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Abstract

Emergence and complex systems have been the topic of many papers and are still disputed concepts in
many �elds. This lack of consensus hinders the use of these concepts in practice, particularly in modelling.
All de�nitions of emergence imply the existence of a hierarchical system: a system that can be observed,15

measured and analysed at both macroscopic and microscopic levels. We argue that such systems are well
described by mathematical graphs and, using graph theory, we propose an ontology (i.e. a set of consistent,
formal concept de�nitions) of dynamic hierarchical systems capable of displaying emergence. Using graph
theory enables formal de�nitions of system macro-state, micro-state and dynamic structural changes. From
these de�nitions, we identify four major families of emergence that match existing de�nitions from the20

literature. All but one depend on the relation between the observer and the system, and remind us that
a major feature of most supposedly complex systems is our inability to describe them in full. The fourth
de�nition is related to causality, in particular, to the ability of the system itself to create sources of change,
independent from other external or internal sources. Feedback loops play a key role in this process. We
propose that their presence is a necessary condition for a hierarchical system to be quali�ed as complex.25

Keywords: hierarchy, ontology, feedback loop, causality, computational irreducibility

Funding: This work was supported by the French Agence Nationale de la Recherche, grant number ANR-07-
CIS7-001.

Word count: abstract 215 words; main text: 9981 words

1



Introduction30

Interest in the concepts of complex system and emergence has been pursued over many years in many �elds.
In such circumstances, it is inevitable that con�icting de�nitions will arise. When attempting a de�nition, it is
important to be wary of including concepts that are either themselves poorly de�ned or are merely correlated
with the concept at hand (Jax, 2007). With these caveats in mind, we propose a formal de�nition of a system
from which we can formalise the circumstances under which emergence may arise.35

In doing this, we build an ontology of useful and rigorous concepts related to emergence. An ontology (in
computer science) is a set of formal de�nitions of concepts and their relationships, that can lead to automatic
processing for the construction of formal grammars and software (Guarino, 1995). It is our hope that this
methodology will underpin a broadly applicable clari�cation of these concepts (e.g. an application to ecology
in Gignoux et al., 2011). Following Jax (2007), we begin by using mathematical notation to de�ne the concept40

of a ‘system’. Our notation provides for, but does not impose, the possibility of emergent properties, based on
the commonalities between most de�nitions of emergence. In so doing, we extract generic properties of ‘systems
with emergence’.

Despite fundamental di�erences, all de�nitions of emergence share a common assumption: emergence arises
only in systems that can be described at both macroscopic and microscopic levels (de Haan, 2006; De Wolf45

& Holvoet, 2005; Bedau, 2003). A system with such properties is usually called a hierarchical system (Allen
& Hoekstra, 1992; Ahl & Allen, 1996; O’Neill et al., 1986). In contrast, a non-hierarchical system, also called
atomic system, is one which cannot be divided into sub-systems; it is atomic in the sense that we have no
knowledge of a microscopic representation (see below De�nition 24).

How can we formally de�ne a hierarchical system in a generic way? In one of its most commonly accepted50

de�nitions (Carnot, 1824), a system is ‘the part of the world under consideration for a particular purpose’.
Implicit in this de�nition is the existence of an observer, someone or thing for which a part of the world is
extracted for consideration to some end. The ecosystem, as initially de�ned by Tansley (1935), falls within the
scope of this de�nition, just as do, for example, thermodynamic systems and systems of social organisation.
In the �eld of systems thinking, Jordan (1981) �nds that nothing more speci�c can be said in de�ning the55

term ‘system’ (the fundamental concept in the author’s discipline) other than that ‘a system is composed of
identi�able entities and their relationships’. This de�nition is just as applicable to concrete objects as it is
to virtual or conceptual objects. For emergence to occur, the system must be characterised as hierarchical, in
the sense that we can provide both a macroscopic and a microscopic description. We will therefore de�ne a
hierarchical system as an object composed of components in interaction. This is close to some de�nitions of a60

complex system, but we make no assumption about emergence as this is precisely what we wish to explore.
A system comprising components and their interactions is well described by a mathematical graph (Diestel,

2000; Gross & Yellen, 1999). A graph is a set of nodes connected by edges. We propose to represent a
hierarchical system as a mathematical graph: the ‘interacting components’ that produce the ‘microscopic state’
of the system are the nodes, the edges represent interactions, while the system as a whole is represented by the65

graph. Although the hierarchical relation between the graph and its components is not explicit at this stage,
this representation allows us to consider both a macroscopic view of the system � the graph as a whole � and a
microscopic view � the list of all its components and their interactions.

1 Formal de�nitions for a hierarchical system: an ontology

We �rst provide a minimal set of mathematical de�nitions to describe a system without any a priori knowledge70

of emergence.
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1.1 The system

We postulate that a hierarchical system can be represented as a graph. We call the world W , that set of objects
from which an observer draws a subset to build a system for some purpose. Components of the system are
de�ned as objects c 2 W , and interactions as relations between any two components of W .75

Proposition 1. A hierarchical system S is de�ned as the graph:

S := (C; R; )

where C is the set of components (nodes) of the system:

C := fcugu�nc<1 ; cu 2 W

R is the set of relations (edges) between components of the system:

R := frvgv�nr<1 ; rv 2 W 2

and  is the incidence function, which assigns a relation to a pair of components:

 : R ! C � C

rv ! (ci; cj)i�nc; j�nc

nc is the number of components and nr the number of relations of the system; W 2 is the set of applications from80

W to W .
We make no assumption as to the type of graph used to represent S. It can be directed, undirected, a multigraph
or any other kind of graph, hence the need for an explicit incidence function.
Where it may be ambiguous, we subscript sets C, R and function  by the graph to which they belong.

85

Figure 1 gives examples of systems represented as graphs.
For later simpli�cation, its is convenient to de�ne:

De�nition 1. Components cu and relations rv are called elements of the system S. We denote them by
ew 2 E, with E = C [ R and the element index w veri�es w � nc + nr = ne. The set of all possible elements is
E = W [ W 2.90

In the UML language (Object Management Group, 2015), components and relations are specialisations of
elements (cf. Appendix).

De�nition 2. The connection set of a system component, � (cu), is the set of relations connected to this
component:

� (cu) =
n

rv 2 R j  (rv) = (cu; ci)i�nc
or  (rv) = (ci; cu)i�nc

o

So far, the hierarchical relation between the system and its components has not been made explicit. To95

provide for the possibility of building successive levels of nested systems, as in hierarchy theory (Allen &
Hoekstra, 1992), we introduce a graph operator (a function on a graph returning a graph) to transform the
system into a tree. This tree is built by (1) creating a new node that represents the whole system, denoted by
top (S), and (2) linking this node to all the components of S:

De�nition 3. For a system S, we de�ne its hierarchical view H (S) as a directed graph resulting from the100
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Figure 1: Three di�erent examples of systems represented as graphs using Proposition 1. Circles denote system
components cu and lines between them denote relations rv.

application of the graph operator H given by:

H : G (W ) ! G (W [ ftop (S )g)

H (S) := (CH ; RH ; H)

CH := CS [ ftop (S)g

RH := fr0
ugu�nc

; r0
u 2 ftop (S)g � CS

H (r0
u) := (top (S) ; cu)

where G (W ) is the set of all possible graphs constructed from objects belonging to W ; top (S) is a new node
that represents the entire system and is called the top node; to represent the hierarchical relation between the
system top node top (S) and its component nodes cu, the new r0

u edges are directed edges (the direction meaning
system ‘is composed of’ component ; in UML language (Object Management Group, 2015), r0

u are aggregation105

instances). Figure 2 illustrates the implicit hierarchy present in any graph.

