider 2n + 1 solutions to the P1

model ei i = 1, ..., 2n+ 1. We set ak,j = (M2n+1)−1
k,j and define

ẽj =
√
σs(

ε

c

√
σaσt)

−b j2 c
2n+1∑
k=1

ak,jek, j = 1, ..., 2n+ 1. (46)

Proposition 17. The functions ẽi from (46) remains stable when σa → 0. More precisely, denoting
qi(x) the scaled harmonic polynomial (43), one has

ẽk →
σa→0

(
σs

ε qk
−c∇qk

)
for k = 1, ..., 2n+ 1.

Proof. The proof is based on the stable basis argument used for the Helmoltz equation in [14]. Deriving
the second and third equation of (41) and inserting it in the first equation, one sees that stationary
solution p follows a second order equation ∆p = ε2

c2 σtσap. This equality is satisfied by the scaled
harmonic polynomials (43) in the case σa = 0. Following [14] and using the definition of the coefficients
akj , one can show that the first component of the functions ẽi tends to the scaled harmonic polynomial
times σs

ε . Because these functions are still solution to (41) one can write them when σa = 0 under the
form

ẽk =

(
σs

ε qk
−c∇qk

)
, k = 1, ...,m.

This completes the proof.
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5.2 Proof of theorem 1 and h-convergence
First we consider the simpler case of the particular second order equation ∆u = ωu which is closely
related to the Helmholtz equation. This will then be generalized to study approximation properties of
stationary solution to the P1 model. Approximation results using solutions to the Helmholtz equation
has already been study in different ways. For the h version see [7] for the case ω < 0 and [14] for the
case ω ≤ 0 with a source term and more explicit constants. For p version estimate using Vekua theory
see [17, 29] and [18] for the hp version.

5.2.1 Technical material

Let u ∈ H1(Ω). We consider the following auxiliary second order equation

∆u = ωu, (47)

with ω ∈ R which may take positive or negative values and our goal is to write a simplified Taylor
expansion for regular solutions to this equation. Let x = (x, y)T and fix n ∈ N and x0 = (x0, y0)T ∈ Ω.
We note T pk (x) :=

Cp
k

k! (x−x0)p(y− y0)k−p for 0 ≤ p ≤ k and T pk (x) := 0 in other cases. Every function
u ∈ Cn+1(Ω) can be written under the form of a usual Taylor expansion which comes from [10] page
94

u(x) =

n∑
k=0

k∑
p=0

∂px∂
k−p
y u(x0)T pk (x) +

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x), (48)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx, ys = (1− s)y0 + sy, s ∈ [0, 1]. There is of course a double

sum in the Taylor expansion, but for Trefftz methods it is possible to reduce the complexity using the
fact that u is a solution to the model equation (47). This is classical [7, 18, 27] see also [23, 21, 22]
with a different approach to the coefficients reduction procedure. In our analysis, we need intermediate
quantities named αpk and βpk .

Definition 4. Consider an integer n ≥ 0. The functions αpk and βpk are defined in the range 0 ≤ p ≤
k ≤ n by a decreasing recursion from k = n to k = 0. The recursion reads:

• by convention set βpn+1(x) = βpn+2(x) = 0, β−1
k (x) = β−2

k (x) = 0, ∀p, k

• for k = n to k = 0, do

• for p = 0 to p = k, do
αpk(x) := T pk (x) + ωβpk+2(x), (49)

βpk(x) := αpk(x)− βp−2
k (x), (50)

A graphical illustration of the procedure is provided in Figure 2.

Since βpn+1(x) = βpn+2(x) = 0, thus αpn−1(x) = T pn−1(x), αpn(x) = T pn(x). Also because β−2
k =

β−1
k = 0 the equality (50) implies

β0
k = α0

k, β1
k = α1

k, 0 ≤ k ≤ n. (51)

In the case ω 6= 0, the functions αpk(x) and βpk(x) are polynomials of degree n if both n and k are even
or odd and of degree n−1 otherwise. If ω = 0 the functions αpk(x) and βpk(x) are polynomials of degree
k for 0 ≤ k ≤ n. Note that in order to use simple notation we do not explicitly write the dependence
of these functions in n and x0.
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Figure 2: Dependence of the coefficients α2
2 and α4

n in terms of the coefficients αpk for ω 6= 0. The figure
shows that αpk depends only on some coefficients αjk+2 for k ≤ n, 0 ≤ j ≤ k + 2.

Proposition 18. Assume u ∈ Cn+1(Ω) is solution to (47). Then the double sum Taylor expansion
(48) can be recast as a simple sum with only zero or first order derivatives for respect to y

u(x) = u(x0)β0
0(x) +

n∑
k=1

[
∂kxu(x0)βkk (x) + ∂k−1

x ∂yu(x0)βk−1
k (x)

]
+

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x), ∀x ∈ Ω,

(52)

where xs = (xs, ys)
T , xs = (1− s)x0 + sx and ys = (1− s)y0 + sy.

By symmetry, a similar result holds with high order derivative with respect to y and only zero
and first order derivatives for respect to x. The proof which is purely technical is postponed in the
appendix.

5.2.2 Approximation properties of auxiliary solutions to the equation (47)

To study the approximation properties of solutions to the equation (47) we will need the following
matrix. Let n ∈ N and consider 2n + 1 functions e1, e2, ..., e2n+1 ∈ Wn,∞(Ω). We define S2n+1 :=
Se1,e2,...,e2n+1

∈ R2n+1×2n+1 such that

S2n+1 := Se1,e2,...,e2n+1 :=



e1 e2 ... e2n+1

∂xe1 ∂xe2 ... ∂xe2n+1

∂ye1 ∂ye2 ... ∂ye2n+1

∂2
xe1 ∂2

xe2 ... ∂2
xe2n+1

∂x∂ye1 ∂x∂ye2 ... ∂x∂ye2n+1

...
... ...

...
∂nx e1 ∂nx e2 ... ∂nx e2n+1

∂n−1
x ∂ye1 ∂n−1

x ∂ye2 ... ∂n−1
x ∂ye2n+1


,

For Θ a generic open set we will use the norm ‖u‖Wn,∞(Θ) =
∑n
k=0

∑k
p=0 sup(x)∈Θ |∂px∂k−py u(x)|. In

the vectorial case it is ‖u‖Wn,∞(Θ) =
∑m
j=1 ‖uj‖Wn,∞(Θ).
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Proposition 19. Let n ∈ N, x0 ∈ R2, assume e1, e2, ..., e2n+1 ∈ Wn+1,∞(Ωk) and u ∈ Wn+1,∞(Ωk)
are solutions to the equation (47). If the matrix S2n+1(x0) is invertible then there exists real numbers
a = (a1, a2, ..., a2n+1)T ∈ R2n+1 and a constant C > 0 such that∥∥∥∥∥

2n+1∑
i=1

aiei − u

∥∥∥∥∥
L∞(Ωk)

≤ Chn+1‖u‖Wn+1,∞(Ω), h = diam(Ωk).

and ∥∥∥∥∥∇
(

2n+1∑
i=1

aiei − u

)∥∥∥∥∥
L∞(Ωk)

≤ Chn‖u‖Wn+1,∞(Ω), h = diam(Ωk).

