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Abstract

The majority of Bayesian networks learning and inference algorithms rely
on the assumption that all random variables are discrete, which is not nec-
essarily the case in real-world problems. In situations where some variables
are continuous, a trade-off between the expressive power of the model and
the computational complexity of inference has to be done: on one hand,
conditional Gaussian models are computationally efficient but they lack ex-
pressive power; on the other hand, mixtures of exponentials (MTE), basis
functions (MTBF) or polynomials (MOP) are expressive but this comes at
the expense of tractability. In this paper, we introduce an alternative model
called a ctdBN that lies in between. It is composed of a “discrete” Bayesian
network (BN) combined with a set of univariate conditional truncated den-
sities modeling the uncertainty over the continuous random variables given
their discrete counterpart resulting from a discretization process. We prove
that ctdBNs can approximate (arbitrarily well) any Lipschitz mixed proba-
bility distribution. They can therefore be exploited in many practical situa-
tions. An efficient inference algorithm is also provided and its computational
complexity justifies theoretically why inference computation times in ctdBNs
are very close to those in discrete BNs. Experiments confirm the tractabil-
ity of the model and highlight its expressive power, notably by comparing it
with BNs on classification problems and with MTEs and MOPs on marginal
distributions estimations.

Keywords: Bayesian network, continuous random variable, mixed
probability distribution, inference

1. Introduction

For several decades, Bayesian networks (BN) [1] have been successfully
exploited for dealing with uncertainties. Their popularity has stimulated the
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development of many efficient learning and inference algorithms [2, 3, 4, 5, 6].
Whilst these algorithms are relatively well understood when they involve
only discrete variables, their ability to cope with continuous variables is of-
ten unsatisfactory. Dealing with continuous random variables is much more
complicated than dealing with discrete ones and one actually has to trade-off
between the expressive power of the uncertainty model and the computa-
tional complexity of its learning and inference mechanisms. Conditional
Gaussian models and their mixing with discrete variables [7, 8, 9] lie on
one side of the spectrum. They compactly represent multivariate Gaussian
distributions. Their inference mechanisms are computationally very effi-
cient but their main drawback is that they lack expressive power. Indeed,
although Conditional Linear Gaussian (CLG) models can easily encode con-
ditional independences between random variables, the density functions of
their continuous random variables are required to be Normal distributions
whose parameters depend linearly on the values of their parents. They are
therefore unable to represent models where dependences between the con-
tinuous random variables are nonlinear. In addition, they are not very well
suited to represent models in which random variables are not distributed
w.r.t. Normal distributions. On the other side of the spectrum, there are
more expressive models like mixtures of exponentials (MTE) [10, 11, 12],
mixtures of truncated basis functions (MTBF) [13, 14] and mixtures of
polynomials (MOP) [15, 16, 17]. Those can approximate very well density
functions but this comes at the expense of tractability: their exact inference
computation times tend to grow exponentially with the number of contin-
uous variables, which makes them unusable when they contain hundreds of
random variables.

In this paper, we propose an alternative model that lies in between these
two extremes. The key idea is to discretize the random variables, thereby
mapping each (continuous) value of their domain into an interval within a
finite set of intervals. Of course, whenever some discretization is performed,
some information about the continuous random variables is lost. But this
can be significantly alleviated by modeling the distribution of the continuous
values within each discretization interval by a density function which may
not necessarily be a uniform distribution (which is the implicit assump-
tion when using a classical discretization). The set of density functions
over all the intervals of a continuous variable constitutes its “conditional
truncated density” given its discretized counterpart. Now, our uncertainty
model is a (discrete) BN over the set of discrete and discretized random vari-
ables combined with the set of conditional truncated densities assigned to
the continuous random variables that were discretized. This model model
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is therefore called “conditional truncated densities Bayesian network”, or
ctdBN for short. It represents compactly mixed probability distributions.
The model is derived from the result of an algorithm for learning BNs from
datasets containing both discrete and continuous random variables [18].

By assigning conditional truncated densities to continuous variables, our
model gains expressive power over a BN in which all continuous variables are
discretized. As we show in this paper, this assertion is justified theoretically
by the fact that any Lipschitz mixed probability distribution can be (arbi-
trarily well) approximated by a ctdBN. For inference, the density functions
need only be included in the BN as discrete evidence (computed by integra-
tions) over the discretized variables and, then, only a classical inference over
discrete variables is needed to complete the process. As, in our model, the
density functions are univariate, integrations can be performed efficiently.
So the inference times are very close to those of inferences in classical BNs,
which makes inference tractable in ctdBNs. The theoretical computational
complexity of our inference algorithm supports this assertion. In addition,
the experiments performed in the paper also highlight this point as well as
the expressive power of the model.

The paper is organized as follows. In the next section, we recall some
related works on CLGs, MTEs, MTBFs and MOPs. Then, in Section 3,
we present our model, we study theoretically its expressive power, i.e., its
capacity to approximate mixed probability distributions, and we propose
an inference algorithm as well as its computational complexity. Next, the
efficiency and effectiveness of ctdBN’s inferences are highlighted through a
set of experiments. Finally, a conclusion and some perspectives are provided
in the last section.

2. Related Works

In the rest of the paper, capital letters (possibly subscripted) refer to
random variables and boldface capital letters to sets of variables. To dis-
tinguish continuous random variables from discrete ones, we denote by X̊i

a continuous variable and by Xi a discrete one. Without loss of generality,
for any X̊i, variable Xi represents its discretized counterpart. Throughout
the paper, let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, . . . , X̊n} denote the
set of discrete and continuous random variables respectively. We denote by
X = XD∪ X̊C the set of all random variables. In addition, for any set of in-
dices I = {i1, . . . , ik}, XI denotes the set of random variables {Xi1 , . . . , Xik}.
Finally, for any variable X or set of random variables Y or Y̊, let ΩX (resp.
ΩY or ΩY̊) denote the domain of X (resp. Y or Y̊).
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As mentioned in the introduction, a Conditional Linear Gaussian (CLG)
model represents a mixed probability distribution [7]. Like in a BN, in the
CLG model, to each discrete variable Xi in XD is assigned its conditional
probability table (CPT) P (Xi|Pa(Xi)) given its parents (the latter are all
discrete). In addition, to each continuous variable X̊i ∈ X̊C is assigned the
conditional distribution:

f (̊xi|XDi
= xDi

, X̊Ci
= x̊Ci

) = N (̊xi|α(xDi
) + β(xDi

)T x̊Ci
, σ(xDi

)),

where XDi
and X̊Ci

are the set of discrete and continuous parents of X̊i

respectively. α(xDi
) and β(xDi

) are the coefficients of a linear regression
model of X̊i given its continuous parents. These coefficients depend on the
values xDi

of the discrete parents. The product of all the CPTs and the
conditional distributions represent the joint mixed distribution over X . Our
ctdBN model shares some similarities with CLGs: it represents mixed prob-
ability distributions using a DAG whose nodes represent random variables,
the parents of the discrete ones being also necessarily discrete. The main
difference between CLGs and ctdBNs lies in the conditional density func-
tions assigned to the continuous random variables. Unlike CLGs, in ctdBNs,
they are not limited to normal distributions and any conditional truncated
density function can be used. In this sense, ctdBNs are more general than
CLGs. The dependences between the continuous variables are also different:
in CLGs, those are necessarily linear (the coefficients of the mean vector re-
sult from a linear regression) whereas, in ctdBNs, linearity is not required.
Of course, nonlinearity can be approximated by piecewise linear functions
and can therefore be taken into account in CLGs introducing latent vari-
ables and using deterministic relationships, like in [19]. In ctdBNs, this is
taken into account directly through the relationships between the discretized
random variables. There is no need to introduce latent variables, which com-
plexifies the learning of the model. Finally, in CLGs, the mean vector of the
normal distribution assigned to X̊i can vary with the values of X̊Ci

whereas,
in ctdBNs, this interaction between X̊i and X̊Ci

is limited to the interaction
between the discretized counterpart of X̊i and that of X̊Ci

.
The introduction into the ctdBN model of these discretized counterparts

makes ctdBNs similar to mixture distributions, which explains their high
expressive power. Mixture distributions have been studied in the literature,
notably from the learning perspective, see e.g., [20]. However, unlike [20]
in which the number of components of the mixture is implicitly assumed
to be small, in ctdBNs, this number, which is equal to the product of the
domain sizes of the discretized random variables, is potentially very high.
Yet, the way ctdBNs are defined, they remain as tractable as fully discrete
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BNs. In terms of mixture models, the closest works related to our model
are probably MTEs, MOPs and MTBFs. In MTE [10], the distribution over
the set of all random variables X is specified by a density function f such
that:

•
∑

xD∈ΩXD

∫
ΩX̊C

f(xD, x̊C) dx̊C = 1,

• f is an MTE potential over X , i.e.:

Definition 1 (MTE potential).
Let Y = {Xr1 , . . . , Xrp} and Z̊ = {X̊s1 , . . . , X̊sq} be sets of discrete and
continuous variables respectively. A function φ : ΩY∪Z̊ 7→ R+

0 is a MTE
potential if one of the two following conditions holds:

1. φ can be written as:

φ(y, z̊) = a0 +
m∑
i=1

ai exp


p∑
j=1

b
(j)
i xrj+

q∑
k=1

b
(p+k)
i x̊sk

 (1)

for all (xr1 , . . . , xrp) ∈ Y, (̊xs1 , . . . , x̊sq) ∈ Z̊, where ai, i = 0, . . . ,m

and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , p+ q, are real numbers.

2. There exists a partition Ω1, . . . ,Ωk of ΩY∪Z̊ such that the domain of
the continuous variables, ΩZ̊, is divided into hypercubes, the domain
ΩY of the discrete variables is divided into arbitrary sets, and such
that φ is defined as:

φ(y, z̊) = φi(y, z̊) if (y, z̊) ∈ Ωi,

where each φi, i = 1, . . . , k, can be written in the form of Equation (1),
i.e., it is a MTE potential on Ωi.

MTEs present attractive features. First, they are expressive in the
sense that they can approximate (w.r.t. the Kullback-Leibler distance) any
continuous density function [11, 21]. Second, they are easy to learn from
datasets [22, 23]. Finally, they satisfy Shafer-Shenoy’s propagation axioms
[24] and inference can thus be performed using a junction tree-based algo-
rithm [10, 21].