Since any subgraph of a system is also a system, the hierarchical view of successively nested systems is by
construct a rooted tree and a natural representation of a hierarchy

The concepts de�ned in this section and their relationships are shown in Figure 1 of the appendix.

1.2 The description of the system by an observer110

We have yet to provide a means to describe elements of our system such that two observers can unambiguously
agree on their meaning. Such a description relies on measurement. Measurement itself depends on previous
theoretical knowledge, instrument manufacture and on our senses to read and interpret them. All this constitutes
a �lter between the real world and the knowledge we have of it: measurement is subjective. In order to
communicate our experience of real-world objects, we must specify a description that can be shared between115

di�erent observers. Science can then proceed because observers then speak the same language. To this end, we
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Figure 2: Illustration of the hierarchical view of systems S1 (animal), S2 (ecosystem), and S3 (landscape) from
Figure 1 according to De�nition 3. The hierarchical views, labelled S0

1, S00
1 , S0

2 and S0
3, are shown in orange. The

top operator enables nesting systems into a hierarchy, by making it possible for a component in the upper-level
system to represent a full lower-level system.
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Figure 3: Descriptions of system components using De�nitions 4-5. Example based on system S2 of Fig-
ure 1. Descriptions, each made of a list of descriptors, are shown for four components and the sys-
tem itself. For example, assuming that ‘lion No.1’ is the 1st component of the system, its description
is D1 (c1) = (d1 = id; d2 = w; d3 = s; d4 = a; d5 = M; d6 = p; d7 = � ), where id is the label and � rep-
resents a bitmap (for the photo). The description of the whole system (The Namib desert ecosystem)
is DS = ((id); (L; l) ; P; w; (p1 : : : p12)). The structural description (De�nition 6) of the system is DS =
(13; (1; ::; 13) ; 23; (1; ::; 23) ; ((1; 1; 2) ; (2; 1; 3) ; ::; (23; 13; 11) )). Pictures were downloaded from low-resolution
thumbnails on the internet.

propose to attach descriptors (labels, indices, categories, quantities, texts, images, sounds etc., with appropriate
units or other technical metadata) to system elements. For notational simplicity, we assume that all descriptors
can be represented numerically.

Proposition 2. An observer O is an agent (person, device) able to produce a description D of a hierarchical120

system, component, or relation. Descriptions constitute the only way for observers to communicate about a
system.

De�nition 4. Description.

1. The description D (ew) of a system element ew 2 E is a n-tuple of descriptors dx de�ned by their use and
interest for the observer (cf. De�nition 5):125

D (ew) := (dx)x�nD

where the index w is the element index in system S. nD is the dimension of the description.

2. Similarly, we de�ne the description of the system D (S), with the convention that D (S) = D (top (S)).

De�nition 5. A descriptor (d; R) of a system element ew is the association of:

1. d: a n-tuple of numeric variables:
d (ew) := (zy)y�nd

; zy 2 R

nd is called the dimension of the descriptor.130
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2. R: an interpretation rule, which associates meaning to d for an observer O. Examples of such rules include
measurement units, particular algebraic rules for combining values of di�erent descriptors, coding rules,
and any other metadata applying to d.

We assume the rule R is not necessarily expressed in mathematical terms. For this reason, in what follows we
denote the descriptor by d only. The particular meaning of each descriptor within a description is apparent135

in our notations by considering that the description cannot be written simply as a single concatenated list of
numeric variables.

See Figure 3 for an illustration of de�nitions 4 and 5. The description of an element depends on the observer,
who has a particular purpose to guide her/his choice. As a result, many descriptions of the same element or
system may exist, representing the observer’s interpretation of the system.140

We now return to Proposition 1, to distinguish between the real world and its representation. Following
Tansley (1935), a system is a ‘mental isolate’ of the real world. As system elements belong to the real world, it
means Proposition 1 is just a description sensu De�nition 4 of the system. Proposition 1 describes the structure
of a hierarchical system in mathematical terms. By structure, we mean how components and relations are
linked to form an organised system, without any assumption as to what components and relations really are.145

We acknowledge this through the following re-interpretation of Proposition 1:

De�nition 6. The structural description of a hierarchical system is

D (S) = (d1; d2; d3; d4; d5)

where

d1 = nc

d2 = (idC (cu))u�nc

d3 = nr

d4 = (idR (rv)) v�nr

d5 = (idR (rv) ; idC (ci) ; idC (cj))v�nr; (rv)=(ci;cj)

and where idA (: : :) is the identi�er function over set A: it associates a number to a component or relation that
is unique over their respective sets C and R. d1-d5 are the standard structural descriptors of the system.

Although making the di�erence between the system and its mathematical expression explicit may seem150

pedantic, it will be useful when considering: (1) dynamic systems; (2) experiments on real-world systems; and
(3), systems which elements are partly unknown.

The concepts de�ned in this section and their relationships are shown in Figure 2 of the appendix.

1.3 The state of a system and its measurement context

If obtaining values for descriptor variables (zy) (De�nition 5) is the act of measurement, then the set of measure-155

ments of all descriptors of an element is its state at the time of measurement (system dynamics are explored in
Section 1.4). In computer science terms, the act of measurement as de�ned here is an instantiation: the descrip-
tor being a class or type de�nition and the state, an instance of this class with a physical existence somewhere
(in computer memory or on a sheet of paper as the case may be). It must be assumed that measurements are
reliable: if they di�er, the element is assumed to have changed. For this to hold, measurements must satisfy160

some robustness principle, such as ergodicity (Boltzmann, 1871) or the law of great numbers (Bernouilli, 1713),
which state that the mean of repeated measurements in the same conditions on the same object will converge
asymptotically to the same value. The whole theory of sampling statistics (e.g. Cochran, 1977) was developed
to solve the problem of how to get a ‘representative’ measure of a real object or system.
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Figure 4: Two di�erent local contexts (De�nition 7) l21;6 (for descriptor 2 (biomass w), observer 1, component
6) and l61;6 (for descriptor 6 (mating probability p), observer 1, component 6), computed for focal component c6
(Lion 6) of example system S2 (Figure 1). Indexing according to Figure 5. Brown: the full system graph as on
Figure 3; black: the focal component c6; light blue: the relations and components involved in the local contexts.
Local context l21;6 groups all the components and relations needed to compute an increase of biomass for lion c6
(component and relation meanings are listed in Figure 1) through feeding: c11 is the food source, i.e. a stranded
whale; c1-c4 are other lions, one of them (c4) belonging to the same pride as c6; c12 is a �ock of seagulls attracted
by the carcasse. It is easy to imagine that the share of the food available to the focal lion c6 can be the result of
a relatively complex computation / measurement protocol involving all these components and their relations.
The newly computed biomass w for lion c6 is its partial state (De�nition 9) �21;6 relative to l21;6 for descriptor
d21;6 . l21;::: is thus the local context relevant to compute biomass increase for lions. Local context l61;6 groups
all the components and relations needed to compute probability of mating between lions: (female) lion c6 is
member of a pride comprising one male c4and another female c5; but while feeding on the beach c10 it may be
approached by male lion c1, member of a di�erent pride, and interesting behavioural interactions may result in
birth of lions, i.e. changes in graph structure (Section 1.4). l61;::: is thus the local context relevant to compute
probability of Lion 6 mating, i.e. a potential structural change in the system S2.
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Figure 5: Indexing rules. Left, dimensional indexing: each index represents a dimension of a data structure,
hence the notation xij . Right, hierarchical indexing: each lower level index in a hierarchy tree depends on the
previous level index, hence the notation xji .