Proof. Because the solutions ei, 1 ≤ i ≤ 2n + 1 and u are in Cn+1(Ω), one can write them under the
form (52). Let

b = (u(x0), ∂xu(x0), ∂yu(x0), ..., ∂nxu(x0), ∂n−1
x ∂yu(x0))T (53)

and consider the solution of the linear system S2n+1(x0)a = b. The expansion (52) implies

2n+1∑
i=1

aiei(x)− u(x) =

n+1∑
p=0

∂px∂
n+1−p
y w(xs)T

p
n+1(x), w =

2n+1∑
i=1

aiei − u. (54)

Since T pn+1 is a difference to the power n+ 1, one gets immediately∥∥∥∥∥
2n+1∑
i=1

aiei − u

∥∥∥∥∥
L∞(Ωk)

≤ C ‖w‖Wn+1(Ωk) h
n+1.

Additionally the triangular inequality yields ‖w‖Wn+1,∞(Ωk) ≤
∑2n+1
i=1 |ai| ‖ei‖Wn+1,∞(Ωk)+‖u‖Wn+1,∞(Ωk)

where the coefficients ai are bounded by ‖u‖Wn+1,∞(Ωk) as a consequence of (53) and the basis func-
tions ei are bounded by a constant. So ‖w‖Wn+1,∞(Ωk) ≤ C ‖u‖Wn+1,∞(Ωk) up to the redefinition of
the constant. From (54) one deduces the second inequality. This completes the proof.

We now consider some specific cases for non negative constant ω and study the invertibility of the
matrix S2n+1. First assume ω > 0.

Proposition 20. Let n ∈ N, ω > 0, ω constant, and consider the functions e1, ...e2n+1

ei(x) = e
√
ω(di,x), i = 1, ..., 2n+ 1, (55)

with di = (cos(θi), sin(θi))
T , θi ∈ [0, 2π[ and θi 6= θj ∀i 6= j. The functions ei are solutions to the

equation (47) and the matrix S2n+1(x) is invertible for all x ∈ R2.

Proof. It is easy to check that the functions (55) are solutions to the equation (47) when ω is constant
and positive. It remains to show that the matrix S2n+1 is invertible. For simplicity we consider centered
solutions

ei(x) = e
√
ω(di,x−x0), (56)

with x0 ∈ R2. Multiplying each columns of S2n+1 by a positive constant does not change whether the
determinant of S2n+1 is null. Doing so the matrix S2n+1 recasts with slight abuse of notation as

S2n+1 =



1 1 ... 1

ω
1
2 cos(θ1) ω

1
2 cos(θ2) ... ω

1
2 cos(θ2n+1)

ω
1
2 sin(θ1) ω

1
2 sin(θ2) ... ω

1
2 sin(θ2n+1)

...
... ...

...
ω

n
2 cosn(θ1) ω

n
2 cosn(θ2) ... ω

n
2 cosn(θ2n+1)

ω
n
2 sin(θ1) cosn−1(θ1) ω

n
2 sin(θ2) cosn−1(θ2) ... ω

n
2 sin(θ2n+1) cosn−1(θ2n+1)


.
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We recall the equalities

cosn(x) =
1

2n−1

( bn2 c∑
k=0

Ckn cos
(
(n− 2k)x

)
− C

bn2 c
n

2

(n+ 1

2
− bn+ 1

2
c
))
, n ∈ N∗,

sin(x) cos(nx) =
1

2

(
sin((n+ 1)x)− sin((n− 1)x)

)
, n ∈ N.

Therefore each row of S2n+1 can be written as the corresponding row of M2n+1 = Mθ1,...,θ2n+1
multi-

plied by a positive coefficient and a linear combination of its previous rows. Since the matrix M2n+1

is invertible (proposition 16), the matrix S2n+1 is also invertible. This completes the proof.

Now consider the case ω = 0.

Proposition 21. Let n ∈ N, ω = 0 and consider the functions el = ql for l ≥ 1. These functions are
solutions to the equation (47) and the matrix S2n+1(x) is invertible for all x ∈ R2.

Proof. By definition harmonic polynomials are solutions to the equation (47) when ω = 0. For these
solutions the matrix

S2n+1 =



1 <(x+ iy)1 =(x+ iy)1 ... 21−n

n! <(x+ iy)n 21−n

n! =(x+ iy)n

0 ∂x<(x+ iy)1 ∂x=(x+ iy)1 ... 21−n

n! ∂x<(x+ iy)n 21−n

n! ∂x=(x+ iy)n

0 ∂y<(x+ iy)1 ∂y=(x+ iy)1 ... 21−n

n! ∂y<(x+ iy)n 21−n

n! ∂y=(x+ iy)n

...
...

... ...
...

...
0 ∂nx<(x+ iy)1 ∂nx=(x+ iy)1 ... 21−n

n! ∂nx<(x+ iy)n 21−n

n! ∂nx=(x+ iy)n

0 ∂n−1
x ∂y<(x+ iy)1 ∂n−1

x ∂y=(x+ iy)1 ... 21−n

n! ∂n−1
x ∂y<(x+ iy)n 21−n

n! ∂n−1
x ∂y=(x+ iy)n


.

One has (x+ iy)k =
∑k
p=0 C

p
k(i)k−pxpyk−p, thus

∂kx<(x+ iy)k = k!, ∂k+1+l
x <(x+ iy)k = 0, ∂k−1+l

x ∂y<(x+ iy)k = 0, for all l ∈ N,

and

∂k−1
x ∂y=(x+ iy)k = C1

k(k − 1)!, ∂k+l
x =(x+ iy)k = 0, ∂k+l

x ∂y<(x+ iy)k = 0, for all l ∈ N.

One deduces that the matrix S2n+1 is an upper triangular matrix with positive diagonal coefficients
and is therefore invertible. This completes the proof.

We can also proceed as in [14] and study stable basis that degenerate correctly when ω → 0.

Definition 5. Let n ∈ N, ω > 0, ω constant, and ak,j = (Mθ1,...,θ2n+1
)−1
k,j. We define the following

functions

ẽj = (
√
ω)−b

j
2 c

2n+1∑
k=1

ak,jek, j = 1, ..., 2n+ 1, (57)

with ek defined as in (55).

This functions are stable in the sense that they tend to harmonic polynomials when σa → 0.

Proposition 22. We denote qj, j = 1, ..., 2n + 1 the first 2n + 1 scaled harmonic polynomials (43).
One has

ẽj →
ω→0

qj , j = 1, ..., 2n+ 1.

Proof. See [14] section 3.1.
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By continuity one can therefore write ẽj = qj if ω = 0. With the solutions ẽi, we study the
invertibility of S in the case ω ≥ 0.

Proposition 23. Let n ∈ N, ω ≥ 0, ω constant and consider the functions ẽ1, ..., ẽ2n+1 in (57). The
matrix Sẽ1,...,ẽ2n+1

is invertible in R2.

Proof. Let M̃ ∈ R2n+1×2n+1 define as M̃k,j = (ω)−b
j
2 cak,j where ak,j are the coefficients of the matrix

(M2n+1)−1. Since the matrix (M2n+1)−1 is invertible and ω > 0 the matrix M̃ is also invertible for all
ω > 0. From the definition of the functions ẽ1, ..., ẽ2n+1 and the definition of the matrix S one has

Sẽ1,...,ẽ2n+1 = Se1,...,e2n+1M̃.

The matrix Se1,...,e2n+1 and M̃ are both invertible for ω > 0 therefore Sẽ1,...,ẽ2n+1 is also invertible for
all ω > 0. Moreover for ω = 0 the solutions ẽj are the scaled harmonic polynomials. From proposition
21 one gets the invertibility of the matrix Sẽ1,...,ẽ2n+1

when ω = 0. This completes the proof.