This algorithm can be described as follows. An undirected graph called
a Markov network is first created: its nodes correspond to the variables of
X and its edges are such that, for every MTE potential φi, all the nodes in-
volved in φi are linked together. This graph is then triangulated by eliminat-
ing sequentially all the nodes. A node elimination consists i) in adding edges
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to the Markov network in order to create a clique (a complete subgraph)
containing the eliminated node and all its neighbors; and ii) in removing
the eliminated node and its adjacent edges from the Markov network. The
cliques created during this process constitute the nodes of the junction tree.
They are linked in order to satisfy a “running intersection” property [4].
Finally, each MTE potential φi is inserted into a clique containing all its
variables.

A collect-distribute message-passing algorithm can then be performed
in this junction tree, hence enabling to compute a posteriori marginal dis-
tributions of all the random variables. As usual, the message passed from
one clique Ci to a neighbor Cj is the projection onto the variables in Ci ∩ Cj
of the combination of the MTE potentials stored in Ci with the messages
received by Ci from all its neighbors except Cj . By Equation (1), combina-
tions and projections are Algebraic operations over sums of exponentials.
Unfortunately, these operations have a serious shortcoming: when propa-
gating messages from one clique to another, the number of ai/exp terms
in Equation (1) tends to grow exponentially, hence limiting the use of this
exact inference mechanism to problems with only a small number of cliques.

To overcome this issue, approximate algorithms based on MCMC [10] or
on the Penniless algorithm [12] are provided in the literature.

Mixtures of polynomials (MOP) are similar to MTE except that func-
tions φ : ΩY∪Z̊ 7→ R+

0 of Equation (1) are substituted by polynomials over

the variables in Y ∪ Z̊ [15, 16]. MOPs have several advantages over MTEs:
their parameters for approximating density functions are easier to deter-
mine than those of MTEs. They are also applicable to a larger class of
deterministic functions in hybrid BNs. As MTE, the MOP model satisfies
Shafer-Shenoy’s propagation axioms and inference can thus be performed by
message-passing in a junction tree. But, similarly to Equation (1), the num-
ber of terms these messages involve tends to grow exponentially with the
number of cliques in the junction tree, thereby limiting the use the message-
passing algorithm to junction trees with a small number of cliques/random
variables.

Finally, mixtures of truncated basis functions (MTBF) generalize both
MTEs and MOPs [13]. The definition of an MTBF is the same as Definition 1
except that Equation (1) is substituted by:

φ(y, z̊) =
m∑
i=0

q∏
k=1

a
(k)
i,yψi(̊xsk), (2)

where potentials ψi : R 7→ R are basis functions. MTBFs are defined so that
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the potentials are closed under combination and projection which, again,
ensures that inference can be performed by message-passing in a junction
tree. By exploiting cleverly factorizations of terms in Equation (2), inference
in MTBFs can be more efficient than in MTEs [14]. But, like all the other
aforementioned models, the sizes of the messages tend to grow with the
number of cliques in the junction tree.

In the next section, we propose an alternative model that overcomes this
issue while still being expressive.

3. Conditional Truncated Densities Bayesian Networks

In this section, we propose a new graphical model called “conditional
truncated densities Bayesian network”. This is a combination of a classical
discrete Bayesian network with some conditional truncated densities. Be-
fore describing it in details, we therefore need to recall what are Bayesian
networks and conditional densities.

Definition 2 (Bayesian network (BN)). A (discrete) BN B is a pair
(G,θ) where G = (X,A) is a directed acyclic graph (DAG), X = {X1, ..., Xn}
represents a set of discrete and/or discretized random variables1, A is a set
of arcs, and θ = {P (Xi|Pa(Xi))}ni=1 is the set of the conditional probabil-
ity tables/distributions (CPT) of the variables Xi in G given their parents
Pa(Xi) in G. The BN encodes the joint probability over X as P (X) =∏n
i=1 P (Xi|Pa(Xi)).

Our model is intended to be used in situations where uncertain variables
are mixed discrete/continuous. BNs are unable to model such situations
because, by their very definition, they assign CPTs to the nodes of their
graphical structure, which requires all random variables to be discrete. A
first idea to exploit BNs is therefore to discretize the continuous random
variables, thereby creating new discrete variables, and to express the uncer-
tainties as a BN over the set of discrete and discretized variables. In some
sense, our model is a refinement of this process.

Definition 3 (Discretization). A discretization of a continuous variable
X̊i is a function dX̊i : ΩX̊i

→ {0, . . . , gi} defined by an increasing sequence

1By abuse of notation, we use interchangeably Xi ∈ X to denote a node in the BN and
its corresponding random variable.
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of gi cut points {t1, t2, ..., tgi} ⊂ ΩX̊i
such that:

dX̊i (̊xi) =


0 if x̊i < t1,
k if tk ≤ x̊i < tk+1, for all k ∈ {1, . . . , gi − 1}
gi if x̊i ≥ tgi

Thus the discretized variable Xi corresponding to X̊i has a finite domain
of {0, . . . , gi}. Therefore, after discretizing all the continuous random vari-
ables, the uncertainty over all the discrete and discretized random variables
X = {X1, ..., Xn} can be represented by a classical BN in which very efficient
exact message-passing inference mechanisms can be used, notably junction
tree-based algorithms [2, 25, 3, 4] and weighted model counting methods
[5, 6]. In this paper, we will exploit the former.

However, discretizing continuous random variables raises two major is-
sues: i) which discretization function shall be used to minimize the loss
of information? and ii) will the loss of information affect significantly the
results of inference? A possible answer to the first question consists of ex-
ploiting “conditional truncated densities” [18]. The answer to the second
question of course strongly depends on the discretization performed but, as
we shall see, conditional truncated densities can limit the discrepancy be-
tween the exact a posteriori marginal density functions of the continuous
random variables and the approximation they provide.

Definition 4 (Conditional truncated density). Let X̊i be a continuous
random variable. Let dX̊i be a discretization of X̊i with set of cutpoints
{t1, t2, ..., tgi}. Finally, let Xi be a discrete random variable with domain
ΩXi = {0, . . . , gi}. A conditional truncated density is a function f(X̊i|Xi) :
ΩX̊i
× ΩXi 7→ R+

0 satisfying the following properties:

1. f (̊xi|xi) = 0 for all xi ∈ ΩXi and x̊i 6∈ [txi , txi+1) with, by abuse of
notation t0 = inf ΩX̊i

and tgi+1 = sup ΩX̊i
;

2. the following equation holds:∫ txi+1

txi

f (̊xi|xi) dx̊i = 1, for all xi ∈ ΩXi . (3)

In other words, f (̊xi|xi) represents the truncated density function of
random variable X̊i over the interval of discretization [txi , txi+1).
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Lemma 1. Let P (Xi) be any probability distribution over the discrete ran-
dom variable Xi of Definition 4. Then f(X̊i|Xi)P (Xi) is a mixed probability
distribution over ΩX̊i

× ΩXi, i.e., it is a non-negative function such that:

∑
xi∈ΩXi

∫
ΩX̊i

f (̊xi|xi)P (xi) dx̊i = 1. (4)

All the proofs are given in the appendix.
We can now introduce “Bayesian networks with conditional truncated

densities”, which are Bayesian networks defined over discrete and discretized
random variables, in which to each discretized variable is assigned its corre-
sponding continuous random variable and its conditional truncated density:

Definition 5 (Conditional truncated densities Bayesian networks).
(ctdBN) Let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, ..., X̊n} be sets of dis-
crete and continuous random variables respectively. Let XC = {Xd+1, ..., Xn}
be a set of discretized variables resulting from the discretization of the vari-
ables in X̊C. Then, a ctdBN is a pair (G,θ) where:

• G = (X,A) is a directed acyclic graph,

• X = XD ∪XC ∪ X̊C,

• A is a set of arcs such that nodes X̊i ∈ X̊C have no children and
exactly one parent equal to Xi. This condition is the key to guarantee
that inference in a ctdBN is as fast as that in a classical BN.

• Finally, θ = θD∪θC, where θD = {P (Xi|Pa(Xi))}ni=1 is the set of the
conditional probability tables of the discrete and discretized variables
Xi in G given their parents Pa(Xi) in G, and θC = {f(X̊i|Xi)}ni=d+1 is
the set of the conditional truncated densities of the continuous random
variables of X̊C.

Note that θC needs a very limited amount of memory compared to θD

since truncated densities are univariate (e.g., a truncated normal distri-
bution f(X̊i|Xi) is specified by only 2|ΩXi | parameters). An example of
ctdBN is given in Figure 1. The model contains 3 continuous variables,
X̊C = {X̊1, X̊3, X̊5} represented by blue dotted circles, which are discretized
into XC = {X1, X3, X5}. Nodes in pink solid circles XC and XD form a
classical BN. Finally, all the continuous nodes X̊i ∈ X̊C are children of their
discretized counterpart Xi and none has any child. The key idea of ctdBNs
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X4X3

X2X1

X̊3

X̊1

P (X1)

P (X3|X1)

P (X2)

P (X4|X1, X2)

P (X5|X3, X4)

P (X6|X5)

f(X̊1|X1)

f(X̊3|X3)

f(X̊5|X5)

Figure 1: A BN with conditional truncated densities.

is thus to extend BNs by specifying the uncertainties over continuous ran-
dom variables X̊i as 2-level functions: a “rough” probability distribution for
discrete variable Xi and a finer-grain conditional density f(X̊i|Xi) for X̊i.
This idea can be somewhat related to second order probabilities [26].

Proposition 1. In a ctdBN defined over X = XD∪XC∪X̊C, where XD =
{X1, . . . , Xd}, XC = {Xd+1, . . . , Xn} and X̊C = {X̊d+1, . . . , X̊n}, function
h : X 7→ R+

0 defined as:

h(X) =
n∏
i=1

P (Xi|Pa(Xi))
n∏

i=d+1

f(X̊i|Xi) (5)

is a mixed probability distribution over X.

The above proposition therefore shows that ctdBNs encode compactly
mixed probability distributions.

3.1. Faithfulness with ctdBNs

It was shown in [11, 21] that MTEs can approximate standard prob-
ability density functions (w.r.t. the Kullback-Leibler distance). One may
wonder whether ctdBN are also faithful, i.e., whether they can provide good
approximations of densities or mixed probability distributions. The propo-
sitions provided in this subsection show that the answer to this question is
positive and that ctdBNs can actually approximate very general functions.

Proposition 2. Let X̊C = {X̊1, ..., X̊n} be a set of continuous real-valued
random variables of respective domains Ω̊1, ..., Ω̊n such that none of the Ω̊i

is a singleton. Let Ω̊C =
∏n
i=1 Ω̊i be the domain of X̊C. Let f : Ω̊C 7→ R
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be a probability density function. Assume that f is Lipschitz, i.e., there
exists a constant M > 0 such that, for every pair (̊x, ẙ) of elements of Ω̊C,
|f (̊x)− f(ẙ)| ≤M ||̊x− ẙ||, where ||̊x− ẙ|| represents the L2-norm of vector
(̊x− ẙ).