Although the descriptor is attached to an element (De�nition 5), hereafter called the focal element, its165

instantiation may require additional knowledge such as the location of the focal element within the graph
representing the system. For example: many plant competition models are based on measures such as the
number of neighbour plants in a circle of �xed radius centred on the focal plant; the amount of food gained by
an animal may depend on the size of its social group or its position in the social hierarchy; water run-o� on
a given landscape unit may depend, not just on its elevation, but on its relative position within the landscape170

(slope, valley, ridge top). All these focal element descriptors depend on its relations with other elements as
speci�ed by the system incidence function (Proposition 1). The sub-set of elements required to compute the
state of a descriptor of a focal element we call a local context.

De�nition 7. The local context l of a focal element ew is the result of applying a graph operator Lw on system
S, that returns a connected (Diestel, 2000) subgraphS0 of S containing ew:175

l (ew) = S0 := Lw (S)

Lw (S) := (Cw; Rw; w)

Cw � CS

Rw � RS

w [Rw] � S [RS ]

@ci 2 Cw j � (ci) = ;

where f [A] is the image of set A by function f , and with the additional constraints:

1. if ew is a component ew = cu 2 CS :
cu 2 Cu

2. if ew is a relation ew = rv 2 RS :

rv 2 Rv

v (rv) = (c1; c2) ) c1 2 Cv; c2 2 Cv

There may be a unique subgraph for each descriptor. Figure 4 provides an example of two local contexts
for Lion 6 in the Namib desert ecosystem of Figure 3: one is used to calculate the biomass of Lion 6 and the180

second to calculate its mating probability.
Emergence is about comparing microscopic and macroscopic states of the system. The microscopic state

involves computing the states of all system elements and combining them in some way into a system-level state.
From De�nitions 5 and 7, it should be straightforward to compute the state of a single system element. However,
much confusion may arise if we consider that: (1) elements may have di�erent descriptions, i.e. di�erent sets185
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of descriptors, with di�erent sets of variables; (2) di�erent observers may de�ne di�erent descriptions, and even
a single observer may wish to work with di�erent descriptions of the same element; (3) the method used to
compute a local context may depend both on the particular element considered and on the particular descriptor.
To denote the dependency on all these families of objects (observers, elements, descriptor variables), we will use
rigorous indexing rules (Figure 5): Dmw indicates that the description of an element ew depends on the element’s190

individuality within the system (index w) and on the observer or the observer’s choice (index m) (Figure 4).
Since the descriptors are nested within descriptions (De�nition 4), they will be denoted by dxmw , and since
descriptor variables are nested within descriptors, they will be denoted by zyxmw

. Dimensions of descriptions
and descriptors now become nDmw and ndxmw

. The local context being used to measure or compute the state of
an element and for a particular descriptor, must match the descriptor, and hence is denoted by lxmw . Finally,195

it makes sense to group the local contexts which will be used to compute the description of a single element:

De�nition 8. A context q is a n-tuple of local contexts applying to the same focal element:

q (ew) = (li (ew))i2N

In the Figure 4 example, we may associate the two local contexts de�ned for computing biomass and mating
probability of Lion 6 into the same context: q (c6) =

�
l21;6 (c6) ; l61;6 (c6)

�
.

With this settled, we can now compute element and system states:200

De�nition 9. The partial state �xmw of an element ew, relative to a local context lxmw , for descriptor dxmw

associates an element and a local context with a descriptor instance:

�xmw : E � G (W ) ! Rndxmw

(ew; lxmw (ew)) ! dxmw =
�
zyxmw

�
y�ndxmw

where w � ne is the element index, m the observer index, x � nDmw the descriptor index in description
Dmw, y � ndxmw

the variable index within descriptor dxmw .

De�nition 10. The local state �mw of an element ew relative to a context qmw, for description Dmw is de�ned205

as:
�mw : E � (G (W ))nDmw ! Rnmw

(ew; qmw) ! Dmw (ew) = (�xmw )xmw�nDmw
=

�
(zy)y�ndx

�

x�nDmw

where nmw =
nDmwP

xmw=1
ndxmw

is the total number of descriptor variables in description Dmw; qmw =
�

(lx)x�nDmw

�

mw

is the context grouping all the local contexts lxmw used to compute partial states �xmw of descriptors dxmw of
description Dmw.

Among all possible subgraphs required to compute a local context, two extremes exist: those that require210

no other elements and those that require all other elements to be considered.

De�nition 11. The minimal local context l0 of a focal element ew is the local context of this element in
isolation:

1. for a component:
l0 (cu) = (fcug ; ;; 0)

where ; is the empty set and 0 the null function215

(a) for a relation:
l0 (rv) = (fc1; c2g ; frvg ;  (rv) = (c1; c2))

As a consequence, the minimal context q0 is a trivial n-tuple repeating the minimal local context nDmw times.
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De�nition 12. The maximal local context lS of a focal element ew is the whole system S:

8ew 2 S; lS (ew) = S

By construction (De�nition 3), when choosing a system we isolate it from the rest of the world. Therefore,
no local context, other than the minimal local context is relevant at the system level:220

De�nition 13. The system local context is the minimal local context of top (S):

l (top (S)) := l0 (top (S)) = (ftop (S)g ; ;; 0)

De�nition 14. The disconnected state �w of an element ew is its local state relative to the minimal context q0:

�w (ew) = D0w (ew) = �0w (ew; q0)

We can now de�ne the system microscopic and macroscopic states:

De�nition 15. The macroscopic state, or macro-state, of a system 
 (S) is the disconnected state of the
component representing the whole system in its hierarchical view (De�nition 3):225


 (S) = �0 (top (S))

assuming the component index 0 is attributed to top (S). Even if the observer has not de�ned any description
for the system as a whole, the structural description (De�nition 6) always exists. Therefore, any system has at
least one macro-state.

De�nition 16. The microscopic state, or micro-state, of a system is de�ned as the n-tuple:

!m (S) = (�mw (ew))w�ne

Contrary to the macro-state, the micro-state is not a single description taking some measured values, but a230

n-tuple of descriptions of all the elements of the system, measured or computed for a particular n-tuple of local
contexts that depends on observer m. There may be many micro-states for the same system, depending on the
observer’s choices.

De�nition 17. The disconnected micro-state !0 of the system S is the micro-state computed using the minimal
context q0 for all elements:235

!0 (S) = (�w (ew))w�ne

With these de�nitions, the emergence problem can be restated simply as: is there a function (to keep it
simple; it may be an algorithm or some more elaborate transformation) that links the macro-state and the
micro-state(s) of a system? Emergence will depend on the existence and nature of this function.