5.2.3 Proof of theorem 1

We study the approximation properties of solutions to the stationary P1 model. For simplicity we take
c = 1 and assume the coefficients σa and σs are constants. The stationary P1 model (41) writes

∂xv1 + ∂yv2 = −εσap,
∂xp = − 1

ε σ̃
ε
t v1,

∂yp = − 1
ε σ̃

ε
t v2

(58)

where we note σ̃εt = ε2σa + σs which still depends on ε and assume σa + σs > 0. For convenience the
unknown will be rewritten as u = (u1, u2, u3)T . The system (58) can be recast into the form

(∂xx + ∂yy)p = σaσ̃
ε
t p.

One has the inequality

‖u2‖Wn,∞(Ωk) + ‖u3‖Wn∞(Ωk) ≤ C‖u1‖Wn+1,∞(Ωk), C =
1

σa + σs
. (59)

We assume the mesh quasi unifomity: there exists a constant C uniform with respect to the mesh
sequence such that

max
Ωk∈Th

hk ≤ C min
Ωk∈Th

hk. (60)

We study the TDG scheme obtained by writing the equations under the form of a Friedrichs system
(2) with

A1 =

0 1 0
1 0 0
0 0 0

 , A2 =

0 0 1
0 0 0
1 0 0

 , R =

εσa 0 0
0 σ̃εt 0
0 0 σ̃εt

 .

For the stationary P1 model (58) the matrix M writes M(n) =

 0 nx ny
nx 0 0
ny 0 0

 , and we will use the

decomposition

M±(n) =
1

2

±1 nx ny
nx ±n2

x ±nxny
ny ±nxny ±n2

y

 . (61)

Our main goal is to obtain a proof of convergence in the case ε = 1. We will discuss the case ε→ 0 in
a second stage.
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Proposition 24. Let n ∈ N, Ωk ∈ Th, x0 ∈ Ωk, ε = 1 and σa + σs > 0. Consider u = (u1, u2, u3)T ∈
Wn+1,∞(Ωk) solution to the P1 model (58). Consider e1, ..., e2n+1 ∈ Wn+1,∞(Ωk) specific solutions
to the P1 model, which can be either (42), or (44) or (46). There exists a = (a1, ..., a2n+1)T ∈ R2n+1

such that ∥∥∥∥∥
2n+1∑
i=1

aiei − u

∥∥∥∥∥
L∞(Ωk)

≤ Chn‖u‖Wn+1,∞(Ωk)

and ∥∥∥∥∥∇
(

2n+1∑
i=1

aiei − u

)∥∥∥∥∥
L∞(Ωk)

≤ Chn−1‖u‖Wn+1,∞(Ωk).

Proof. This is a direct consequence of Proposition 19 applied to u = u1 = p combined with (59).

We can now give an approximation result in terms of the ‖ · ‖DG∗ norm.

Proposition 25. Under the assumptions of Proposition 24, there exists vh ∈ Vm := Span{e1, ..., e2n+1}
such that

‖u− vh‖DG∗ ≤ Chn−1/2‖u‖Wn+1,∞(Ω),

with h = maxΩk∈Th hk, hk = diam(Ωk).

Proof. From proposition 24 one deduces that there exist vh ∈ Vm such that ∀Ωk

‖u− vh‖2L2(Ωk) ≤ Ch
2n+2
k ‖u‖2Wn+1,∞(Ωk),

|(u− vh)|21,Ωk
≤ Ch2n

k ‖u‖2Wn+1,∞(Ωk),

therefore

‖u− vh‖L2(Ωk)

( 1

hk
‖u− vh‖L2(Ωk) + |(u− vh)|1,Ωk

)
≤ Ch2n+1

k ‖u‖2Wn+1,∞(Ωk), ∀Ωk.

Summing over all Ωk and using that for a regular mesh of size h, the total number of elements is
bounded by C/h2 one has∑

k

‖u− vh‖L2(Ωk)

( 1

hk
‖u− vh‖L2(Ωk) + |(u− vh)|1,Ωk

)
≤ Ch2n−1‖u‖2Wn+1,∞(Ω), ∀Ωk.

One concludes using proposition 9.

Combining the previous proposition with the results of section 3 one can now give an estimation
of the DG norm of the error.

Proposition 26. Under the assumptions of Proposition 24, consider the TDG method (15) with the
decomposition (61). One has

‖u− uh‖DG ≤ Chn−1/2‖u‖Wn+1,∞(Ω),

with h = maxΩk∈Th hk, hk = diam(Ωk), where uh stands for the solution to the TDG method.

Proof. Use proposition 25 and conclude with the quasi-optimality result from proposition 5.

One can now easily study the convergence in quadratic norm using using various physical assump-
tions on the coefficients.

Proposition 27 (Convergence in the dominant absorption regime: ε = 1, σa > 0, σs ≥ 0). Consider
2n+ 1 basis functions. Under the assumptions of Proposition 26, one has

‖u− uh‖L2(Ω) ≤ Chn−1/2‖u‖Wn+1,∞(Ω),

with h = maxΩk∈Th hk, hk = diam(Ωk) and where uh stands for the solution to the TDG method.
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Proof. Since σa > 0, σ̃εt > 0 and ε = 1, the matrix R is positive definite and one can give an L2 lower
bound of the DG norm with proposition 7. One concludes with proposition 26.

Next case is the dominant scattering regime with σs > 0 and σa = 0. We will need the following
technical lemmas.

Lemma 3. Assume w ∈ H1(Th). One has

‖w‖2L2(Ω) ≤ C
(
‖∂xw‖2L2(Ω) + ‖∂yw‖2L2(Ω) +

1

h

∑
k

∑
j<k

‖[[w]]‖2L2(Σkj) +
∑
k

‖w‖2L2(Σkk)

)
,

with h = maxΩk∈Th hk, hk = diam(Ωk) and where [[w]] denotes the jump of the function across an
edge.

Proof. We use (60) and use the proof given in [2] (see also [1] for a weaker result).

Lemma 4. Assume w = (w1, w2, w3)T ∈ V (Th), ε = 1 and σa + σs > 0. One has

‖w‖L2(Ω) ≤
C√
h
‖w‖DG,

with h = maxΩk∈Th hk, hk = diam(Ωk) and where the constant C is independent of h.

Proof. Using the definition of the DG norm (20) with σa + σs > 0 one gets

‖w2‖2L2(Ω) ≤ C‖w‖
2
DG, ‖w3‖2L2(Ω) ≤ C‖w‖

2
DG. (62)

It remains to show ‖w1‖L2(Ω) ≤ C√
h
‖w‖DG. The matrix |M | writes

|M | =

1 0 0
0 n2

x nxny
0 nxny n2

y

 . (63)

Since w ∈ V (Th) and σa + σs > 0, the L2 generalization of the inequality (59) yields ‖∂xw1‖2L2(Ω) =

C‖w2‖2L2(Ω) and ‖∂yw1‖2L2(Ω) = C‖w3‖2L2(Ω), C 6= 0. Therefore from the inequality (62), the definition
of the matrix |M | (63) and the definition of the DG norm (20) one deduces

‖∂xw1‖2L2(Ω) + ‖∂yw1‖2L2(Ω) +
∑
k

∑
j<k

‖[[w1]]‖2L2(Σkj) +
∑
k

‖w1‖2L2(Σkk) ≤ C‖w‖
2
DG.

One concludes using V (Th) ⊂ H1(Th) and proposition 3.