Then, for every strictly positive real number ε < 1, there exists a ctdBN
B = (G,θ) that approximates f up to ε, i.e.:

• the nodes of Graph G are X = XD ∪ X̊C, where XD = {X1, . . . , Xn}
is a set of the discretized variables corresponding to X̊C; in addition,
let ΩD =

∏n
i=1 Ωi and Ω = ΩD × Ω̊C be the domains of XD and X

respectively;

• B represents a mixed probability distribution g : Ω 7→ R such that,
for every x̊ ∈ Ω̊C, |g(x, x̊) − f (̊x)| ≤ ε, where x corresponds to the
discretized counterpart of x̊.

The above proposition shows that any Lipschitz multivariate probability
density function can be (arbitrarily well) approximated by a ctdBN. Note
that, to do so, the conditional truncated densities used by such ctdBN need
not be “complex”: in the proof of this proposition, only uniform and con-
ditional truncated normal distributions were used. An obvious corollary of
this proposition is that standard density functions can be approximated by
ctdBNs:

Corollary 1. Standard distributions like, e.g., univariate and multivariate
Normal distributions, Beta distributions B(̊x, α, β), with α, β ≥ 2, Gamma
distribution Γ(̊x, α, β) with α > 2, as well as their combinations by mutually
independent random variables, can be approximated up to ε < 1 by ctdBNs.

But ctdBNs represent compactly the uncertainties over both discrete
and continuous random variables. So, they may also provide good approx-
imations of mixed probability distributions and the following proposition
justifies this intuition:

Proposition 3. Let XD = {X1, . . . , Xd} be a set of discrete random vari-
ables of respective domains {Ω1, . . . ,Ωd} and let ΩD =

∏d
i=1 Ωi be the do-

main of XD. Let X̊C = {X̊d+1, ..., X̊n} be a set of continuous random vari-
ables of respective domains Ω̊d+1, ..., Ω̊n such that none of the Ω̊i is a single-
ton. Let Ω̊C =

∏n
i=d+1 Ω̊i be the domain of X̊C. Finally, let X = XD ∪ X̊C

and Ω = ΩD × Ω̊C.
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Let f : ΩD × Ω̊C 7→ R be a mixed probability distribution. Assume
that f is Lipschitz w.r.t. the continuous variables of X̊C, i.e., there exists a
constant M > 0 such that, for every pair (̊x, ẙ) of elements of Ω̊ such that
xi = yi for all i ∈ {1, . . . , d}, |f (̊x) − f(ẙ)| ≤ M ||̊x − ẙ||, where ||̊x − ẙ||
represents the L2-norm of vector (̊x− ẙ).

Then, for every strictly positive real number ε < 1, there exists a ctdBN
B = (G,θ) that approximates f up to ε, i.e.:

• the nodes of G are X = XD ∪XC ∪ X̊C, where XC = {Xd+1, . . . , Xn}
is a set of discretized variables corresponding to X̊C; in addition, let
ΩC =

∏n
i=d+1 Ωi and Ω = ΩD×ΩC× Ω̊C be the domains of XC and

X respectively;

• B represents a mixed probability density function g : Ω 7→ R such
that, for every (y, x̊) ∈ ΩD × Ω̊C, |g(y, x, x̊) − f(y, x̊)| ≤ ε, where x
corresponds to the discretized counterpart of x̊.

CtdBNs also have some decomposability properties. For instance, the
following proposition shows that, if the mixed probability distribution to be
approximated is decomposable, then so is also the approximating ctdBN:

Proposition 4. Let XD = {X1, . . . , Xd} and X̊C = {X̊d+1, ..., X̊n} be sets
of discrete and continuous random variables respectively. Let f : ΩD ×
Ω̊C 7→ R be a mixed probability distribution. Assume that sets of variables
XD and X̊C can be partitioned into sets {XD1 , . . . ,XDk} and X̊C1 , . . . , X̊Ck

respectively, and that there exist some non-negative functions fi : ΩDi ×
Ω̊Ci 7→ R, i = 1, . . . , k, such that f(x, x̊) =

∏k
i=1 fi(xDi , x̊Ci) for all (x, x̊) ∈

ΩD × Ω̊C. Then if f is Lipschitz w.r.t. the continuous variables of X̊C, it
can be approximated up to ε by a ctdBN which has the same decomposition,
i.e., sets (XDi ∪ XCi ∪ X̊Ci), i = 1, . . . , k, where XCi are the discretized
counterparts of X̊Ci, form the connected components of the ctdBN’s graphical
structure.

All these theoretical results will be confirmed in practice in the experi-
mental section of the paper. Now, we will focus on inferences with ctdBNs,
in particular on the efficiency of junction tree-based algorithms.

3.2. Inference in ctdBNs

The terms in Equation (5) satisfy Shafer-Shenoy’s propagation axioms
[24], so we can rely on a message-passing algorithm in a junction tree to
perform inference. The latter is constructed by node eliminations from the
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Markov network, as described in the preceding section. It was proved that
first eliminating all simplicial nodes, i.e., nodes that, together with their
neighbors in the Markov network, constitute a clique (a complete maximal
subgraph), cannot prevent obtaining a junction tree that is optimal w.r.t. in-
ference [27]. By the definition of ctdBNs, all the continuous nodes X̊i ∈ X̊C

constitute a clique with their parent Xi (for instance, in Figure 1, {X3, X̊3}
is a complete maximal subgraph and is thus a clique). As a consequence,
the junction tree of a ctdBN is simply the junction tree of its discrete BN
part defined over XC ∪XD to which cliques {Xi, X̊i}, for X̊i ∈ X̊C, have
been added (linked to a clique containing Xi in order to satisfy the running
intersection property). Figure 2 shows a junction tree related to the ctdBN
of Figure 1. All the CPTs P (Xi|Pa(Xi)), i = 1, . . . , n, are inserted into
cliques not containing any continuous node of X̊C. Of course, conditional
truncated densities are inserted into cliques {Xi, X̊i}, X̊i ∈ X̊C.

X1X2X4X1X1X̊1

X1X4

X1X3X4X3X3X̊3

X3X4

X3X4X5X5X5X̊5 X5 X5X6

Figure 2: A junction tree for the ctdBN of Figure 1.

The inference process can now be performed by message passing within
the junction tree, for instance using a usual collect-distribute algorithm in a
Shafer-Shenoy-like architecture [2], sending messages in both directions on
all the edges of the junction tree.

There remains to show how to compute the messages sent on the sep-
arators in the Shafer-Shenoy collect-distribute algorithm and how to en-
code and insert evidence into junction tree T . First, let us address the
second problem. Of course evidence on discrete random variables Xi are
handled in a usual manner by multiplying the joint mixed probability dis-
tribution g(X, X̊) represented by the ctdBN with discrete beliefs of the type
P (eXi |Xi). This corresponds to adding probability table P (eXi |Xi) into a
clique of T containing Xi. For continuous random variables, two cases can
occur: first, it may be the case that the available evidence on continuous
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random variable X̊i can be encoded as an evidence on its discretized ran-
dom variable, then we do so. For instance, if {t1, . . . , tgi} are the cutpoints
of the discretization function applied to X̊i, then evidence “X̊i is known to
belong [tj , tk]” can be encoded as a vector P (eXi |Xi) whose values are 1 for
the indices in {j, . . . , k − 1}, else 0. Second, it may be impossible to enter
evidence eX̊i on X̊i into Xi. In this case, eX̊i can be of the type “X̊i belongs
to some interval [a, b]”, with a, b 6∈ {t1, . . . , tgi}. Such an evidence can be
represented by function fi(eX̊i |X̊i) : ΩX̊i

7→ [0, 1] equal to 1 when X̊i ∈ [a, b]

and 0 otherwise. As function fi is defined only over X̊i, it can be entered
into the clique Ci = {Xi, X̊i} of junction tree T . More generally, beliefs
about X̊i can be entered as any [0, 1]-valued function fi(eX̊i |X̊i) into clique

Ci. It is easy to see that the product of the evidence functions fi(eX̊i |X̊i)

and P (eXi |Xi) with g(X, X̊) defines, up to a proportional constant equal to
the probability of all the evidence, a new mixed probability distribution.

Now, there remains to show how to compute the messages sent from one
clique, say Ci, to one of its neighbor Cj . Two cases can occur. First, assume
that Ci contains a continuous random variable X̊i . Then, by construction
of ctdBNs, Ci = {Xi, X̊i}, with Xi the discretized variable corresponding to
X̊i. By construction, clique Ci has only one neighbor clique, say Cj , and the
separator between Ci and Cj is necessarily Sij = {Xi}. Clique Ci contains
only conditional truncated density gi(X̊i|Xi) and, potentially, some evidence
belief fi(eX̊i |X̊i). So, in order to remove variable X̊i from the equations, it
must be marginalized out as:

MCi→Cj (xi) =

∫
ΩX̊i

gi(̊xi|xi)fi(eX̊i |̊xi) dx̊i, for all xi ∈ ΩXi . (6)

Assume that {t1, . . . , tgi} are the cutpoints of the discretization function
applied to X̊i. Then message MCi→Cj is a real-valued vector of size gi + 1.
So, messages sent from cliques containing continuous random variables to
their neighbor are necessarily vectors of finite size. In addition, whether
X̊i received evidence or not, note that message MCi→Cj is computed by
integrating a univariate function, which, in practice, is not time consuming
(it can be done either exactly in closed-form formula or approximately using
a MCMC algorithm or well-known tables like for normal distributions).

The second case for computing messages concerns situations in which
clique Ci contain only discrete random variables. Then, by construction, the
separator Sij = Ci ∩ Cj contains only discrete random variables. Message
MCi→Cj can therefore be computed as usual by first multiplying all the
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messages sent to Ci by all Ci’s neighbors except Cj with the product of the
CPTs stored into Ci, and then by marginalizing out all the variables in Ci\Cj .

Proposition 5. Let e represent all the evidence entered into junction tree
T . Assume that Shafer-Shenoy’s message-passing algorithm has been per-
formed, with messages computed as described above.

Let Ck be any clique containing only discrete variables and let Ci1 , . . . , Cir
be the neighbors of Ck. Then the CPT resulting from the normalization of
the product of all the messages MCij→Ck , j = 1, . . . , r, with the CPTs stored
into Ck is equal to the joint posterior distribution of the variables of Ck
given evidence e. The posterior of any variable in Ck can be obtained by
marginalizing out the other variables from this CPT.