The concepts de�ned in this section and their relationships are shown in Figure 3 of the appendix.

1.4 System dynamics240

So far, only static systems have been considered. We now turn to dynamic systems: systems that change over
time. We follow the de�nition of a dynamic graph by Harary & Gupta (1997).

De�nition 18. A dynamic hierarchical system is de�ned as:

S (t + �t) = g (S (t) ; �t)

where: t represents time; �t a small amount of time over which a change can be observed; and g, some function.
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Two kinds of change may a�ect the system: changes in structure and changes in state.245

1. Changes in structure involve creation and deletion of components and relations. We de�ne a structural
change as a triplet of sets:

De�nition 19. A structural change in the system between times t and t + �t is de�ned as

�S (t; �t) :=
�
�S+ (t; �t) ; �S� (t; �t) ; �S (t; �t)

�

where

� � denotes any, possibly large, change;250

� �S+ (t; �t) is the set of elements added to the system (creation set);

� �S� (t; �t) is the set of elements removed from the system (deletion set);

� �S (t; �t) is the set of incidences of new relations over components (new branching set) at time t
over �t.

We further de�ne, from Proposition 1, and omitting (t; �t) for notational simplicity, �C+, �C�,�R+
255

and �R�, as, respectively, the set of components added to and removed from, and the set of relations
added to and removed from the system between time t and t + �t. By construction �S+ = �C+ [ �R+

and �S� = �C� [ �R�. With these sets de�ned, the new structure of the system is computed from
8
>>><

>>>:

C (t + �t) = C (t) [ �C+ n �C�

R (t + �t) = R (t) [ �R+ n �R�

 [R (t + �t)] =  [R (t) n �R�] [ �S

where n stands for set substraction.

Since graph elements are discrete objects, a structural change can be reduced to a set of elementary260

structural changes of at most four types. By elementary, we mean atomic, i.e. a change that cannot be
smaller and occurs instantaneously. We use � to denote such changes.

De�nition 20. An elementary structural change in system �S = (�S+; �S�; �S), is one of the four
following changes

(a) deletion of a single relation rv � The deletion set contains only a single relation �S� = �R� =265

frvg � R (t):
�S�

r = (;; frvg ; ;)

(b) creation of a new relation rv between two existing components ci and cj � The creation set
contains only a single relation to add to the system �S+ = �R+ = frvg. In addition, the components
to be connected by this relation must be speci�ed and the incidence function modi�ed accordingly:

�S+
r = (frvg ; ;; f(ci; cj)g)

with ci 2 C (t) and cj 2 C (t).270

(c) deletion of an existing component cu � The deletion set contains the component plus its con-
nection set: �C� = fcug � C (t) and �R� = � (cu):

�S�
c = (;; fcug [ � (cu) ; ;)

(d) creation of a new component cu � The creation set contains the new component plus a new
connection set relating it to other already existing components of the graph (possibly none): �C+ =
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fcug, with cu =2 C (t), and �R+ = � (cu). �R+ might be empty if the new component is disconnected275

from the rest of the graph. Information must be provided on how the new component is to be
connected to other components. The new branching set is �S =  [� (cu)]. The structural change
becomes:

�S+
c = (fcug [ � (cu) ; ;;  [� (cu)])

Adding and deleting components and relations atomically in a graph is, therefore, not as straightforward
as it might seem. The operation of removing a relation or adding a disconnected component acts on only280

one object. In all other cases (2, 3 and 4 above), additional information is required.

2. Changes in state a�ect values of descriptors of components, relations, or the system itself:

De�nition 21. A state change ��mw (t; �t) for an element ew (t) relative to the context qmw (t), is
de�ned as a change in numeric values of its descriptor variables zyxmw

between two successive local states
�mw obtained at times t and t + �t (De�nition 10) :285

��mw (ew (t) ; qmw) (t; �t) :=
��

zyxmw
(t + �t) � zyxmw

(t)
�

yxmw �ndxmw

�

xmw�nDmw

A similar de�nition applies to the system as a whole by using its description.

De�nition 22. We de�ne d�mw, d!m, and d
 as, respectively: an in�nitesimal change in local, micro-
and macro-state. In�nitesimal means the smallest possibly observable, measurable, or computable change
in state as dt approaches zero.

De�nition 23. We de�ne an elementary change in system dS as either an atomic structural change �S, or an290

in�nitesimal state change (d!m or d
). In both cases, dS is the smallest possible change a system can undergo.

Changes in structure are discrete by nature (section 1.4), because components and relations are discrete system
elements. Hence discrete-time and event-driven models may better manage structural changes (Zeigler et al.,
2000). Changes in descriptor values may be discrete or continuous. It follows that models describing the
dynamics of a hierarchical system must allow for both continuous and discrete change. Coupling di�erential295

equations with a discrete-event logic is a di�cult task that has been explored mainly by simulation specialists
(e.g. Duboz et al., 2003).

The concepts de�ned in this section and their relationships are shown in Figure 4 of the appendix.

1.5 Causality

It is not our aim here to enter a philosophical debate addressing the reductionnist vs. holistic dispute, or the300

mechanistic vs. empirical modelling issue. In this framework, a cause is what produces a change in system
state. In general, dynamics, as an observed succession of changes, does not inform about the underlying causes.
System dynamics may be described in many ways, e.g. by a set of di�erential equations linking system variables,
stochastic markovian transitions, deterministic rules, etc. � there is usually some debate about whether these
methods represent real causes or are just phenomenological descriptions of dynamic changes. However, a305

recurrence equation such as that of De�nition 18 implies a form of causality, as it assumes that the state of
the system at time t + dt can be computed from its state at time t. This satis�es a necessary condition for
causality: a cause must, by de�nition, precede the e�ect. We propose here to assume that this condition is
also su�cient under the condition that dt represents the smallest amount of time at which we are able to see
a di�erence in system states. In this case, nothing can be said about what happened between t and t + dt,310

and rather than saying that either (1) some complicated speculative process occuring within this time period
caused the change, or (2) what we observe is only correlation, we assume that the state at time t caused the
state at time t + dt. This is an application of the parsimony principle: in the absence of better information on
the system functioning, at a chosen time grain the recurrence equation of De�nition 18 describes some form of
causality that we call apparent :315
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Algorithm 1 Pseudocode for the propagation of changes in an atomic system (De�nition 20).
generateChange(S (t), t, dt) {

return( dS (t; dt))
}
changeSystem(S, dS, t, dt) {

S (t + dt) := some_computation( S (t), dS (t; dt))
}
propagateChanges(S, t0) {

t := t0
while (stopping_condition( t, S) is false) {

... compute dt ...
dS := generateChange( S, t, dt)
changeSystem(S, dS, t, dt)
t := t + dt

}
}

Proposition 3. Apparent causality: If S is a dynamic system sensu De�nition 18 and if dt is an in�nitesimal
atomic duration (called time grain) then we postulate that S (t) is the apparent cause of S (t + dt) at time grain
dt.