Final proof of Theorem 1. The case σa > 0 is already treated in proposition 27. To treat the remaining
case σs > 0 one can combine lemma 4 and proposition 26. The guaranteed order of convergence is the
worst case, that is n− 1. This completes the proof.

Theorem 1 illustrates one of the well known advantage of the Trefftz method: in dimension two,
one needs only to add two basis functions to increase the order by one. On the contrary the number
of basis functions is quadratic with respect to the order for standard DG methods.

Remark 4 (Case ε→ 0+). It would be of course desirable to get uniform estimate in the case ε→ 0+.
The theorem 1 in particular could be very helpful since the cases ε→ 0+ and σa → 0 are closely related.
However dependence in ε arises through the basis functions ei and the solution u and this dependence
must therefore be carefully studied when using results of the previous sections. Whether it is possible
to study easily this limit regime for the basis functions ei, it is much harder for the solution u mostly
because boundary layers may occur depending at boundaries. We note that initial boundary layers can
also arise for time dependent problems. These theoretical issues are left for further researches and we
prefer to turn our attention to validation by numerical means in the rest of this work.
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6 Numerical results
The goal of this section is to validate the convergence and asymptotic behavior of the scheme on some
numerical examples in one and two dimensions for stationary and time dependent problems. We will
consider two regimes: the case ε = 1 and the case ε << 1.

6.1 One dimensional time dependent tests
We use random meshes made of N nodes, where the vertices are moved randomly around their initial
position by a factor at most 33%.

6.1.1 Study of the order

For the time dependent P1 model in one dimension (27) consider the case ΩS = [0, 1], ε = 1, c =
1, σa = 1, σs = 1, h = 1/N for N = 20, 40, 60, 80, 100, T = 0.024 and dt = T/N . The exact solution is
uex = (e−t, e−2t) and we set M−u = M−uex on the boundary. The functions (29) are used as basis
functions.

We study two cases: a first one with only the two stationary basis functions e−1 , e
+
1 and a second

one with four basis functions e−1 , e
+
1 , e
−
2 , e

+
2 . Figure 3 shows that the scheme is convergent with the

two basis functions e−1 , e
+
1 and that one increases the order by adding the basis functions e−2 , e

+
2 . More

precisely order 1 is achieved with the two basis functions e−1 , e
+
1 whereas order 2 is achieved with the

four basis functions e−1 , e
+
1 , e
−
2 , e

+
2 .

 1e-05

 0.0001

 0.001
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 10  100

N

2 basis
4 basis
order 1
order 2

Figure 3: Study of the L2 error on the final time step in logarithmic scale for temporal one dimensional
model. Error with the two stationary basis functions and the four basis functions. Random meshes.

6.1.2 Asymptotic preserving regime

We test the asymptotic behavior of the scheme (33) for the model problem (31). Naive schemes need
many degrees of freedom, and therefore an important computational time, to be able to capture the
correct diffusion limit when ε → 0. The so called asymptotic preserving schemes have been designed
[15, 25] to get the correct limit with a reasonable amount of degrees of freedom. We have shown in
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section 4 that the TDG method leads to a new asymptotic preserving scheme and we can now illustrate
this property. To this end we take ΩS = [0, 1], ε = 0.001, σs = 1, c = 1 and T = 0.01. Consider p0 the
fundamental solution to the heat equation and the variable v0 associated in the limit ε→ 0

p0(x, t) =
1

2
√
πt
e
−(x−0.5)2

4t , v0(x, t) = −ε∂xp0(x, t).

FinallyM−(p, v)T = M−(p0, v0)T is imposed on the boundary. Figure 4 compare the numerical solution
with (p0, v0)T . One sees that even with few degrees of freedom the solution is correctly approximated.
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
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limit

-0.015
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-0.005

 0

 0.005

 0.01

 0.015

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u
limit

Figure 4: Numerical solution obtained with the numerical scheme (33) with ε = 0.001 to p0 (left) and
v0 (right). Random mesh with 20 nodes and dt = 0.01/20. Good accuracy illustrate the AP properties
of the TDG scheme.

6.2 Two dimensionals tests
We now consider two dimensionals model. Meshes made of random quads are using. A random quad
mesh is made of N × N quads, N ∈ N∗, where the vertices are move randomly around their initial
position at most by a factor 33%.

6.2.1 2D convergence with absorption

Consider the stationary P1 model in two dimensions (58). Let x = (x, y)T ,ΩS = [0, 1]2, ε = 1, c =
1, σa = 1, σs = 1. The exact solution we consider here is

uex(x) =
(

cos(y)e
√

3x,−(
√

3/2) cos(y)e
√

3x, 0.5 sin(y)e
√

3x
)T
.

We assume M−u = M−uex is imposed on the boundary and consider m ∈ N basis functions as in (42)

ek(x) = (
√

2,dk)e
√

2(dk,x), k = 1, ...,m,

with dk = (cos(φk), sin(φk))T , φk = 2(k − 1)π/m.
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Results obtained with 3, 5 and 7 basis are displayed on the left of figure 5. As stated in proposition
27, one only needs two additional basis functions to increase the order by a factor 1. Note however
that the orders obtain here are slightly better than those predicted in proposition 27: with 3, 5 and 7
basis functions one gets respectively order 0.8, 1.5 and 2.5.
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Figure 5: Case σa = 1 on the left and σa = 0 on the right. L2 error in logarithmic scale of the TDG
method for stationary two dimensional P1 model. 3 basis functions (red), 5 basis functions (blue) and
7 basis functions (orange). Random meshes.

6.2.2 2D convergence without absorption

Consider the stationary P1 model in two dimensions (58). Consider the same parameters as before but
without absorption: x = (x, y)T ,ΩS = [0, 1]2, ε = 1, c = 1, σa = 0, σs = 1. The exact solution is

uex(x) =
(

cos(y)ex,− cos(y)ex, sin(y)ex
)T
.

Again assume M−u = M−uex is imposed on the boundary and consider m ∈ N basis functions as in
(42)

ek(x) = (
√

2,dk)e
√

2(dk,x), k = 1, ...,m,

with dk = (cos(φk), sin(φk))T , φk = 2(k − 1)π/m.
Results obtained with 3, 5 and 7 basis are displayed on the right of figure 5. The orders are very

close from those obtain in the case σa 6= 0 (left of the figure 5): with 3, 5 and 7 basis functions one
gets respectively order 0.5, 1.5 and 2.5.

6.2.3 Boundary layers in two dimensions

We study the stationary P1 model in two dimensions with discontinuous coefficients. The domain is
Ω = [0, 1]2 and we define Ω1 (resp. Ω2) as Ω1 = [0.35, 0.65]2 (resp. Ω2 = Ω \ Ω1). The geometry is
represented in figure 6. We take ε = 1 and c = 1√

3
. The absorption coefficient σa = 2 × 1Ω1

(x) has
compact support in Ω1. The scattering coefficient σs = 2×1Ω2

(x) + 105×1Ω1
(x) is discontinuous and

takes a high value in Ω1. Even if we consider a random mesh, the interface between Ω1 and Ω2 is a
straight line.

To show why it can be challenging for standard schemes to capture boundary layers we compare
the TDG method with the DG scheme with constant and affine basis functions (that is 1, x, y). Since
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Ω1

σa = 2
σs = 105

Ω2

σa = 0
σs = 2

u = (1, 0, 0)T u = (0, 0, 0)T

Periodic

Periodic

Figure 6: Domain and boundary condition for the two dimensional boundary layers test.

the P1 model has 3 components this give us a total of 9 basis functions per cell for the DG scheme.
For the TDG scheme we take only 3 or 5 basis functions per cell. Note that for the TDG method one
must choose the directions of the basis functions in Ω1 since σa > 0. As we will see this choice plays
an important role to capture correctly the boundary layers and it seems essential to get locally the one
dimensional direction perpendicular to the interface.