Let Ck be any clique containing a continuous random variable, say X̊k.
Let gk+1 be the domain size of the corresponding discretized random variable
Xk. Finally, let Cj be the neighbor clique of Ck. Then:

gk (̊xk|e) ∝
g∑

xk=0

MCj→Ck(xk)gk (̊xk|xk)fk(eX̊k |̊xk) (7)

is the posterior density of variable X̊k.

As shown above, ctdBNs allow for the computation of the marginal a
posteriori distributions of the continuous and discrete random variables. In
addition, as shown in the next proposition, the algorithm proposed in this
paper is very efficient for performing these computations. Notably, when
the integrals of Equation (6) can be computed in O(1), the complexity of
inference in ctdBN is exactly the same as that in classical discrete BNs. As a
consequence, when tables for these integrals are available, like, e.g., when the
ctdBN’s conditional truncated densities are truncated normal distributions,
inference in ctdBNs is as fast as that in discrete BNs.

Proposition 6. Let w be the treewidth of T and let k denote the maximum
domain size of the discrete and discretized random variables. Finally, let n
be the number of random variables in the ctdBN and let I be the average
complexity of computing one integral of Equation (6) (i.e., an integral for a
given value of xi) and J the average complexity of computing the product in
Equation (7). Then the complexity of computing all the marginal posterior
distributions of all the random variables is in O(nk(kw + I + J)).
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Overall, inference in ctdBNs is fast because i) by construction, most of
the inference’s complexity lies in computations performed on discrete vari-
ables; and ii) whenever computations concern densities, either they corre-
spond to compute a mixture of univariate conditional truncated densities
(like in Equation (7)) or to compute the integral of a univariate function
(like in Equation (6)).

4. Experiments

In this section, we provide two sets of experiments. The first one is in-
tended to show the gain brought by ctdBNs over classical BNs. For this
purpose, we illustrate the discrepancies between both models on classifica-
tion problems derived from UCI datasets [28]. The second set of experiments
is devoted to the comparison between ctdBNs and MTBFs in order to high-
light the inference scalability of ctdBNs compared to that of MTBFs.

4.1. Comparisons with discrete BNs

In order to compare BNs and ctdBNs on real-world problems, we base our
experiments on the real-world datasets of the UCI repository [28] reported
in Table 1. In these datasets, all records with missing values are discarded.
In each resulting dataset, there exists a discrete random variable, call it
X0, representing a classification variable. The other random variables can
be either discrete (variables XD = {X1, . . . , Xd}) or continuous (X̊C =
{X̊d+1, . . . , X̊n}). Our classification problem consists of estimating the most
probable value of X0 given some observation on the values of variables in
XD ∪ X̊C.

dataset #attributes #classes #instances #continuous attr.
australian 14 2 690 6
cleve 14 2 296 13
crx 16 2 653 6
glass2 10 2 163 9
iris 5 3 150 4
pima 9 2 768 8
shuttle small 10 7 3866 9
vehicle 19 4 846 18

Table 1: UCI datasets used for BN/ctdBN comparisons in classification tasks.

To address such a problem with Bayesian networks, we must first dis-
cretize all the continuous random variables. To do so, we exploit Fried-
man’s discretization algorithm [29]. After performing these discretizations,
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variables in X̊C = {X̊d+1, . . . , X̊n} are mapped into discretized variables
in XC = {Xd+1, . . . , Xn} and the mixed discrete/continuous dataset D̊ of
the UCI dataset is mapped into a fully discrete dataset D. A BN B over
(X0, X1, . . . , Xn) is then learnt from D using a hill climbing algorithm with
an MDL score. To do so, we use the aGrUM library (http://www.agrum.org).
This BN is then exploited for a classification task as follows: given some
observation eX̊i (resp. eXi) on each continuous random variable X̊i (resp.
discrete variable Xi), we enter belief P (eX̊i |Xi) (resp. P (eXi |Xi)) into B, so
that the latter represents:

P (X0, . . . , Xn, eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n) =

P (X0|Pa(X0))

n∏
i=1

P (Xi|Pa(Xi))

d∏
i=1

P (eXi |Xi)

n∏
i=d+1

P (eX̊i |Xi).

From this distribution, by means of a Shafer-Shenoy (exact) inference, we
compute the posterior distribution P (X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) so that

the most probable value for class variable X0 is determined as:

x∗0 = ArgmaxX0
P (X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n).

To highlight the gain brought by ctdBNs over simple BNs, for each
dataset, we construct our ctdBN as follows: we start from BN B com-
puted in the preceding paragraphs and we add to it its respective condi-
tional truncated densities gi(X̊i|Xi), i = d+ 1, . . . , n, defined as follows: let
Ω̊obs
i = {x̊i,1, x̊i,2, . . . , x̊i,N ′} be the set of distinct observed values of X̊i in

the dataset, sorted by increasing order. The midpoints of Ω̊obs
i are defined

as:

mi,j =


x̊i,1 − x̊i,2−x̊i,1

2 if j = 0,
x̊i,j+x̊i,j+1

2 if 1 ≤ j < N ′,

x̊i,N ′ +
x̊i,N′−x̊i,N′−1

2 if j = N ′.

Let hi : ΩX̊i
7→ R be the histogram of X̊i whose bins correspond to intervals

[mi,j ,mi,j+1). Assume that X̊i has been discretized into Xi using cutpoints
{t1i , . . . , t

gi
i }. Then we define conditional truncated densities gi(X̊i|Xi = j),

j = 0, . . . , gi, as the normalized histogram of hi over [tji , t
j+1
i ), i.e.,

gi(̊xi|Xi = j) =


hi(̊xi)∫ tj+1

i

tji
hi(̊x)dx̊

if x̊i ∈ [tji , t
j+1
i ),

0 otherwise.
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The ctdBN therefore represents the following mixed probability distribution:

g(X0, . . . , Xn, X̊d+1, . . . , X̊n) =

P (X0|Pa(X0))

n∏
i=1

P (Xi|Pa(Xi))

n∏
i=d+1

gi(X̊i|Xi).

The same evidence eXi and eX̊i as those of the BN are entered into the

ctdBN. However, the latter are included into the ctdBN as beliefs fi(eX̊i |X̊i)
as ctdBNs can cope with more precise evidence than mere beliefs P (eX̊i |Xi)
about discretized random variables Xi. Therefore, after entering evidence,
the ctdBN represents:

g(X0, . . . , Xn, X̊d+1, . . . , X̊n, eX1 , . . . , eXd , eX̊d+1
, . . . , eX̊n) =

P (X0|Pa(X0))

n∏
i=1

P (Xi|Pa(Xi))

d∏
i=1

P (eXi |Xi)

n∏
i=d+1

gi(X̊i|Xi)fi(eX̊i |X̊i).

From this distribution, using the algorithm provided in Section 3, we com-
pute g(X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n) and the most probable value for

class variable X0 is x∗0 = ArgmaxX0
g(X0|eX1 , . . . , eXd , eX̊d+1

, . . . , eX̊n).

Finally, to perform our experiments, each dataset of Table 1 is randomly
shuffled 100 times. Each resulting dataset is splitted into a learning set
(70%) and a test set (30%). So, overall, for each UCI dataset, 100 differ-
ent learning sets and their respective 100 test sets are created. From each
learning set, we learn a BN and a ctdBN and, then, for each record of the
corresponding test set, we estimate the most probable values of class vari-
able X0 given observations on X1, . . . , Xd, X̊d+1, . . . , X̊n according to these
two models. These estimations are then compared with the true values of
X0 observed in the test set and the accuracy of the model (BN,ctdBN) is
defined as the proportion of correct estimations performed. The latter de-
pend on the kind of observations available, so we shall now describe those
used in the experiments.

First, all observations over discrete variables are supposed to be precise.
Now, assume that observation eX̊i over continuous variable X̊i is also precise,

i.e., it is equal to the observed value of X̊i in the record. Then, for the ctdBN,
fi(eX̊i |X̊i) is a Dirac function, which means that messageMCi→Cj , as defined
in Eq. (6), is a zero filled vector, bringing no information. In addition, the
BN is unable to handle such precise information. What can be handled by
the BN is the (less precise) observation that “the discretized value of the
observed value of X̊i is equal to j”. Such information is exactly equivalent
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to “X̊i belongs to interval [tji , t
j+1
i )”, where [tji , t

j+1
i ) is the discretization

interval containing the observed value of X̊i. In this case, P (eX̊i |Xi), is
a vector filled with zeros except for a 1 in the cell corresponding to the
discretized value of X̊i. If we enter the same information into the ctdBN,
Message MCi→Cj is exactly proportional to P (eX̊i |Xi) and, therefore, the
BN and the ctdBN provide the same estimation for X0.

The advantage of ctdBNs over standard BNs becomes visible when ob-
servations are imprecise. So, in our experiments, all the continuous variables
X̊i are imprecisely observed and the belief fi(eX̊i |X̊i) is always expressed as

a normal distribution centered on the observed value of X̊i. For the BN,
vector P (eX̊i |Xi) can then simply be computed as:

P (eX̊i |Xi = j) =

∫ tj+1
i

tji

fi(eX̊i |̊xi) dx̊i for all j. (8)

When the standard deviations of the normal distributions are sufficiently
small, in the BN, P (eX̊i |Xi) is approximately equal to a vector filled with
zeros except for one cell equal to 1 and, in the ctdBN, Message MCi→Cj
of Eq. (6) is approximately proportional to P (eX̊i |Xi). So, both models
are equivalent. However, when standard deviations are higher, i.e., when
observations are less precise, P (eX̊i |Xi) can contain several non-zero cells
and, from Eq. (6), it is clear that MessageMCi→Cj can differ from P (eX̊i |Xi)
and bring more refined information than P (eX̊i |Xi). In our experiments, all
the standard deviations of the continuous variables are kept sufficiently small

Dataset standard deviations and variables’ domain sizes

australian X̊7 : 19 (28.5), X̊10 : 27 (68), X̊13 : 98 (2000), X̊14 : 83.5 (100000)

cleve X̊8 : 21 (133)

crx X̊11 : 37 (68), X̊15 : 235 (100000)

glass X̊3 : 0.55 (4.5), X̊4 : 0.1 (3.8), X̊5 : 0.6 (5.6), X̊6 : 0.55 (6.2)

X̊8 : 0.35 (3.15)

iris X̊3 : 0.03 (6), X̊4 : 0.085 (2)

pima X̊1 : 6.6 (18), X̊2 : 15.4 (200), X̊4 : 0.85 (100), X̊6 : 1.3 (67)

shuttle small X̊1 : 3.5 (74)

vehicle X̊6 : 3 (54), X̊11 : 34 (191)

Table 2: The standard deviations for the beliefs on the observations of the X̊i’s. The
domain sizes of the X̊i’s are given inside parentheses. In each dataset, the first vari-
able/column is called X1 or X̊1, the second one X2 or X̊2, etc. Class variable X0 is always
located in the last column of the dataset.
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thatMCi→Cj ∝ P (eX̊i |Xi), except for the few variables mentioned in Table 2
in which the standard deviations displayed introduce discrepancies between
MCi→Cj and P (eX̊i |Xi). Note that these standard deviations are often much
smaller than the range of the random variable.