We consider that apparent cause is the best approximation of real cause given the information we have on
the system.320

Often, the dynamics of a system is represented by a set of coupled recurrence equations (e.g. di�erential
equations) applying to a set of variables. In our framework, such a set of variables is what we have called the
description (De�nition 4) of a component, relation or system. In other words, this common use of recurrence
equations does not apply to our hierarchical system, but to a simpler system or object:

De�nition 24. Atomic system. A system S is atomic if it cannot be subdivided into elements. Such a system325

is non-hierarchical.

An atomic system can have a description (De�nition 4).
The recurrence equation applies to an atomic system as a whole. As a consequence, changes in system state

result from each other: if we link changes through the causal relation implied by the recurrence equation, we will
obtain a simple chain of change events. This is sometimes called linear causality1, as the common reductionnist330

view is to identify changes with causes, specially as dt ! 0. For a better understanding and later comparison,
we provide the trivial pseudocode (Algorithm 1) for the case of the atomic system.

In a hierarchical system, this simple scheme no longer applies, as system elements may be subject to their
own dynamic recurrence equation. Let us �rst consider a graph which only undergoes state changes (De�ni-
tion 21) but no structural changes (De�nition 19) and, for simplicity, that these changes are driven by di�erential335

equations (among other possible methods) to describe a dynamic. Can we rewrite the recurrence equation of
De�nition 18 in order to account for graph structure? It may be possible to re-organise it into a system of
equations applying to components and relations. But this ignores graph structure and treats the graph as an
unstructured list of elements. It is di�cult to imagine a graph component a�ecting another without there being
a relation between them � otherwise, by de�nition, the graph is not a correct representation of the observer’s340

system. To be consistent with our initial assumption (Proposition 1), that a graph is the correct way to repre-
sent a hierarchical system, we postulate that the graph architecture must be used in dynamics computations in
a meaningful way. We propose the following to impose this consistency:

Proposition 4. Locality of causes: in a dynamic hierarchical system, elementary dynamic changes are produced
and successively spread following system relations and components, i.e. locally.345

1Caution: linear here does not refer to its usual mathematical meaning.
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Algorithm 2 Pseudocode for propagation of elementary changes over the system graph.
generateChange(ec, �ck (t), lk (t), t, dt) {

return( dec (t; dt))
}
neighbours( ca) {

return( frjg j (rj) = (ci; ca)i�nc
)

}
neighbours( rb) {

return( fcag j (rb) = (ci; ca))
}
// recursive
updateElement( ec, k) {

newContext := some_computation( lk (ec))
newState := some_other_computation( newContext)
if ( newContext 6= lk (ec) or newState 6= �ck (ec)) {

lk (ec) := newContext
�ck (ec) := newState
for ( ed in neighbours( ec)) {

updateElement( ed, k)
}

}
}
changeElement(ec, k, dec, t, dt) {

lk (ec (t + dt)) := some_computation( lk (ec (t)), dec (t; dt))
�ck (t + dt) := some_other_computation( lk (ec (t + dt)))
for ( ed in neighbours( ec)) {

updateElement( ed, k)
}

}
propagateChanges(S, t0, k) {

t := t0
while (stopping_condition( t, S) is false) {

... compute dt ...
for ( c := 1 to ne) {

dec := generateChange( ec, �ck (t), lk (t), t, dt)
changeElement(ec, k, dec, t, dt)

}
t := t + dt

}
}

This means that the dynamic recurrence equation of De�nition 18 has a causal meaning only if applied at
graph element level; the system-level recurrence equation will be the result of these local dynamic equations. The
algorithm needed to compute changes and propagate them over the graph becomes more elaborate, involving
recursion (Algorithm 2).

At each granular time step, elementary change (De�nition 23) may arise due to element local context350

(De�nition 7) and state (De�nition 10). Focusing on only one of these changes, once applied, it will in turn at
the next granular time step trigger its elements’ neighbours (outgoing relations for components, end component
for relations) to update their own local context and state accordingly; if this results in a change of local context
and state, the process is further propagated to the graph network until there are no more changes in local
context and state. This sequence describes the spread of changes from only one element. However, many355

changes could arise simultaneously from many di�erent elements, generating overlapping spreading networks
of changes, generating possible con�icts and interactions between them. The algorithm does not specify how
changes are generated: it merely assumes changes may be generated using the information available to the
observer of a given system element, i.e. its local context and state. With an appropriate method to generate
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changes, the system might start evolving simply due to its initial micro-state.360

In Algorithm 2, it is theoretically possible to �nd the changes that have been caused by other past changes
by tracking the succession of local context and state updates that caused the generateChange() function to
generate it. Elementary changes can then be chained, possibly forming a network of changes apparently caused
by each other (Proposition 3). This is a long way from the simplicity of linear causality. For the analysis of
system dynamics, it is helpful to de�ne the following graph:365

De�nition 25. A dynamic change network of a dynamic hierarchical system K (S) is a directed graph describing
the causal pathways between elementary changes of a realised system dynamics (S (t))t<1 under the assumption
of apparent causality. Its components and relations are de�ned as follows:

1. To each node vi 2 CK is attached a description with four descriptors :

DK (vi) = (di1; di2; di3; di4)

where

di1 = idCK (vi) ; vi 2 CK

di2 = idCS (ew) ; ew 2 ES

di3 = t

di4 = dS

di5 = dt

di1 is the unique identi�er of node vi in graph K (S), ES = CS [ RS is the set of elements of S , di2370

the unique identi�er of element ew in system S, di3 is the time at which the change occured, di4 is the
elementary change in S, and di5 is the time grain.

2. The directed edges of K (S) re�ect the direction of apparent causality (Proposition 3), a ! b meaning
that a caused b. They have no descriptor variable except their unique identi�er. They link nodes that
di�er at successive times separated by the time grain dt :375

K : RK ! CK � CK

rv ! (vi; vj) j (di3 = t) and (dj3 = t + dt)

The dynamic change network of a dynamic system provides an image of the succession of changes that occur
during a particular dynamic (Figure 6). Since time increases on every edge, there is no possibility to loop back
in such a network, which is thus an oriented graph (Diestel, 2000). However, since the causal pathways may
involve loops (system elements a�ected more than once over the time course of the dynamics) and con�icts
(more than one change occurring on one element at the same time), it may be useful to make them visible by380

’projecting’ the dynamic change network back on the initial system:

De�nition 26. A causal network of a dynamic system Q (S) is a graph operator mapping a system dynamic
change network K (S) on the system S, where there is one node c0

w for every element ew of S :

CQ = fc0
wgw�ne

and the directed edges are build by ‘merging’ all edges of K (S) where start and end nodes have the same di2
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descriptor, i.e. refer to the same element of S. We use the merging function h to build the edges:385

h : R�
K ! RQ

M = frv j K (rv) = (vi; vj)g ! r0
v j Q (r0

v) =
�
c0

w1
; c0

w2

�

with di2 (vi) = idE S

�
c0

w1

�

and dj2 (vj) = idE S

�
c0

w2

�

We associate to each edge r0
v of Q (S) a descriptor called the multiplicity �, which is the number of edges of

K (S) used to construct it: � = jM j, where jAj denotes the cardinal of set A. This will indicate which causal

pathways are most frequently used over a particular dynamics. By construction,
jRQjP

i=1
�i = jRK j.