Both DG and TDG converge to the same asymptotic solution for finer and finer meshes. The
2D asymptotic solution represented in Figure 7 is calculated on a 200 × 200 mesh with the TDG
method with 5 basis functions per cell (except at the interface see below). The default equi-distributed
directions in Ω1 are

d1 = (1, 0)T , d2 = (cos
2π

5
, sin

2π

5
)T , d3 = (cos

4π

5
, sin

4π

5
)T ,

d4 = (cos
6π

5
, sin

6π

5
)T , d5 = (cos

8π

5
, sin

8π

5
)T .

(64)

At the interface in Ω1 we make a special choice of directions

d1 = (1, 0)T , d2 = (0, 1)T , d3 = (−1, 0)T , d4 = (0,−1)T . (65)

These directions are well adapted if one considers a one dimensional problem at the interface. For
example on a 20× 20 mesh there are 36 cells in Ω1 and, among those 36 cells, there are 20 cells with
at least an edge which belongs to the interface. The directions (65) are taken in those 20 cells and the
directions (64) everywhere else. We will also study the TDG method with only 3 basis functions per
cell. With 3 basis functions per cell we consider the following equi-distributed directions

d1 = (1, 0)T , d2 = (cos
2π

3
, sin

2π

3
)T , d3 = (cos

4π

3
, sin

4π

3
)T . (66)

We compare the DG and TDG methods on a coarse 20× 20 mesh.
In Figure 7, we represent the variable p. For the TDG method we take either 3 or 5 basis functions

except at the interface in Ω1 where we use the 4 directions (65). One observes that the boundary layer
is not correctly capture by the DG scheme. The approximation given by the TDG scheme seems more
accurate.

In figure 8, we take a one dimensional cut at y = 0.5 to compare more precisely the numerical
results. The graphic on the left shows that the TDG gives indeed a much better approximation than
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the DG method especially with 5 basis functions per cell. Our interpretation is that it is because the
boundary layer is correctly captured by TDG but poorly captured by DG.

The graphic on the right of Figure 8 illustrates why it is very important to use the directions (65)
at the interface to obtained a satisfactory discretization of the boundary layer on a coarse mesh. We
consider the TDG method with 5 basis functions per cell and compare two cases. In the first one the
directions are (64) in all cells of Ω1. In the second one the directions (65) are used at the interface. The
graphic shows that the TDG method give a non correct approximation with only the directions (64).
However if one adapts locally the directions at the interface the TDG method recovers a very good
accuracy. Once again, our interpretation is that it is because the boundary layer is correctly captured
with these parameters.

Figure 7: Representation of the variable p for the test case 6.2.3. From left to right: DG scheme with
9 basis functions per cell, TDG scheme with 3 basis functions per cell, TDG scheme with 5 basis
functions per cell and reference solution. For the TDG method the directions at the interface in Ω1

are locally adapted into the 4 directions (65).
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Figure 8: One dimensional representation of the variable p at y = 0.5 for the test case 6.2.3. Left:
comparison between the DG method with 9 basis/cell (cross), the TDG method with 3 basis/cell
(circle) and the TDG method with 5 basis/cell (square). In both cases the directions at the interface
in Ω1 are locally adapted into the 4 directions (65). Right: comparison between the TDG method with
directions (64) only (cross) and the TDG method where the directions at the interface in Ω1 are locally
adapted into the 4 directions (65) (square).

29



6.2.4 Asymptotic preserving study for time dependent model

We study here the asymptotic behavior of the TDG method in the case σa = 0 and consider the
test case from [5] for the time dependent P1 model (41). Let x = (x, y)T ,ΩS = [0, 1]2, T = 0.036,
σa = 0, σs = 1, c = 1, and consider the solution

p0 = f +
ε2

σs
∂tf, u0 = − ε

σs
∇f,

with
f(t,x) = α(t) cos(2πx) cos(2πy),

with α(t) defines as

α(t) =
λ2

λ2 − λ1
eλ1t − λ1

λ2 − λ1
eλ2t,

λ1 = −
σs

(√
1− ε2

σ2
s
32π2 + 1

)
2ε2

, λ1 = −
σs

(√
1− ε2

σ2
s
32π2 − 1

)
2ε2

.

One can check that (p0,u0) is indeed a solution to (41) with σa = 0 see [5] for details. An exact relation
is enforced between ε and the space step h = 1

N . The relation between ε and h writes ε = 0.01(40h)τ

for τ ∈ {0, 1
4 ,

1
2 , 1, 2}. The error between the exact solution and the numerical solution is computed

numerically in function of h for different values of τ . The result is display in figure 9 for 3 stationary
basis functions (44) and dt = 0.36h2. One observes convergence of the solution even for small values
of ε.
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order 1

Figure 9: On the left: study of the L2 error at the final time in logarithmic scale. TDG method for
ε = 0.01(40h)τ with τ = 0 (red), τ = 0.25 (green), τ = 0.5 (dark blue) τ = 1 (purple) and τ = 2 (light
blue). On the right: an example of random mesh in 2D.

A Time dependent solutions to the P1 model in one dimension
We give the proofs of the propositions in section 4.1 and provide more material on how to construct the
stationary and time dependent solutions (29) for the one dimensional P1 model (27). First we recast
(27) as in (2) with d = 1, n = 2 which writes

∂tu +A1∂xu = −Ru, (67)
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with
A0 =

(
1 0
0 1

)
, A1 =

(
0 c

ε
c
ε 0

)
, R =

(
σa 0
0 σt

)
.

In order to find the solutions (73) we search for particular solutions to (67) under the form

u(x, t) = q(x, t)eλx (68)

with λ ∈ R and where q ∈ Rn is a polynomial in x and t. For example we consider

q(x, t) = q0 + xq1 + tq2 + xtq3. (69)

Using (68) in (67) and dropping the exponential one has

(∂t +A1∂x +R)u = 0⇔ (∂t +A1∂x + (A1λ+R)) q(x, t) = 0,

extending q one finds

((A1λ+R)q0 +A1q1 + q2) + x ((A1λ+R)q1 + q3) + t ((A1λ+R)q2 +A1q3) + xt(A1λ+R)q3 = 0.

This equality holds for all x and t thus one gets the following system
(A1λ+R)q3 = 0

(A1λ+R)q1 = −q3

(A1λ+R)q2 = −A1q3

(A1λ+R)q0 = −A1q1 − q2.

(70)

Therefore the solutions to (67) under the form (68) with q given by (69) satisfy the system (70). We
can now write the conditions (70) for the P1 model.

Lemma 5. The conditions (70) reads
q3 = 0,

(A1λ+R)q2 = 0,

(A1λ+R)q1 = 0,

(A1λ+R)q0 = −A1q1 − q2,

(71)

with λ = ± ε
v

√
σaσt.

Proof. First, a necessary condition for (70) to admits a solution is det(Aλ−R) = 0. Since

Aλ+R =

(
σa

c
ελ

c
ελ σt

)
,

one deduces det(A1λ−R) = 0⇔ λ = ± εc
√
σaσt. With this choice for λ, the matrix A1λ−R reads

A1λ+R =

(
σa ±√σaσt

±√σaσt σt,

)
.

and one notices
(A1λ+R)2 = (σa + σt)(A1λ+R). (72)

Thanks to the first and the second equation of (70) one has{
(A1λ+R)q3 = 0

(A1λ+R)q1 = −q3

⇒ (A1λ+R)2q1 = (σa + σt)(A1λ+R)q3 = 0.