With the observations as described above, the average accuracies for the
different UCI datasets over the 100 corresponding test sets, as well as their
standard deviations, are reported in Table 3. From this table, it is clear that
ctdBNs outperform BNs for classification tasks. The way we constructed the
ctdBNs from the BNs, this improvement is necessarily due to the conditional
truncated densities contained in the ctdBNs.

Dataset % BN Acc. % ctdBN Acc. Gain Acc. p-value
australian 84.36± 3.08 85.72± 2.12 1.34± 2.45 0.2912

cleve 82.89± 3.67 83.22± 3.50 0.34± 0.96 0.3632
crx 85.36± 2.48 86.38± 2.08 1.02± 2.12 0.3156

glass 89.94± 3.56 91.88± 2.98 1.94± 2.61 0.2236
iris 94.73± 2.62 95.49± 2.82 0.76± 1.45 0.3015

pima 73.64± 2.67 74.37± 2.69 0.74± 1.18 0.2676
shuttle small 84.92± 5.93 92.66± 3.41 7.74± 4.21 0.0336

vehicle 35.63± 6.02 52.21± 7.58 16.57± 7.97 0.0000

Table 3: Comparisons between BNs and ctdBNs for classification tasks. The first two
columns present the average accuracies and the accuracies’ standard deviations over the
100 datasets constructed from each UCI dataset. The third column displays the gain
in accuracy of using ctdBNs instead of BNs (the subtraction of the first column from
the second one). Assuming that accuracies are distributed w.r.t. normal distributions of
parameters the average BN accuracy and the variance of the BN accuracy, the last column
shows the p-value obtained by the ctdBN accuracy.

4.2. Comparisons with MTBFs

In this subsection, we highlight the faithfulness of ctdBNs by comparing
them with MTBFs, more precisely with MOPs [15] and MTEs [10]. We
show that ctdBNs can approximate effectively these MTBFs while being
more efficient in terms of inference. For this purpose, we generate MTBFs
Φ(X̊1, . . . , X̊n) as products of bivariate MTBF potentials:

Φ(X̊1, . . . , X̊n) = Φ1(X̊1, X̊2)× Φ2(X̊2, X̊3)× · · · × Φn−1(X̊n−1, X̊n).

This decomposition has been chosen in order to make inference in MTBFs
as fast as possible. Indeed, the corresponding junction tree contains only
cliques of size two, having at most two neighbors, which limits the combi-
natorics of the algebraic operations performed during inference. All these
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MTBF potentials are defined over some continuous variables X̊i whose do-
main is ΩX̊i

= [0, 10]. To make MTEs as efficient as possible for inference,

we express MTE potentials ΦMTE
i (X̊i, X̊i+1) by only one exponential term:

ΦMTE
i (X̊i, X̊i+1) = ai,0 + ai,1 exp (bi,0X̊i + bi,1X̊i+1),

with ai,0, ai,1 ∈ [0, 1] and bi,0, bi,1 ∈ [0.5, 1] chosen randomly.
In order to make the shape of MOP potentials not easily captured by

affine distributions2 (which we use in our ctdBNs) while guaranteeing that
inferences in MOPs are as fast as possible, we define MOP potentials as
polynomials of degree 6, more precisely as polynomials of degree 3 in each
of their variables, i.e.,:

ΦMOP
i (X̊i, X̊i+1) =

3∑
j=0

3∑
k=0

ci,j,kX̊
j
i X̊

k
i+1,

with ci,j,k chosen randomly in interval [0, 1].
Our goal is to approximate these MTBFs by ctdBNs B encoding a mixed

probability distribution g(X1, . . . , Xn, X̊1, . . . , X̊n). To construct B, we first
discretize every continuous variable X̊i in 50 equally-sized intervals, hence
resulting in discretized random variables Xi. Then, we construct a discrete
BN Bd over X1, . . . , Xn whose independence structure corresponds to that
of the MTBF, i.e., to the structure shown in Figure 3. Finally, ctdBN B is
defined as Bd to which are added conditional truncated densities gi(X̊i|Xi).
Therefore, the ctdBN encodes the following mixed distribution:

g(X1, . . . , Xn, X̊1, . . . , X̊n) = PBd(X1)

n∏
i=2

PBd(Xi|Xi−1)

n∏
i=1

gi(X̊i|Xi).

X1 X2 . . . Xn−1 Xn

Figure 3: The BN structure used for approximating MTBFs.

As a result, the junction tree used for inferences with ctdBN B always
contains only cliques of size two, exactly like that of the MTBF. Since infer-
ence complexity with junction trees is exponential in the treewidth, imposing

2The conditional truncated densities we use in our ctdBNs are in fact Beta rectangular
distributions with parameters α = 2 and β = 1.
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the structure of Figure 3 allows to perform a fair comparison of how well
ctdBNs’ and MTBFs’ inferences scale with increasing numbers of random
variables.

As the structure of B is imposed, only B’s parameters (CPTs PBd(Xi|Xi−1)
and functions gi(X̊i|Xi)) need be learnt. This learning is performed itera-
tively, i.e., in a first step, functions PBd(X1), PBd(X2|X1), gi(X̊1|X1) and
gi(X̊2|X2) are determined. Then, assuming that ctdBN B has been con-
structed for variables X1, X̊1 up to Xi−1, X̊i−1, we learn PBd(Xi|Xi−1) and
gi(X̊i|Xi). More precisely, to learn the parameters related to Xi, X̊i, we first
perform an inference in the MTBF in order to compute:

Φ(X̊i−1, X̊i) =
∑

{X̊1,...,X̊n}\{X̊i−1,X̊i}

Φ(X̊1, . . . , X̊n).

We also compute Φ(X̊i) =
∑

X̊i−1
Φ(X̊i−1, X̊i). Then we sample 500 000

times the potentials Φ(X̊i−1, X̊i) and Φ(X̊i) using the Metropolis-Hastings
algorithm [30] and the Inverse Transform Sampling’s method, respectively.
Discretizing these samples using the discretizations of X̊i−1 and X̊i de-
fined above results in new discrete samples from which we determine by
maximum likelihood some probability distributions P (Xi−1|Xi) and P (Xi)
respectively. Note that, due to the finite size of the samples, the esti-
mated distributions P (Xi−1|Xi) and P (Xi) are not necessarily equal to
PBd(Xi−1|Xi) and PBd(Xi). From these two distributions, we compute
P (Xi−1, Xi) = P (Xi−1|Xi)×P (Xi). The goal of constructing joint distribu-
tion P (Xi−1, Xi) in this two-step process rather than directly from the sam-
ple of Φ(X̊i−1, X̊i) is to ensure that, in this joint, the marginal distribution
P (Xi) is as close as possible to distribution Φ(X̊i), which may not be the case
when sampling with Metropolis-Hastings uniquely on pairs (X̊i−1, X̊i), due
to the finite size of the samples. Finally, we define PBd(X1) = P (X1) and,
for every i > 1, PBd(Xi|Xi−1) = P (Xi−1, Xi)/PBd(Xi−1), where PBd(Xi−1)
is computed by inference in the ctdBN constructed so far.

In our experiments, for every j, conditional density gi(X̊i|Xi = j) is an
affine function on discretization interval [tji , t

j+1
i ) and is equal to 0 every-

where else. Therefore, it is of the form gi(̊xi|Xi = j) = αi,j x̊i + βi,j on this
interval and, since this is a probability density function, we have that:∫ tj+1

i

tji

gi(̊xi|Xi = j)dx̊i = 1.
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As a consequence, the following equation holds for all x̊i ∈ ΩX̊i
:

gi(̊xi|Xi = j) = αi,j

(
x̊i −

tji + tj+1
i

2

)
+

1

tj+1
i − tji

.

Using the projection over X̊i of the 500 000-record sample of Φ(X̊i−1, X̊i) pre-
viously used for estimating PBd(Xi|Xi−1), we can now estimate αi,j by max-

imum likelihood under the constraint that gi(·) is non-negative on [tji , t
j+1
i ).

As there is no closed-form formula for the optimal value of αi,j , we solve
this constrained optimization problem by the Newton-Raphson method.

The experiments are conducted as follows: we generate MTBFs (both
MTEs and MOPs) with n = 4, 8, 16, 32, 64, 128 and 256 variables. For
each number of variables, 25 MTEs and 25 MOPs are generated. Exact
inferences are performed in all these models using Variable Elimination [3]
in order to determine the distribution Φ(X̊n) of the last random variable.
For each MOP and each MTE, we also learn a ctdBN as described above
and execute the inference algorithm described in Section 3 to determine the
distribution g(X̊n) of X̊n.

The inference times are reported in Tables 4 and 5. They highlight the
scalability of ctdBNs. The ratios of the average inference time by the number
of variables, i.e., the last two columns of the tables, are displayed in Figures 4
and 5. It is clear that the MTBFs’ inference times increase exponentially
with the number of variables, even though the largest clique always remains
of size 2. This results from the multiplications of the algebraic functions
performed during the inferences that tend to produce new functions with
an ever increasing number of parameters. Even marginalizations cannot re-
strain this increase. Unlike in MTBFs, in ctdBNs, the number of operations
performed on each clique remains always the same during inference. This
explains the linear increase in computation times when the number of vari-

n Tmte(ms) TctdBN (ms) Tmte/n TctdBN/n
4 0.30± 0.03 1.59± 0.16 0.07 0.40
8 0.57± 0.08 3.53± 0.31 0.07 0.44
16 1.67± 1.10 7.14± 0.41 0.10 0.45
32 5.79± 0.87 13.99± 1.35 0.18 0.44
64 23.68± 2.01 29.22± 1.92 0.37 0.46
128 122.37± 10.99 50.87± 6.88 0.96 0.40
256 708.11± 37.12 96.02± 13.79 2.77 0.38

Table 4: Average inference times (plus standard deviations) for MTEs and ctdBNs. These
averages are computed over the 25 different networks defined for each number n of vari-
ables.
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n Tmop(ms) TctdBN (ms) Tmop/n TctdBN/n
4 0.79± 0.16 1.59± 0.19 0.20 0.40
8 1.76± 0.29 3.40± 0.26 0.22 0.42
16 5.04± 0.81 6.94± 0.78 0.32 0.43
32 16.41± 1.42 14.40± 0.89 0.51 0.45
64 50.96± 6.89 29.21± 1.55 0.80 0.46
128 217.07± 22.04 60.19± 4.87 1.70 0.47
256 1063.48± 51.82 111.34± 16.88 4.15 0.43

Table 5: Average inference times (plus standard deviations) for MOPs and ctdBNs. These
averages are computed over the 25 different networks defined for each number n of vari-
ables.