Causal networks contain causal patterns other than simple linear patterns (Figure 7). Due to these patterns,
the system dynamics may become extremely di�cult to track, predict, or understand from a mechanistic point390

of view. This issue, characteristic of hierarchical systems, has long been identi�ed as a major feature associated
with emergence (e.g. Bedau, 2003; de Haan, 2006; Searle, 1992; Kim, 1992).

The concepts de�ned in this section and their relationships are shown in Figure 5 of the appendix.

Conclusion: the hierarchical system ontology

While the de�nitions proposed so far are not necessarily original, we have: (1) made them precise; (2) organised395

them in a logical progression; and (3), used only the indispensable backbone of the hierarchical system in order
to see where and how emergence arises within this set of concepts. Our hope is that this ontology will help to
clarify inter-disciplinary discussion of hierarchical systems.

2 Where does emergence lurk?

There is no single, agreed upon, de�nition of emergence (e.g. Bar-Yam, 2004; Bedau, 2003, 2008; Chen et al.,400

2009; Cotsaftis, 2009a; Crutch�eld, 1994; Kim, 1999; Muller, 2003; Searle, 1992), but syntheses have been
proposed (Bedau & Humphreys, 2008; de Haan, 2006; Bonabeau & Dessalles, 1997). Three major types of
emergence were proposed by de Haan (2006): (1) observer-induced emergence, but without consequences for
the system itself, that he called discovery ; (2) mechanistic emergence, with real consequences for the system
independent of the observer; and (3) re�ective emergence, where the observer is actually part of the system405

and may a�ect its dynamics (something that Muller (2003) calls strong emergence). Most authors develop
similar classi�cations, e.g. (Assad & Packard, 1992) distinguish four types of emergence on a scale of increasing
‘objectivity’; terms of ‘weak’ and ‘strong’ emergence are often used, although with di�erent de�nitions (e.g.
Bedau, 1997; Muller, 2003; Searle, 1992).

From our ontology, we identi�ed four types of emergence that match precise properties of the hierarchical410

system de�ned as a graph (Proposition 1). We do not claim these four types are exhaustive, but they address
the most often encountered meanings of emergence. One we do not address is the re�ective emergence sensu
de Haan (2006) or strong emergence sensu Muller (2003), i.e. the case where the observer is part of the system.
In our ontology, the position of the observer relative to the system is irrelevant. We formulate precise de�nitions
of emergence in terms of the system properties they imply. The �rst three de�nitions depend on the presence415

of the observer (Proposition 2) and the last applies only to dynamic systems (De�nition 18).

2.1 ‘Trivial emergence’ due to ignoring system integration

The de�nition of complex systems and emergence are often linked. Typically, a system is said to be complex if it
displays ‘properties that emerge from interactions between its components’. This just means, in our formalism,
that a set of components is di�erent from a graph. The di�erence lies in the relations and the incidence function420

(Proposition 1).
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One should avoid reducing a hierarchical system merely to the set of its components, but this seems to be
common practice (Cotsaftis, 2009b). The popular statement that ‘the whole is more than the sum of its parts’ is
just the (not very surprising) observation that relations are important. Many multi-agent systems focus on the
control problem: they consider that emergence arises when the interactions between agents are not controlled425

by a central or external force (systems that Cotsaftis (2009a) calls ‘complicated’). This is equivalent, in our
case, to systems where the incidence function S is not known a priori, but is generated by system dynamics
from individual component behaviours. To distinguish those hierarchical systems that are simple enough to
understand without being concerned with relations, from those where this information is important, we de�ne
two new terms:430

De�nition 27. A �at system is a system in which the only micro-state is the disconnected micro-state:

8m 2 f1:::Mg ; !m (S) = !0 (S)

Neither local contexts nor interactions play any role in the micro-state computation: the system is ‘�at’,
i.e. displays no structure. It is nothing more than the set or the disconnected graph of its components:
S =

�
fcugu�nc

; ;; 0
�

� fcugu�nc
.

On the example of Figure 4, the �at micro-state of S2 would ignore the local contexts l21;6 and l61;6 : In the435

case of l21;6 , it means that access of Lion 6 to food would not depend on the presence of other lions. This is
synonymous to an absence of competition for food and comparing !0 (S2) and !1 (S2) would be a measure of
this competition.

De�nition 28. An integrated system is a system which veri�es

9m 2 f1:::Mg j !m (S) 6= !0 (S)

Since we can compute the disconnected micro-state (De�nition 17) of any system, we can measure the440

importance of relations, which we call integration I of the system, by comparing its micro-state to its �at
micro-state using some measure of distance:

De�nition 29. System integration Im (S) is de�ned as the distance between !m (S) and !0 (S):

Im (S) =
neX

w=1

nDmwX

xmw=1

ndxmwX

yxmw =1

zyxmw
� zyx0w



where k: : :k denotes some distance de�ned on R+. For the �at system, I0 (S) = 0.

We can then state:445

De�nition 30. A system is said to display trivial emergence if

9m 2 f1:::Mg j Im (S) > 0

When the terms ‘complex system’ and ‘emergence’ are used in this usual, ‘naive’ sense, we suggest using
de�nitions 28 & 30 instead, as those both refer to some observer surprise at novelty which is not really new:
it’s just that an important part of a system has been ignored. Here, trivial emergence is an indication of
unaccounted for system integration, i.e. the importance of the relations and incidence functions in computing450

the system micro-state. By construction, any non-�at hierarchical system has trivial emergence, which makes
this concept uninformative within the present formalism.

2.2 Emergence due to the observer’s choice of descriptors: discovery

Even after accounting for system integration, observers may build a model that, to the best of their knowledge,
represents accurately their understanding of the system under study. However, after further analysis, they �nd455
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that the behaviour of their model and the real system diverge. The observer then realises that the model may
be revised to reduce this discrepancy. This is what Bonabeau & Dessalles (1997) call emergence relative to a
model : the system displays an unexpected property, that was not observed when the model was constructed.
This emergence is observer- (model-) dependent and transient, as it will disappear when the model is revised to
account for the formerly emergent property. Should we use the name ‘emergence’ to only di�erentiate between460

unexpected and expected results in the routine process of experimental science? We agree with Crutch�eld
(1994) in calling this kind of emergence discovery, which implies the idea of being part of a dynamic process.
Contrary to emergence, discovery is an event in time. Before the discovery, the unexpected properties seem
emergent simply because they are unexplained; after the discovery, with the improved model of the system,
their emergent character vanishes.465

De�nition 31. Discovery is de�ned as an event (at step 6) in the following process:

1. an observer O of a system S expects the system dynamics to match some prede�ned pattern, i.e. a
particular time series of states � = (
 (t) ; !m (t))t<1, where m denotes the method chosen by the observer
to generate the micro-states, according to some previous knowledge;

2. O chooses system and element descriptions DS and (Dmw)w�ne
assumed to appropriately describe the470

system in order for its dynamics to display the pattern;

3. using some measurement or computation technique, O generates a realised dynamic series of system states
�̂ =

�

̂ (t) ; !̂m (t)

�

t<1
;

4. O uses an error function �
�

�; �̂
�

to compute a distance between the realised system dynamics and the
expected pattern;475

5. based on some tolerance threshold � , O then decides that the realised dynamics does not match the
expected pattern when �

�
�; �̂

�
> � � 0. We call this event the observer surprise in front of unexpected

results;

6. Using another set of descriptions
n

D0
S ; (D0

mw)w�ne

o
, and repeating steps 3-4, we call discovery of a better

description of the system the fact that �
�

�0; �̂0
�

< �
�

�; �̂
�

;480

7. Furthermore, when �
�

�0; �̂0
�

< �
�

�; �̂
�

but �
�

�0; �̂0
�

> � � 0, the discovery is incomplete as there is a
possibility to further improve system description beyond the current improvement.