From (72) one gets (A1λ+R)q1 = 0 therefore q3 = 0. This completes the proof.
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Proposition 28. The P1 model (67) admits the following four solutions

e±1 (x) =

( √
σt

∓√σa

)
e±

ε
c

√
σaσtx,

e±2 (x) =

(
−c σt−σa

4σa
√
σt
± εxσa+σt

2
√
σa

+ ct
√
σt

∓c σt−σa

4σt
√
σa
− εxσa+σt

2
√
σt
∓ ct√σa

)
e±

ε
c

√
σaσtx.

(73)

Proof. One notices Ker(A1λ + R) = Span((
√
σt,∓

√
σa)T ). Thus with w = (

√
σt,∓

√
σa)T and the

relations (71) one gets
q1 = αw, q2 = βw, α, β ∈ R.

From the last equality of (71) one sees −A1q1 − q2 ∈ Im(A1λ + R) which implies −A1q1 − q2 ∈
Ker((A1λ+R)T )⊥. Since the matrix A1 and R are symmetric Ker((A1λ+R)T ) = Ker(A1λ+R) =
V ect(w). A necessary condition is then (−A1q1 − q2,w) = 0 which is equivalent to

α = ± σa + σt
2
√
σaσt

ε

c
β.

Finally let q0 = (q1
0 , q

2
0)T . From the fourth equation of (71) one gets q1

0 = 1√
σa

(β σa−σt

2
√
σtσa

∓ √σtq2
0).

Thus one can choose q0 under the form

q0 = β

(
− σt − σa

4σa
√
σt
,∓ σt − σa

4σt
√
σa

)T
+ γw,

with γ ∈ R. To sum up one has the following relations∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q3 = 0,

q2 = β (
√
σt,∓

√
σa)

T
,

q1 = − σa + σt
2
√
σaσt

ε

c
β (∓
√
σt,
√
σa)

T
,

q0 = β

(
− σt − σa

4σa
√
σt
,∓ σt − σa

4σt
√
σa

)T
+ γ (

√
σt,±

√
σa)

T
,

(74)

β, γ ∈ R. Because the solutions are under the form u(x, t) = (q0 + xq1 + tq2 + xtq3)eλx, with
λ = ± εc

√
σaσt, one finds the four basis functions (73). This completes the proof.

Now we construct linear combinations of the solutions (73) that remains stable in the case σa → 0.
To make these solutions more convenient to read, we use the notations zx = ε

c

√
σaσtx and cosh(x) =

ex+e−x

2 , sinh(x) = ex−e−x

2 .

Lemma 6. The following four functions are linear combination of the solutions (73)

ẽ1(x) =

(√
σt

σa
sinh(zx)

− cosh(zx)

)
,

ẽ2(x) =

(
cosh(zx)

−
√

σa

σt
sinh(zx)

)
,

ẽ3(t, x) =

(
−ε σt+σa

2
√
σaσt

x sinh(zx)− ct cosh(zx)

c σt−σa

2σt
√
σaσt

sinh(zx) + εσt+σa

2σt
x cosh(zx) + c

√
σa

σt
t sinh(zx)

)
,

ẽ4(t, x) =

(
c σt−σa

2σa
√
σaσt

sinh(zx)− εσt+σa

2σa
x cosh(zx)− c

√
σt

σa
t sinh(zx)

ε σt+σa

2
√
σaσt

x sinh(zx) + ct cosh(zx)

)
.

(75)
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Proof. One defines the following linear combinations of the functions (73)

l±1 (x, t) = e±2 (x, t) + c
σt − σa
4σaσt

e±1 (x, t),

l±2 (x, t) = e±2 (x, t)− cσt − σa
4σaσt

e±1 (x, t).

Then defining the four solutions

ẽ1(x, t) =
1

2
√
σa

(
e+

1 (x, t)− e−1 (x, t)
)
,

ẽ2(x, t) =
1

2
√
σt

(
e+

1 (x, t) + e−1 (x, t)
)
.

ẽ3(x, t) =
−1

2
√
σt

(
l+1 (x, t) + l−1 (x, t)

)
,

ẽ4(x, t) =
−1

2
√
σa

(
l+2 (x, t)− l−2 (x, t)

)
,

one gets the functions (75).

We show that these solutions remain stable in the limit case σa → 0.

Proposition 29. When σa → 0 (σt → σs

ε2 ), the solutions (75) tend to the following functions

ẽ1(x, t) →
σa→0

(
εσt

c x
−1

)
,

ẽ2(x, t) →
σa→0

(
1
0

)
,

ẽ3(x, t) →
σa→0

(
− ε

2σt

2c x
2 − ct

εx

)
,

ẽ4(x, t) →
σa→0

(
− ε

3σ2
t

6c2 x
3 − εσttx− εx

ε2σt

2c x
2 + ct

)
.

Proof. One notices

cosh(zx) →
σa→0

1,
sinh(zx)
√
σaσt

→
σa→0

ε

c
x. (76)

The limit of ẽ1(x, t), ẽ2(x, t) and ẽ3(x, t) are simply obtained by using the expressions (76) in (75).
The limit of the second component of ẽ4(x, t) can be obtained in a similar way. It remains to study
the first component of e4(x, t). One has

c(σt − σa)

2σa
√
σaσt

sinh(zx)− εxσt + σa
2σa

cosh(zx)

=
c(σt − σa)

2σa
(
ε

c
x+

ε3x3σaσt
3!c3

+ o(σ2
a)) − εxσt + σa

2σa
(1 +

ε2σaσtx
2

2!c2
+ o(σ2

a))

= −εx+
ε3σ2

t x
3

2c2
(−1

6
+

1

2
) + o(σa) = −εx− ε3σ2

t

6c2
x3 + o(σa).

Because −ctσt sinh(zx)√
σaσt

→
σa→0

−εσttx, one gets the expressions of ẽ4(x, t). This completes the proof.
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B Proof of proposition 18
Lemma 7. Assume hypotheses of proposition 18 are satisfied. Then for all 0 ≤ l ≤ n− 2 one has the
identity

l∑
p=0

∂px∂
l−p
y u(x0)T pl (x) +

l+2∑
p=0

∂px∂
l+2−p
y u(x0)αpl+2(x) =

l∑
p=0

∂px∂
l−p
y u(x0)αpl (x) + ∂l+2

x u(x0)βl+2
l+2(x) + ∂l+1

x ∂yu(x0)βl+1
l+2(x).