Figure 4: The ratio of inference times in MTEs and ctdBNs by the number of variables.

ables increase. This also corroborates the inference complexity provided in
Proposition 4.

Of course, better inference times are attractive only if the estimations by
ctdBNs approximate pretty well those of MTBFs. As a first hint that this
is the case, Table 6 displays the average Jensen-Shannon Divergence (JSD)
between the distributions Φ(X̊n) and g(X̊n) computed previously. The low
JSD values show that ctdBNs approximate effectively MTBFs. To precise
these results, we add some small noise to distributions Φ(X̊n) computed
previously, hence resulting in new distributions Ψ(X̊n). Comparing the JSDs
between Φ(X̊n) and Ψ(X̊n) on one hand and between Φ(X̊n) and g(X̊n) on
the other, we show that ctdBNs provide better approximations than the
slightly perturbed distributions, hence highlighting the ctdBN’s faithfulness,
while enabling much faster inferences than MTBFs, as shown above.

For the MTEs, the marginal distribution inferred for X̊n is of the form
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Figure 5: The ratio of inference times in MOPs and ctdBNs by the number of variables.

ΦMTE(X̊n) = a0 + b0 exp(b1X̊n). We perturb its parameters by ε, for differ-
ent values of ε, as follows:

ΨMTE
ε (X̊n) ∝ (1 + ε)a0 + (1− ε)b0 exp

(
(1 + ε)b1X̊n

)
.

Note that ΨMTE
ε (X̊n) is not strictly equal to the right hand side of the above

equation, but only proportional to it, so that the integral of ΨMTE
ε over ΩX̊n

is equal to one, hence ensuring that ΨMTE
ε is a probability density function.

For MOPs, the marginal distribution of X̊n is of the form ΦMOP (X̊n) =
c0 + c1X̊n + c2X̊

2
n + c3X̊

3
n. We perturb it up to ε as follows:

ΨMOP
ε (X̊n) ∝ (1+ ε)c0 +(1− ε)c1X̊

1+ε
n +(1+ ε)c2X̊

2(1−ε)
n +(1− ε)c3X̊

3(1+ε)
n .

As for ΨMTE
ε , function ΨMOP

ε is normalized so that its integral over ΩX̊n
is

equal to one. The average JSDs between distributions Φ(X̊n) and Ψε(X̊n)
for ε = 0.1, 0.05 and 0.01 are provided in Tables 7 and 8 for MTEs and
MOPs respectively. As can be observed, for ε = 0.05, both for MTEs and
MOPs, and whatever the number of random variables, the JSDs between the
true distribution Φ(X̊n) and the distribution g(X̊n) inferred by ctdBN are
smaller than those between Φ(X̊n) and ε-perturbed distributions Ψε(X̊n).
This supports the fact that ctdBNs approximate very well MTBFs. Indeed,
in real-world applications, the parameters of MTEs and MOPs are learnt
from datasets and perturbed probability density functions Ψε(X̊n) can be
seen as the result of the imprecision on the values of these parameters due
to this learning.

We can therefore conclude that ctdBNs outperform MTBFs in terms of
scalability of inference. As shown above, the cost of this speed increase is
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n JSD[ΦMTE(X̊n); g(X̊n)] JSD[ΦMOP (X̊n); g(X̊n)]
4 2.47× 10−4 ± 7.19× 10−5 8.07× 10−5 ± 7.40× 10−6

8 2.33× 10−4 ± 8.28× 10−5 8.33× 10−5 ± 4.24× 10−6

16 2.32× 10−4 ± 7.56× 10−5 8.24× 10−5 ± 6.13× 10−6

32 2.56× 10−4 ± 8.15× 10−5 8.30× 10−5 ± 5.48× 10−6

64 2.58× 10−4 ± 9.05× 10−5 8.10× 10−5 ± 7.11× 10−6

128 2.07× 10−4 ± 6.72× 10−5 7.85× 10−5 ± 7.83× 10−6

256 2.39× 10−4 ± 7.87× 10−5 8.18× 10−5 ± 5.11× 10−6

Table 6: Average Jensen-Shannon Divergences between Φ(X̊n) and g(X̊n) for different
numbers of variables.

JSD[ΦMTE(X̊n); ΨMTE(X̊n)]
n ε = 0.1 ε = 0.05 ε = 0.01
4 1.09× 10−3 ± 4.02× 10−5 2.84× 10−4 ± 1.14× 10−5 1.18× 10−5 ± 5.06× 10−7

8 1.08× 10−3 ± 5.39× 10−5 2.81× 10−4 ± 1.51× 10−5 1.16× 10−5 ± 6.64× 10−7

16 1.11× 10−3 ± 1.80× 10−4 2.90× 10−4 ± 5.12× 10−5 1.20× 10−5 ± 2.27× 10−6

32 1.08× 10−3 ± 5.32× 10−5 2.83× 10−4 ± 1.50× 10−5 1.17× 10−5 ± 6.58× 10−7

64 1.08× 10−3 ± 4.58× 10−5 2.83× 10−4 ± 1.30× 10−5 1.17× 10−5 ± 5.77× 10−7

128 1.06× 10−3 ± 4.89× 10−5 2.77× 10−4 ± 1.37× 10−5 1.15× 10−5 ± 6.04× 10−7

256 1.12× 10−3 ± 1.40× 10−4 2.93× 10−4 ± 3.87× 10−5 1.21× 10−5 ± 1.67× 10−6

Table 7: Average Jensen-Shannon Divergences between ΦMTE(X̊n) inferred by MTE and
its perturbed distributions.

JSD[ΦMOP (X̊n); ΨMOP (X̊n)]
n ε = 0.1 ε = 0.05 ε = 0.01
4 8.86× 10−4 ± 1.37× 10−4 2.31× 10−4 ± 3.58× 10−5 9.54× 10−6 ± 1.48× 10−6

8 8.17× 10−4 ± 7.32× 10−5 2.13× 10−4 ± 1.92× 10−5 8.80× 10−6 ± 7.93× 10−7

16 8.43× 10−4 ± 8.58× 10−5 2.19× 10−4 ± 2.16× 10−5 9.04× 10−6 ± 8.65× 10−7

32 8.33× 10−4 ± 7.70× 10−5 2.17× 10−4 ± 1.98× 10−5 8.96× 10−6 ± 8.10× 10−7

64 8.94× 10−4 ± 1.17× 10−4 2.33× 10−4 ± 3.04× 10−5 9.61× 10−6 ± 1.25× 10−6

128 9.24× 10−4 ± 1.54× 10−4 2.40× 10−4 ± 3.91× 10−5 9.88× 10−6 ± 1.57× 10−6

256 8.59× 10−4 ± 1.06× 10−4 2.24× 10−4 ± 2.76× 10−5 9.25× 10−6 ± 1.14× 10−6

Table 8: Jensen-Shannon Divergences for marginalized distributions of X̊n in MOPs w.r.t.
the marginals obtained using perturbed MOPs.

a slight imprecision in the results of the inferences. All experiments have
been performed using the C++ aGrUM library (http://www.agrum.org)
on a Linux box with an Intel Xeon at 2.40GHz and 128GB of RAM.

5. Conclusion

In this paper, ctdBNs, a new graphical model for handling uncertainty
over sets of continuous and discrete variables, have been introduced. We
have proved that ctdBNs can approximate (arbitrarily well) any Lipschitz
mixed probability distribution. So, theoretically, most of the mixed prob-
ability distributions used in real-world situations can be approximated by
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ctdBNs. Experiments highlight that this result is not only theoretic: in
practice, ctdBNs are very expressive and can be exploited efficiently for di-
agnosis and classification tasks. A junction tree-based inference algorithm
has also been provided. Its theoretical computational complexity has been
given and it shows that inference in ctdBNs is essentially similar to that in
classical discrete BNs. Here again, the experiments provided in the paper
highlight the tractability of inference in practical situations.

For future works, we plan to enrich ctdBNs by allowing the conditional
truncated densities assigned to the continuous nodes to depend not only
on their discretized counterpart but also on other nodes, in particular their
parents. This shall increase the expressive power of the model. In addition,
if only parents are added, the conditional truncated densities are defined
over the same discrete nodes as the CPTs of the discretized nodes. This
shall ensure tractability of inference since the computational complexity of
inference shall remain of the same order of that in a classical BN. But
the expressive power shall be increased. In some sense, a ctdBN learning
algorithm has already been provided in [18]. This algorithm raises some
issues, notably the fact that computing discretizations conditionally to the
nodes in the Markov blankets of each discretized node limits the ctdBNs that
can be learnt. For instance, a discretized node with no parent and many
children has a large Markov blanket, which may prevent discretization to be
possible due to too high a memory requirement. Therefore, new algorithms
are needed for learning ctdBNs from data. This is especially necessary if
the set of parents of the continuous nodes X̊i is no more limited to the
discretized counterpart Xi.
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Appendix: proofs

Proof of Lemma 1 By definition, f(X̊i|Xi) and P (Xi) are non-negative
real-valued functions, hence f(X̊i|Xi)P (Xi) is also a non-negative real-valued
function. So, to prove that it is a mixed probability distribution, it is suffi-
cient to show that: ∑

xi∈ΩXi

∫
ΩX̊i

f (̊xi|xi)P (xi) dx̊i = 1.
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By Property 1., f(X̊i = x̊i|Xi = xi)P (Xi = xi) = 0 for all xi ∈ ΩXi and
x̊i 6∈ [txi , txi+1). So, the above equation is equivalent to:

∑
xi∈ΩXi

∫ txi+1

txi

f (̊xi|xi)P (xi) dx̊i = 1,

which, by the fact that xi is a constant inside the integral and by Equa-
tion (3), is also equivalent to:

∑
xi∈ΩXi

P (xi)

∫ txi+1

txi

f (̊xi|xi) dx̊i =
∑

xi∈ΩXi

P (xi) = 1.

As a consequence, f(X̊i|Xi)P (Xi) is a mixed probability distribution. �

Proof of Proposition 1 First, note that all the terms in the product are
non-negative real-valued functions, hence h is also a non-negative real-valued
function. Let

α =
∑
x1∈X1

· · ·
∑

xn∈Xn

∫
X̊d+1

· · ·
∫
X̊n

n∏
i=1

P (xi|Pa(xi))
n∏

i=d+1

f (̊xi|xi)dx̊n · · · dx̊d+1

=
∑
x1∈X1

· · ·
∑

xn∈Xn

n∏
i=1

P (xi|Pa(xi))×(∫
X̊d+1

f (̊xd+1|xd+1)dx̊d+1

)
· · ·
(∫

X̊n

f (̊xn|xn)dx̊n

)
.

By Property 2 of Definition 4, each integral of a conditional truncated den-
sity is equal to 1, hence:

α =
∑
x1∈X1

· · ·
∑

xn∈Xn

n∏
i=1

P (xi|Pa(xi)).

This formula is also equal to 1 since its terms constitute a discrete BN.
Therefore, h(X) is a mixed probability distribution. �

Proof of Proposition 2 Without loss of generality, we will assume in the
sequel that ε ≤ min{|Ωi| : i ∈ {1, . . . , n}}, where |Ωi| denotes the size of
domain Ωi. In addition, let us denote by B(̊x, r) the intersection of the
hyperball of radius r centered on x̊ with Ω̊C. First, let us show that there
exists å ∈ Ω̊C such that, for every x̊ ∈ Ω̊C, we have f (̊x) ≤ ε whenever
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||̊x|| ≥ ||̊a||. Proof by contradiction: assume that, for every å ∈ Ω̊C, there
exists x̊ ∈ Ω̊C such that ||̊x|| ≥ ||̊a|| and f (̊x) > ε. Then:∫

Ω̊C

f (̊x)dx̊ =

∫
B(0,||̊a||)

f (̊x)dx̊+

∫
{x̊∈Ω̊C:||̊x||≥||̊a||}

f (̊x)dx̊.

By hypothesis, there exists b̊ ∈ Ω̊C such that ||̊b|| ≥ ||̊a||+ ε
4M and f (̊b) > ε.

So, since f is a probability density function, i.e., it is a positive function,
the last term of the above equation is such that:∫
{x̊∈Ω̊C:||̊x||≥||̊a||}

f (̊x)dx̊ ≥
∫
x̊∈B(̊b, ε

4M )
f (̊x)dx̊+

∫
{x̊∈Ω̊C:||̊x||≥||̊b||+ ε

4M
}
f (̊x)dx̊

and since f is Lipschitz, for every x̊ inside Ball B
(̊
b, ε

4M

)
, we have that

|f (̊x)− f (̊b)| ≤ M ||̊x− ẙ|| ≤ 2M ε
4M = ε

2 . As f (̊b) > ε, we can deduce that

f (̊x) > ε/2 for every x̊ ∈ B
(̊
b, ε

4M

)
and, therefore, that the middle term

in the above equation is greater than ε
2

∫
x̊∈B(̊b, ε

4M ) 1dx̊. This last integral

corresponds to the volume of the intersection of the n-dimensional hyperball
of radius ε

4M centered on b̊ = (̊b1, . . . , b̊n) with Ω̊C. As ε ≤ min{|Ωi|}, for

each random variable X̊i, at least one interval among (̊bi − ε
4M , b̊i) and

(̊bi, b̊i + ε
4M ) belongs to Ωi. So the integral is greater than or equal to 1/2n

of the volume of an n-dimensional hyperball of radius r, which is equal to
α = πn/2rn/Γ(n2 + 1). Consequently,∫

Ω̊C

f (̊x)dx̊ >

∫
B(0,||̊a||)

f (̊x)dx̊+
αε

2n+1
+

∫
{x̊∈Ω̊C:||̊x||≥||̊b||+ ε

4M
}
f (̊x)dx̊.

By our contradiction hypothesis, the same process can be applied to the
last term and, by induction, it is possible to construct an infinite sequence
{̊b(i)}i≥0 such that b̊(0) = b̊ and, for all i ≥ 1, ||̊b(i)|| ≥ ||̊b(i− 1)||+ ε

4M and

f (̊b(i)) > ε. Thus, for all k > 0,∫
Ω̊C

f (̊x)dx̊ >

∫
x̊:||̊x||<||̊a||

f (̊x)dx̊+k
αε

2n+1
+

∫
{x̊∈Ω̊C:||̊x||≥||̊b(k−1)||+ ε

4M
}
f (̊x)dx̊.

So
∫
Ω̊C

f (̊x)dx̊ tends toward +∞, which is impossible since f is a probability

density function (hence its integral over Ω̊C is equal to 1). Therefore, there
necessarily exists å ∈ Ω̊C such that, for every x̊ ∈ Ω̊C, we have f (̊x) ≤ ε
whenever ||̊x|| ≥ ||̊a||.
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Now, for any continuous variable X̊i of X̊C, let t−i = max{inf X̊i,−||̊a||}
and t+i = min{sup X̊i, ||̊a||}. Define a discretization function di of X̊i by its
set of cutpoints {tki }:{
tki = t−i + k

ε√
nM

: k ∈ {0, . . . , gi}
}

with gi = 1 +

⌊√
nM(t+i − t

−
i )

ε

⌋
.

Applying discretization function di to X̊i, we obtain a discretized random
variable Xi of domain Ωi. Let XD be the set of all these discretized variables
and let ΩD =

∏n
i=1 Ωi. Finally, for any value xi of discretized variable Xi,

denote by Ω̊i|xi the subdomain of variable X̊i compatible with xi, i.e., Ω̊i|xi =

[txii , t
xi+1
i ) if xi 6∈ {0, gi}, Ω̊i|xi = {x̊i < t0i } if xi = 0 and Ω̊i|xi = {x̊i ≥ tgii }

if xi = gi. Let Ω̊|x =
∏n
i=1 Ω̊i|xi .

We can now construct a joint probability distribution over ΩD and con-
ditional truncated densities as follows: for every x = (x1, . . . , xn) ∈ ΩD,
partition the set of indices {1, . . . , n} into L = {i : Ω̊i|xi is bounded},
L−∞ = {i : inf Ω̊i|xi = −∞} and L+∞ = {i : sup Ω̊i|xi = +∞}. Fix
the joint probability value of x = (x1, . . . , xn) to P (x) =

∫
Ω̊|x

f (̊x)dx̊ and

define for all x̊i ∈ Ω̊|xi the truncated conditional density function h(̊xi|xi)
as:

h(̊xi|xi) =



(
ε
β

)n
e
−
{
π
4

(
ε
β

)2n
(̊xi−t0i )2

}
if i ∈ L−∞

√
nM/ε if i ∈ L(
ε
β

)n
e
−
{
π
4

(
ε
β

)2n
(̊xi−t

gi
i )2

}
if i ∈ L+∞

where β = max{1,
√
nM}. Then, it is easy to see that P (·) is non-negative

and that
∑

x∈ΩD
P (x) =

∫
Ω̊C

f (̊x)dx̊ = 1. In addition,
∫
Ω̊|xi

h(̊xi|xi)dx̊i = 1

for all xi since the formulas for i ∈ L−∞ ∪ L+∞ are nothing else than twice

the density function of a Normal distribution of variance
√

2
π

(
β
ε

)n
. So for

all xi, since h(̊xi|xi) ≥ 0, h is a truncated conditional density function.
Consequently P (x)

∏n
i=1 h(̊xi|xi) defines a mixed probability distribution.

Now, let us show that, for all x̊ ∈ Ω̊C, |f (̊x) − P (x)
∏n
i=1 h(̊xi|xi)| ≤ ε,

where x is the discretized value of x̊. Consider any element x̊ ∈ Ω̊C. First,
assume that L+∞ ∪ L−∞ 6= ∅, then ||̊x|| ≥ ||̊a|| and, consequently, f (̊x) ≤ ε.
By definition, P (x) ≤ 1. In addition, for all i ∈ L+∞ ∪ L−∞, h(̊xi|xi) ≤
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(
ε
β

)n
. So, if N∞ = |L−∞|+ |L+∞|, then:

P (x)

n∏
i=1

h(̊xi|xi)| ≤
(
ε

β

)nN∞
×
(√

nM

ε

)n−N∞
.

As N∞ ≥ 1, nN∞ ≥ n ≥ n − N∞ + 1. Hence, as β = max{1,
√
nM} and

ε/β ≤ ε < 1,

P (x)
n∏
i=1

h(̊xi|xi)| ≤ ε×
(
ε

β

)n−N∞
×
(√

nM

ε

)n−N∞
≤ ε.

If, on the contrary, L+∞ ∪ L−∞ = ∅, then all the Ωi|xi are bounded

and their sizes are all equal to ε/(
√
nM), so Ω̊|x is also bounded. Let

f− = minx̊∈Ω̊|x
f (̊x) and f+ = maxx̊∈Ω̊|x

f (̊x). Then:∫
Ωi|xi

f−dx =

(
ε√
nM

)n
f− ≤ P (x) ≤

(
ε√
nM

)n
f+ =

∫
Ωi|xi

f+dx.

As all the h(̊xi|xi)’s are equal to
√
nM/ε, we have f− ≤ P (x)

∏n
i=1 h(̊xi|xi) ≤

f+. Now, for any pair of elements (ẙ, z̊) of Ω̊|x, ||̊y− z̊|| <
√
n(ε/
√
nM)2 =

ε
M . So, as f is Lipschitz, |f(ẙ) − f(z̊)| ≤ M ε

M = ε. As a consequence,
f+ − f (̊x) ≤ ε and f (̊x)− f− ≤ ε. Hence, |f (̊x)− P (x)

∏n
i=1 h(̊xi|xi)| ≤ ε.

To complete the proof, note that any joint distribution P (X1, . . . , Xn)
can be rewritten as P (X1, . . . , Xn) = P (X1)

∏n
i=2 P (Xi|X1, . . . , Xi−1). Us-

ing this decomposition, we obtain a ctdBN whose discrete and continu-
ous nodes are {X1, . . . , Xn} and {X̊1, . . . , X̊n} respectively, and in which
the parents of discretized node Xi are the set {X1, . . . , Xi−1}, the condi-
tional probability P (Xi|X1, . . . , Xi−1) resulting from the joint probability
P (X1, . . . , Xn) are defined in the above paragraphs. Finally, to each Xi is
assigned as a child a continuous node X̊i whose conditional truncated den-
sity is h(X̊i|Xi) as defined in the above paragraph. As shown above, this
ctdBN approximates f up to ε. �

Proof of Corollary 1 The absolute value of the derivative of the density
function of a univariate normal distribution is highest at its inflection point,
which corresponds to x = µ±σ. At that point, the derivative is equal toM =
exp(−0.5)/(

√
2πσ2). So the univariate normal distribution is Lipschitz. By

Proposition 2, it can be approximated up to ε by a ctdBN.
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The density function of a multivariate normal distribution is equal to:

f (̊x) =
1√

(2π)n|Σ|
exp

[
−1

2
(̊x− µ)TΣ−1(̊x− µ)

]
.