(77)

Proof. Let l ∈ N, 0 ≤ l ≤ n− 2. For l1 ∈ Z, −1 ≤ l1 ≤ l − 1 we define the function

f(l1) =

l1∑
p=0

∂px∂
l−p
y u(x0)αpl (x) +

l∑
p=l1+1

∂px∂
l−p
y u(x0)T pl (x) +

l+2∑
p=l1+3

∂px∂
l+2−p
y u(x0)αpl+2(x)

+ ∂l1+2
x ∂l−l1y u(x0)βl1+2

l+2 (x) + ∂l1+1
x ∂l+1−l1

y u(x0)βl1+1
l+2 (x),

(78)

where we use the convention
∑b
p=a = 0 for a, b ∈ Z and b < a. First we show f(l1) = f(l1 + 1) for

−1 ≤ l1 ≤ l − 1. Because u is solution to the equation (77) one notices

∂l1+1
x ∂l+1−l1

y u(x0)βl1+1
l+2 (x) =

(
− ∂l1+3

x ∂l−l1−1
y + ω∂l1+1

x ∂l−l1−1
y

)
u(x0)βl1+1

l+2 (x). (79)

Now we consider the definition of the function f (78) and we study the difference f(l1 + 1) − f(l1).
After simplifications on the elements that appear in both f(l1) and f(l1 + 1) one finds

f(l1 + 1)− f(l1) =∂l1+1
x ∂l−l1−1

y u(x0)αl1+1
l (x)− ∂l1+1

x ∂l−l1−1
y u(x0)T l1+1

l (x)− ∂l1+3
x ∂l−l1−1

y u(x0)αl1+3
l+2 (x)

+ ∂l1+3
x ∂l−l1−1

y u(x0)βl1+3
l+2 (x)− ∂l1+1

x ∂l+1−l1
y u(x0)βl1+1

l+2 (x).

Using the equality (79) to reformulate the fifth term on the right hand side, one gets

f(l1 + 1)− f(l1) = ∂l1+1
x ∂l−l1−1

y u(x0)αl1+1
l (x)− ∂l1+1

x ∂l−l1−1
y u(x0)T l1+1

l (x)− ∂l1+3
x ∂l−l1−1

y u(x0)αl1+3
l+2 (x)

+∂l1+3
x ∂l−l1−1

y u(x0)βl1+3
l+2 (x) +

(
∂l1+3
x ∂l−l1−1

y − ω∂l1+1
x ∂l−l1−1

y

)
u(x0)βl1+1

l+2 (x).

Ordering the terms with respect to the derivatives gives

f(l1 + 1)− f(l1) =∂l1+1
x ∂l−l1−1

y u(x0)
(
αl1+1
l (x)− T l1+1

l (x)− ωβl1+1
l+2 (x)

)
+ ∂l1+3

x ∂l−l1−1
y u(x0)

(
− αl1+3

l+2 (x) + βl1+1
l+2 (x) + βl1+3

l+2 (x)
)
.

Using the definitions (49) and (50) one finds αl1+1
l (x) − T l1+1

l (x) − ωβl1+1
l+2 (x) = 0 and βl1+3

l+2 (x) −
αl1+3
l+2 (x) + βl1+1

l+2 (x) = 0. Therefore one has f(l1 + 1)− f(l1) = 0 for all −1 ≤ l1 ≤ l − 1. One deduces
f(−1) = f(l) which can be written

l∑
p=0

∂px∂
l−p
y u(x0)T pl (x) +

l+2∑
p=2

∂px∂
l+2−p
y u(x0)αpl+2(x) + ∂l+2

y u(x0)β0
l+2(x) + ∂x∂

l+1
y u(x0)β1

l+2(x) =

l∑
p=0

∂px∂
l−p
y u(x0)αpl (x) + ∂l+2

x u(x0)βl+2
l+2(x) + ∂l+1

x ∂yu(x0)βl+1
l+2(x).

Noticing from (51) α0
l+2(x) = β0

l+2(x) and α1
l+2(x) = β1

l+2(x), one incorporates the two corresponding
terms in the second sum so one finds the equality (77). This completes the proof.

34



Proof of Proposition 18. Start from the Taylor expansion (48). From definition (49) one has αpn(x) =
T pn(x) and αpn−1(x) = T pn−1(x). Therefore

u(x) =

n−2∑
k=0

k∑
p=0

∂px∂
k−p
y u(x0)T pk (x) +

n−1∑
p=0

∂px∂
n−1−p
y u(x0)αpn−1(x)

+

n∑
p=0

∂px∂
n−p
y u(x0)αpn(x) +

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x).

One can recursively use the equality (77) from l = n− 2 to l = 0. More precisely, rearranging the first
sum one has

u(x) =

n−3∑
k=0

k∑
p=0

∂px∂
k−p
y u(x0)T pk (x) +

n−1∑
p=0

∂px∂
n−1−p
y u(x0)αpn−1(x)

+

(
n−2∑
p=0

∂px∂
n−2−p
y u(x0)T pn−2(x) +

n∑
p=0

∂px∂
n−p
y u(x0)αpn(x)

)
+

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x).

One can reformulate the terms between parenthesis using (77) with the index correspondance n−2 = l.
One finds

u(x) =

n−3∑
k=0

k∑
p=0

∂px∂
k−p
y u(x0)T pk (x) +

n−1∑
p=0

∂px∂
n−1−p
y u(x0)αpn−1(x) +

n−2∑
p=0

∂px∂
n−2−p
y u(x0)αpn−2(x)

[
∂nxu(x0)βnn(x) + ∂n−1

x ∂yu(x0)βn−1
n (x)

]
+

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x).

(80)

And one can now recursively repeat this simple operation using the equality (77) for l = n− 3, . . . , to
l = 0. One finally gets the formula (80) where the first line is written for n = 2, the term [·] becomes
a sum and the last term remains unchanged

u(x) = 0 +

1∑
p=0

∂px∂
1−p
y u(x0)αp1(x) + u(x0)α0

0(x)

+

n∑
k=2

[
∂kxu(x0)βkk (x) + ∂k−1

x ∂yu(x0)βk−1
k (x)

]
+

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x).

That is

u(x) = u(x0)α0
0(x) + ∂xu(x0)α1

1(x) + ∂yu(x0)α0
1(x)

+

n∑
k=2

[
∂kxu(x0)βkk (x) + ∂k−1

x ∂yu(x0)βk−1
k (x)

]
+

n+1∑
p=0

∂px∂
n+1−p
y u(xs)T

p
n+1(x).

Noticing from (51) α0
0(x) = β0

0(x), α0
1(x) = β0

1(x), α1
1(x) = β1

1(x) one finds the expression (52). This
completes the proof.
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C Interpretation of the one dimensional TDGmethod as a finite
difference scheme

The goal of this section is to obtain the FD scheme (33) based on the Trefftz discontinuous Galerkin
method (15) for the one dimensional hyperbolic heat equation{

∂tp+ c
ε∂xv = 0,

∂tv + c
ε∂xp = −σs

ε2 v,
(81)

ε ∈ R+
∗ , σs, c ∈ R+. For the sake of simplicity we assume σs is constant in the domain. This model can

be written in the form of Friedrichs system (2) with

A0 =

(
1 0
0 1

)
, A1 =

c

ε

(
0 1
1 0

)
, R =

(
0 0
0 −σs

ε2

)
.

We consider basis functions ei,l where i is the global number of the cell and l the local number
of the basis function in the cell i. We denote xi− 1

2
and xi+ 1

2
the edges of the spatial cell ΩS,i, i.e.

ΩS,i = [xi− 1
2
, xi+ 1

2
] and xi the midpoint. We use two stationary basis functions defined as

ek,1(t, x) =


(

1
0

)
, if (t, x) ∈ Ωk,(

0
0

)
, else,

ek,2(t, x) =


(
−σs

cε (x− xk)
1

)
, if (t, x) ∈ Ωk,(

0
0

)
, else.

(82)

We use the notation eni,1, e
n
i,2 when designing the basis function from the spatial cell ΩS,i at the time

step n. Consider the bilinear and linear form obtained from the decoupled formulation (17)

anT (u,v) =−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk +M+
knjnvnj )T (unk − unj )−

∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk

−
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n
k , u,v ∈ V (Th),

ln(v) =−
∑
k

∫
∂ΩS∩∂Ωkn

(vnk )TgS −
∑
k

∫
Σknkn−1

(vnk )TM−knkn−1u
n−1
k , v ∈ V (Th).