Σ−1 being invertible, it is diagonalizable and its eigenvalues are all different
from 0. By expressing x̊ in the basis of the eigenvectors, f (̊x) becomes
a product of univariate normal distributions and the preceding paragraph
implies that f is Lipschitz and can be approximated up to ε by a ctdBN.

The density of the Beta distribution is f (̊x) = x̊α−1(1− x̊)β−1/B(α, β),
with B(α, β) = Γ(α)Γ(β)/Γ(α + β). The derivative is therefore equal to
f ′(̊x) = [(α−1)(1−x)−(β−1)x](α−1)xα−2(1−x)β−2/B(α, β) If 2 = α < β,
then |f ′(̊x)| is maximal when x̊ = 0 and it is equal to (α−1)/B(α, β). If 2 =
β < α, then |f ′(̊x)| is maximal when x̊ = 1 and it is equal to (β−1)/B(α, β).
Finally, if 2 < α and 2 < β, it is known that the Beta distribution is bell-

shaped with two inflection points at x̊ = (α− 1±
√

(α−1)(β−1)
α+β−3 )/(α+β− 1).

So the derivative is bounded and f is Lipschitz.
When α > 2, the Gamma distribution is bell-shaped and its inflection

points are β(α− 1±
√
α− 1). Hence, the distribution is Lipschitz.

To complete the proof, consider a set X̊C of sets of random variables
X̊C = {X̊1, . . . , X̊n} such that all the X̊i’s are mutually independent. Let
fi, i = 1, . . . , n, be the respective density functions of the X̊i’s and assume
that all the fi’s belong to the probability density functions defined in the
above paragraphs. Then, every fi can be approximated up to ε0 = ε/2n

by some ctdBN Bi defining a mixed probability distribution gi, i.e., for any
x̊i ∈ X̊i, |fi(x̊i) − gi(xi, x̊i)| ≤ ε0, where xi correspond to the discretized
value of x̊i. Now, the joint density function f : X̊C 7→ R is defined as
f (̊x) =

∏n
i=1 fi(xi), for all x = (x1, . . . , xn) since the X̊i’s are mutually

independent. Let B be the ctdBN resulting from the union of all the Bi’s,
i.e., its graphical structure is the union of all the graphical structures of
the Bi’s and B represents mixed probability g(x, x̊) =

∏n
i=1 gi(xi, x̊i). So,

we have that g(x, x̊) ≤
∏n
i=1(fi(̊xi) + ε0). Let Sk be the set of k-subsets of

{1, . . . , n}. Then:

n∏
i=1

(fi(̊xi) + ε0) =
n∏
i=1

fi(̊xi) +
n−1∑
k=0

∑
S∈Sk

εn−k0

∏
j∈S

fj (̊xj)

 . (9)

As the fj ’s are probability density functions,
∏
j∈S fj (̊xj) ≤ 1. In addition,

for every n, k, we have that εn−k0 ≤ ε0 since ε0 < 1. Finally,
∑n−1

k=0

∑
S∈Sk 1 <
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2n since this corresponds to the size minus 1 of the power set of {1, . . . , n}.
So, the right hand side of Equation (9) is less than or equal to

∏n
i=1 fi(̊xi) +

2nε0 = f (̊x) + ε. We can show similarly, that g(x, x̊) ≥ f (̊x)− ε. So ctdBN
B approximates up to ε probability density function f . �

Proof of Proposition 3 If XD = ∅, then Proposition 3 exactly corre-
sponds to Proposition 2. So, assume that XD 6= ∅.

For every y = (y1, . . . , yd) ∈ ΩD, let π(y) =
∫
x̊∈X̊C

f(y, x̊)dx̊. As y
corresponds to the discrete part of f , π(y) corresponds to the probability
of y w.r.t. f . So ky : Ω̊C 7→ R defined as ky (̊x) = f(y, x̊)/π(y) for all

x̊ ∈ Ω̊C is a probability density function. In addition, by the hypotheses
of Proposition 3, it is Lipschitz. Hence the proof of Proposition 2 can be
applied on it. Let us call åy the vector å of this proof applied on ky(·). In
addition, let å denote a vector of {̊ay : y ∈ ΩD} with the highest L2-norm.

Then, for every y ∈ ΩD and any x̊ ∈ Ω̊C, we have ky (̊x) ≤ ε whenever
||̊x|| ≥ ||̊a||. Applying the proof of Proposition 2, with this value of å, we
can therefore perform the same discretization of x̊ into x and construct the
same conditional truncated density functions h(̊x|x) for all the values of y.
The proof of Proposition 2 also shows that, by setting Py(x) =

∫
Ω̊|x

ky (̊x)dx̊,

then we have that:∣∣∣∣∣ky (̊x)− Py(x)
n∏

i=d+1

h(̊xi|xi)

∣∣∣∣∣ ≤ ε, for all x̊ ∈ Ω̊C and all y ∈ ΩD, (10)

and
∑

x Py(x) = 1 for every y. In other words, Py(x) corresponds to a
conditional distribution of x given y. Define P (y, x) = Py(x)× π(y). Then,
P (y, x) corresponds to the joint distribution of x and y (i.e.,

∑
x,y P (y, x) =

1). So, as ky (̊x) = f(y, x̊)/π(y) and π(y) ≤ 1 (since it is a probability),
Equation (10) implies that:∣∣∣∣∣f(y, x̊)− P (y, x)

n∏
i=d+1

h(̊xi|xi)

∣∣∣∣∣ ≤ επ(y) ≤ ε, for all (y, x̊) ∈ ΩD × Ω̊C.

The completion of the proof is now the same as that of Proposition 2: joint
distribution P (y, x) can be decomposed as P (y1)×

∏d
i=2 P (yi|y1, . . . , yi−1)×

P (xd+1|y1, . . . , yd)
∏n
j=d+2×P (xj |y1, . . . , yd, xd+1, . . . , xj−1) and the result-

ing ctdBN follows. �

Proof of Proposition 4 According to the proof of Proposition 3, since f is
Lipschitz, the continuous variables X̊i of X̊C can be discretized into discrete
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variables Xi of XC = {Xd+1, . . . , Xn} and, for all (y, x̊) ∈ ΩD× Ω̊C, f(y, x̊)
can be approximated up to ε by P (y, x)

∏n
i=d+1 h(̊xi|xi), where x is the

discretized counterpart of x̊ and P (y, x) is the joint probability distribution
defined as:

P (y, x) =

∫
Ω̊|x

f(y, x̊)dx̊. (11)

Let us show that this joint distribution can be decomposed w.r.t. sets
Ci = XDi∪XCi∪X̊Ci , i = 1, . . . , k. Proof by induction on i: let i = 1 and let
XE1 = XD \XC1 and X̊E1 = X̊C \ X̊C1 . Function f can be decomposed as
f(y, x̊) = f1(yC1 , x̊C1)×h1(yE1 , x̊E1), with h1(yE1 , x̊E1) =

∏k
j=2 fj(yCj , x̊Cj ).

Note that f1 and h1 share no variable in common. Then Equation (11) is
equal to:

P (y, x) =

∫
Ω̊|xC1

∫
Ω̊|xE1

f1(yC1 , x̊C1)× h1(yE1 , x̊E1)dx̊E1dx̊C1

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∫
Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1

Now, we also have that:

P (yC1 , xC1) =
∑
yE1

∑
xE1

P (y, x)

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∑
yE1

∑
xE1

∫
Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1

=

∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1

∑
yE1

∫
Ω̊E1

h1(yE1 , x̊E1)dx̊E1

Note that, by definition, h1(yE1 , x̊E1) =
∏k
j=2 fj(yCj , x̊Cj ) is a mixed prob-

ability distribution over ΩE1 × Ω̊E1 . Consequently, we have that:∑
yE1

∫
Ω̊E1

h1(yE1 , x̊E1)dx̊E1 = 1,

and, therefore, that P (yC1 , xC1) =
∫
Ω̊|xC1

f1(yC1 , x̊C1)dx̊C1 . We can prove

in a similar way that P (yE1 , xE1) =
∫
Ω̊|xE1

h1(yE1 , x̊E1)dx̊E1 . Consequently,

P (y, x) = P (yC1 , xC1)P (yE1 , xE1). So, P can be decomposed similarly to f
as concerns clique C1. By induction, we can repeat the same process with
mixed probability h1 rather than f and the result follows. �
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Proof of Proposition 5 By definition, the product of all the functions
stored into junction tree T is a mixed probability distribution P (x, x̊, e). So
it satisfies the Shafer-Shenoy axioms [24, 2]. As a consequence, the message-
passing algorithm is sound and, for each clique, the function resulting from
the multiplication of the functions stored in any clique by the messages
sent to this clique is the joint (mixed) probability of the variables of the
clique and evidence e. So, if the clique contains only discrete variables,
after normalizing this resulting function, we necessarily get a joint posterior
distribution of the variables of the clique. On the other hand, if the clique
contains a continuous variable X̊k, then the resulting function is necessarily
the posterior mixed distribution of Xk and X̊k given evidence e and, by
marginalizing out Xk, we get the posterior density function of X̊k. �

Proof of Proposition 6 There are at most n continuous random vari-
ables. Computing each message they send to their neighbor corresponds
to perform |ΩXi | ≤ k integrals. Hence the overall complexity of computing
all these messages is in O(nkI). As there are n random variables, there
are at most n cliques containing only discrete variables. The complexity of
computing their messages in both directions is therefore in O(nkw+1). For
the same reason, the complexity of sending messages from the cliques with
only discrete variables to the cliques containing continuous variables is also
O(nkw+1). To compute the posterior of any discrete or discretized variable,
it is sufficient to select one clique that contains it, to multiply the tables
stored into this clique by all the messages sent to the clique and, then to
marginalize out all the other variables. When performing the distribution
phase, the tables stored into the clique are already multiplied by all the
messages sent to the clique except one. So, to compute the posterior of the
discrete variable, we just need to perform the last product required, with
a complexity in O(kw+1) and the summation (marginalizing-out) has the
same complexity. Finally, there are n continuous variables. To compute the
posterior density of a continuous variable, we must perform the operations
of Equation (7). There are at most k products to perform and each product
has an average complexity of J , hence the overall complexity of comput-
ing all the posterior densities is in O(nkJ). Overall, we get the complexity
stated in the proposition. �
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