(83)

In the following we will write explicitly the equality

anT (u, enl,i) = ln(enl,i), l = 1, 2, (84)

for any time step n and any spatial cell ΩS,i. For simplicity we will consider periodic boundary condi-
tion, a uniform space step h and a uniform time step ∆t. We define some notation.

Definition 6. Define CnS,i,l, C
n−1
T,i,l and C

n
T,i,l as

CnS,i,l = −
∑
k

∑
j

∫
Σknjn

(M−knjneni,l)
T (unk − unj ), (85)

Cn−1
T,i,l = −

∑
k

∫
Σknkn−1

(eni,l)
TM−knkn−1u

n−1
k , (86)

CnT,i,l = −
∑
k

∫
Σknkn−1

(eni,l)
TM−knkn−1u

n
k , (87)
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Since uk is a combination of the basis functions in each cell, one can make the following assumption.

Assumption 1. Assume uk admits the following decomposition in each cell Ωk

uk = αkek,1 + βkek,2, αk, βk ∈ R,

or in an identical way when considering the time step n and the spatial cell ΩS,i

uni = αni eni,1 + βni eni,2, αni , β
n
i ∈ R. (88)

We can now write the equality (84) using the definition 6.

Proposition 30. Consider the model (81) and the basis functions (82). The equality (84) with periodic
boundary condition at the time step n in any spatial cell ΩS,i reads

CnT,i,1 − Cn−1
T,i,1 + CnS,i,1 = 0,

CnT,i,2 − Cn−1
T,i,2 + CnS,i,2 = 0.

(89)

Proof. Since we consider periodic boundary condition, the term
∫
∂ΩS∩∂Ωkn

(vnk )TM−knunk in the bilinear
form and the term

∫
∂ΩS∩∂Ωkn

(vnk )TgS in the linear form of (83) are zero. One notices that

−
∑
k

∑
j<k

∫
Σknjn

(M−knjnvnk −M+
knjnvnj )T (unk − unj ) = −

∑
k

∑
j

∫
Σknjn

(M−knjnvnk )T (unk − unj ). (90)

Therefore one has aT (u, enl,i) = CnT,i,l + CnS,i,l and l(e
n
l,i) = Cn−1

T,i,l . The equality (84) gives respectively
for l = 1 and l = 2, the first and second equation of (89). This completes the proof.

Now we can study the values of the coefficients CS,i,l and CT,i,l.

Proposition 31. One has

CnS,i,1 =
c∆t

2ε

(
− αi−1 + 2αi − αi+1 + (1− σsh

2cε
)(βi+1 − βi−1

)n
, (91)

and

CnS,i,2 =
c∆t

2ε

(
(
σsh

2cε
)2(βi+1+2βi+βi−1)+

σsh

2cε
βi+(−βi−1+2βi−βi+1)+(1+

σsh

2cε
)(αi+1−αi−1)

)n
. (92)

Proof. For simplicity we will use the notation M−±1 = M−((0,±1)T ), M+
±1 = M+((0,±1)T ) and

(λm,lk,j )± = (M+
±1ej,l)

Tek,m. Since the function ei,l is only non-zero in the cell Ωi one can write CS,i,l
from (85) as

CS,i,l =

∫ tn

tn−1

(
− (M−−1ei,l)

T (ui − ui−1)(xi− 1
2
)− (M−1 ei,l)

T (ui − ui+1)(xi+ 1
2
)
)
. (93)

Using M−±1 = −M+
∓1, the decomposition of uni (88) and the fact that the basis (82) do not depend on

the time, the equality (93) reads

CnS,i,l =∆t
(
αi(λ

1l
i,i)

+(xi− 1
2
) + βi(λ

2l
i,i)

+(xi− 1
2
)− αi−1(λl1i,i−1)+(xi− 1

2
)− βi−1(λl2i,i−1)+(xi− 1

2
)

+ αi(λ
1l
i,i)
−(xi+ 1

2
) + βi(λ

2l
i,i)

+(xi+ 1
2
)− αi+1(λl1i,i+1)−(xi+ 1

2
)− βi+1(λl2i,i+1)−(xi+ 1

2
)
)n
.

(94)

For nt = 0, one has

M(n) = M(0, nx) =
c

ε

(
0 nx
nx 0

)
, M+(0, nx) =

c

2ε

(
1 nx
nx 1

)
, M−(0, nx) =

c

2ε

(
−1 nx
nx −1

)
,
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and one notices

(λ11
ji )
±(x) =

c

2ε
,

(λ12
ji )
±(x) =

c

2ε

(
− σs
cε

(x− xi)± 1
)
,

(λ22
ji )
±(x) =

c

2ε

(
1∓ σs

cε

(
(x− xi) + (x− xj)

)
+ (

σs
cε

)2(x− xi)(x− xj)
)
.

(95)

Recalling that for simplicity h = xi+ 1
2
− xi− 1

2
for all i and inserting (95) in (94) one finds for l = 1

CnS,i,1 =
c∆t

2ε

(
− αi−1 + 2αi − αi+1 + (1− σsh

2cε
)(βi+1 − βi−1

)n
,

and for l = 2

CnS,i,2 =
c∆t

2ε

(
(
σsh

2cε
)2(βi+1 + 2βi + βi−1) +

σsh

2cε
βi + (−βi−1 + 2βi − βi+1) + (1 +

σsh

2cε
)(αi+1 −αi−1)

)n
.

This completes the proof.

Proposition 32. One has
CnT,i,1 = h (96)

CnT,i,2 = h(1 +
σ2
sh

2

48c2ε2
). (97)

Proof. Since −M−knkn−1 = Im, C
n
T,i,l writes

CnT,i,l = −
∑
k

∫
Σknkn−1

(eni,l)
TM−knkn−1u

n
k =

∫ x
i+1

2

x
i− 1

2

(eni,l)
Tuni .

One notices
∫ x

i+1
2

x
i− 1

2

(eni,1)Teni,2 = 0. Therefore using the decomposition of uni (88) one finds

CnT,i,1 = αni

∫ x
i+1

2

x
i− 1

2

(eni,1)Teni,1 = hαni ,

CnT,i,2 = βni

∫ x
i+1

2

x
i− 1

2

(eni,2)Teni,2 = h(1 +
σ2
sh

2

48c2ε2
)βni .

This completes the proof.

Proposition 33. The scheme (89) reads

pni − p
n−1
i

∆t
+

c

2εh

[
− pi+1 + 2pi − pi−1 + (1− a)(vi+1 − vi−1)

]n
= 0,

(1 +
a2

3
)
vni − v

n−1
i

∆t
+

c

2εh

[
a2(vi+1 + 2vi + vi−1) + (−vi+1 + 2vi − vi−1)

+(1 + a)(pi+1 − pi−1)
]n

= −σs
ε2
vni ,

(98)

Proof. Starting from (89) one has

CnT,i,1 − Cn−1
T,i,1 + CnS,i,1 = 0,

CnT,i,2 − Cn−1
T,i,2 + CnS,i,2 = 0.

We recall the decomposition (88) uni (x) = αni e
n
i,1(x) + βni ei,2(x) = (pni , v

n
i )T (x). In particular consid-

ering the center of the cell one finds αni = pni (xi) and βni = vni (xi). Therefore using (91), (92), (96)
and (97) in (89) and making the simplification αni = pni and βni = vni , one finally gets the scheme (98).
This completes the proof.
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