If the realised dynamics matches the expected pattern at step 5, or if the observer does not try another set of
descriptions at step 6, there is no possibility of discovery.

Let us now imagine that we have discovered all the descriptors needed to understand a system. It may well485

be that the system and its elements have completely di�erent descriptors, that mean completely di�erent things
(in De�nition 4, each element can have a di�erent description, i.e. a di�erent set of descriptors). Bedau (2003)
de�ned nominal emergence as the case where system-level properties have no counterpart at the component
level because this would not mean anything, like the concept of the speed of an object in a movie has no
meaning when individual frames are taken separately. However, he also explains that nominal emergence is a490

‘�rst approximation’, a very broad concept that only points to a discrepancy between macro- and micro-level
descriptions of a system, without further explanation. Here, nominal emergence arises naturally from De�nition
4.

Finally, we might �nd that the macro-state of a system is a much ‘simpler’ description of the system than its
micro-state. Dessalles et al. (2007) formalised this case as ‘emergence relative to a model’ (but with a di�erent495

meaning from Bonabeau & Dessalles (1997)). It is based on the observation of a drop in complexity (using some
mathematical de�nition of complexity, such as algorithmic complexity) between the higher-level observations of
a system behaviour (the macro-state) and the detail of the rules generating those observations (the micro-state).
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For example, in J.H. Conway’s game of Life (https://en.wikipedia.org/wiki/Conway’s _Game_of_Life), one
may observe that the patterns called gliders reproduce themselves every four timesteps at a certain distance500

and in a certain direction, which produces the illusion of movement. One can then describe a glider by giving
the position of the cells for the �rst four time steps and say that this sequence continues as long as the glider
‘lives’. This is a description of a glider that is in general shorter than listing the positions of the cells that
constitute the glider for its entire lifespan. The shorter description requires a macroscopic point of view from
the observer to recognise spatial patterns and relate together patterns that are several timesteps apart. The505

description, being shorter, represents a drop in complexity.

2.3 Emergence due to computational irreducibility between macro-state and micro-
states

In sections 2.1-2.2, emergence could be attributed to a lack of information about the system. However, if we
assume perfect knowledge, emergence may still be manifest as a gap between system macro- and micro-state.510

We formalise this gap through the following question: is there a function such that the macro-state can be
computed from one of the micro-states?

De�nition 32. The upscaling function relative to a context qm is de�ned as:

fm : Rnm1 � : : : � Rnmne ! RnDS

!m (S) ! 
 (S)

fm allows two nested organizational ‘scales’ or levels to be related: the system (upper level/scale) and its
elements (lower level/scale).515

Emergence can be de�ned from the properties of the upscaling function:

1. fm exists � According to Kim (1999), there is no emergence if the upscaling function exists. The macro-
state simply results from its micro-state(s). It is nothing more than a computation based on the system
elements, no matter how convoluted that computation may be.

Other authors (Bedau, 1997; Searle, 1992) consider that the di�culty of the computation does make a520

di�erence: when the computation of the macro-state is particularly di�cult (Bedau, 2003), the system
is said to be weakly emergent. Zwirn & Delahaye (2013) formally de�ne computational irreducibility2 to
specify what is meant by ‘particularly di�cult’. Other authors are very unclear on this topic. Informally
(and using our de�nitions 15 & 16), computational irreducibility means that there is no way to compute

 (S) from !m (S) without having to compute every state of every element in turn; in other words, fm525

cannot be simpli�ed: every detail of the system matters.

2. fm does not exist � Assad & Packard (1992) rate this circumstance at the top of a scale of four increasing
degrees of emergence and call it maximal emergence: the macro-state cannot be deduced from the micro-
state by nature.

Our de�nitions of micro-state, macro-state and upscaling function, while mapping relatively well to existing530

concepts of emergence, nevertheless raise new questions.
Authors de�ning weak emergence usually consider only system ‘components’ without explicitly including

relations and incidence functions in their system de�nition (cf. Section 2.1). Therefore, it is di�cult to know to
what parts of the system computational irreducibility should apply. There appear to be two options:

1. Computational irreducibility interpreted stricto sensu, i.e., the computation of the macro-state must535

include all the details of the system. We interpret this as meaning that the only relevant context is the
maximal context qS . The condition for weak emergence is then:

2Zwirn’s de�nition of computational irreducibility is based on Turing machines (Zwirn & Delahaye, 2013), but he states in this
article that a similar de�nition could be proposed based on functions. We assume here that such a de�nition exists, functions being
easier to include in the present formalism.
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De�nition 33. Weak emergence occurs when the only existing upscaling function is based on qS and is
computationally irreducible sensu Zwirn & Delahaye (2013):

8
<

:
9fS 6= 0 j 
 (S) = fS (!S (S)) ; and fS is irreducible

@m 2 N j 
 (S) = fm (!m (S))

where 0 stands for the null function.540

2. Computational irreducibility interpreted more loosely:

De�nition 34. Context-dependent emergence occurs when the upscaling function fm is computationally
irreducible sensu Zwirn & Delahaye (2013):

9m 2 N j (
 (S) = fm (!m (S))) and fm is irreducible

Here we make no assumption about other contexts as context-dependent emergence applies only within
this speci�ed context m. The system may well be non-emergent using other local contexts.545

With the upscaling function, we can explicitly link weak emergence (Bedau, 1997; Searle, 1992) to computational
irreducibility, as claimed by Zwirn & Delahaye (2013). Our explicit representation of the system as a graph
enables us to distinguish between a weak emergence independent of local context and a context-dependent
weak emergence, which depends on how micro-states are built with respect to local context. De�nition 34 is
useful when only one non-trivial local context is available to compute the micro-state, a probably common case550

compared to the requirements of De�nition 33 where all local contexts must be assessed.
The case where an upscaling function does not exist is di�cult to interpret: it is hard to imagine this

possibility without it being a case of missing descriptors, as in discovery (De�nition 31). If this is not the case,
how should we interpret this kind of emergence, usually quali�ed as strong? Could a system, with a macro-state
that cannot be explained from its micro-state, exist? To diagnose strong emergence in a system would mean555

that there is no way to explain its macroscopic behaviour (or some part or it) from its microscopic description. It
would mean that any scienti�c enquiry to explain the macroscopic behaviour from the parts would be doomed to
fail. Conversely, any attempt at explaining the macroscopic behaviour from the parts assumes that the system
does not display strong emergence. Quoting Bedau (2003):

Strong emergence starts where scienti�c explanation ends.560

Short of having any evidence of being in presence of strong emergence, and as long as we are willing to keep
trying to explain the macro-state from the miscro-state, we are left with the assumption that strong emergence
does not exist. In our formalism, this translates to assuming :

Proposition 5. A hierarchical system always has at least one upscaling function:

8S; 9 (
; m; !m; fm) j 
 (S) = fm (!m (S))

If the upscaling function cannot be found using the current system description, then new descriptors must565

be added to the description until a satisfactory upscaling function can be written.
In accordance with our present scienti�c approach of the world, we therefore assume that maximal emergence

sensu Assad & Packard (1992) does not exist. We expect system-level and subsystem-level descriptions to match
somewhere � even if this ‘somewhere’ is very di�cult to �nd. If they do not, it means something is missing in
the description of either or both levels.570

2.4 Emergence due to complex causality networks

Integration, discovery and computational irreducibility, considered as forms of emergence by many authors,
do not require the system to be dynamic. However, many specialists of emergence base their de�nitions on
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causation, implying a dynamic system (Bedau, 2003; Kim, 1992). For Bedau (2003) and Searle (1992), downward
causation (i.e. the system causing its elements to change) that is not reducible to upward causation (i.e. changes575

in the system being caused by its elements) is called strong emergence. However, they believe strong emergence
does not exist in nature. In contrast, for Muller (2003), the distinction between weak and strong emergence
depends on downward causation from the system on its components by (1) merely a�ecting their behaviour
(weak) or (2) changing the rules of their behaviour (strong). It seems that in all cases, including Kim (1999),
emergence is associated with the di�culty in predicting the system’s behaviour because of complicated causal580

pathways. Although there is clearly no agreement on how emergence relates to causal pathways, there seems
to be a tendency to admit that (1) the microscopic control of dynamics is the ‘normal’ causal pathway, i.e.
the system macro-state is supervenient to its micro-state given some context, and is (weakly) emergent when
the upscaling function fm is computationally irreducible (De�nitions 33-34); and (2) any macroscopic control of
the dynamics is reducible to the microscopic dynamics, i.e. there is a causal loop from the micro-states to the585

macro-state and back to the micro-states.
There are problems with these de�nitions: (1) they tend to focus on components to the exclusion of relations;

relations could also have causal powers; (2) there may be a wide diversity of causal powers among components
and relations, i.e. they may generate structural change events, or drive smooth changes in descriptor variables,
or just change passively in response to stimuli from other components or relations; and (3) they ignore the590

potentially very high complexity of causal networks (Section 1.5), where causal pathways may cross and interact
in very elaborate ways, generating particular causal circuits (Figure 7). These ideas may be present, but only
implictly in most articles. Making the causal network explicit (De�nition 26) is our answer to these complex
causality issues: what could happen may be so intricate that the notions of downward or upward causation just
become obsolete because they are incapable of capturing such complexity.595

Research in cybernetics (Wiener, 1948) and biology (Weiss, 1971) has for some time recognized the ability
of feedback loops to disrupt the linear chain of causality by having an e�ect acting back upon its cause. Patten
& Odum (1981) identi�ed two di�erent ways of constructing feedback loops within a cybernetic system. For
Bateson (1972, quoted in Ulanowicz, 2009), causal circuits can react non-randomly to random events. Electronic
engineering routinely uses feedback loops of various types to design complex regulatory systems (control theory:600

Astol� et al., 2008). The causal loop is considered the �rst step towards self-organisation (De Wolf & Holvoet,
2005). Cotsaftis (2009b) considers that a system is complex when ‘self-organisation �lters out external action,
making the system more robust to outer e�ects’. In ecology, Ulanowicz (1990) builds upon this result to
demonstrate that feedback loops in trophic networks disrupt the overwhelming physical linear causation to yield
a di�erent logic, where the stability of cycles arises from a constant throughput of energy or matter. His605

reasoning is based on the energy and matter �ows in trophic webs. Ulanowicz (2009) further demonstrates
that some loops may be stable and constitute kernels of coherence in a system. In all these works, loops are
able to acquire a predictable and deterministic-like behaviour from randomness, and remain partly autonomous
from external forcings. The weakness of all these works, however, is that most of them cultivate an ambiguity
between �ows and causes: there is a semantic drift from �ow loops to causal loops in their vocabulary.610

Here, we solve this ambiguity by explicitly building, for any dynamic hierarchical system, a causal network
(De�nition 26). The causal network itself is a particular case of a �ow network (Diestel, 2000), so that all the
previously mentioned cybernetic and �ow dynamics results apply. Our formalism gives them a much broader
scope. Not only matter and energy �ows, but any other type of graph dynamics, including structural changes
(component and relation addition and deletion: cf. De�nition 19, 20), can be considered.615

What is the relation between (stable) causal loops and emergence? According to Bedau (1997), emergence
has two ‘hallmarks’:

(1) Emergent phenomena are somehow constituted by, and generated from, underlying processes;
(2) Emergent phenomena are somehow autonomous from underlying processes.

Autonomy is the key word. According to cybernetics, stable causal loops are able to provide some autonomy620

to a system. Here, autonomy means the ability for the system to generate outputs independently from external
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Figure 7: Elementary causal structures that can appear on a causal network (De�nition 26). (1) chain, (2)
divergent fork, (3) convergent fork, (4) source, (5) sink, (6) elementary (unitary) loop.

sources of change (e.g. producing a constant out�ow from a randomly varying in�ow, generating discrete events
from a continuous �ow input). When those outputs have causal consequences over the external world, they are
also independent from external in�uence, and thus can be considered as new causal powers of the system. The
existence and nature of a causal loop (referred to as downard and upward causation) between the system and625

its components, is at the core of de�nitions of emergence by Bedau (2003) and Searle (1992).
According to Ulanowicz (2009), causal loops may be either cohesive or disruptive. Cohesive causal loops

(e�ects reinforcing their causes through iteration) result in system autonomy, and tend to maintain themselves
with time, hence be stable, while disruptive causal loops (e�ects destroying their causes through iteration)
are instable and result in system collapse. Being due to new causal powers, stability, autonomy, and collapse,630

constitute observer-independent emergent system properties. Extending the demonstration of Ulanowicz (2009)
for �ow networks to causal networks, we propose that they are due to the particular structure of the system’s
causal network:

Proposition 6. Ontological emergence.

1. A hierarchical dynamic system S has ontologically emergent properties when its causal network Q(S) is635

not a walk, or equivalently, contains loops.

2. The presence of particular causal structures (types 2-6 in Figure 7) in the causal network Q(S) of a
hierarchical dynamic system S disrupts linear causality.

Point (2) of Proposition 6 is a conjecture generalising the demonstration by Ulanowicz (2009) that feedback
loops in �ow networks are responsible for emergent system properties. It is easy to demonstrate that these640

results hold for causal networks as they are a particular case of �ow networks. It remains to be demonstrated
that divergent and convergent causal forks, causal sources and sinks (Figure 7), may also produce emergent
properties. Demonstrating this requires work beyond the scope of this paper.

Many people associate emergence with complex systems. Here we propose a de�nition of a complex system
based soley on ontological emergence:645

De�nition 35. A complex system is a hierarchical dynamic system displaying ontological emergence.
Although this de�nition is not really useful for modelling, it enables clari�cation of the the vocabulary by

specifying which type of emergence should be considered when speaking of complex systems. Using UML,
we placed the de�nitions of emergence of Section 2 in the appendix, on the diagrams of Figures 1-5, yielding
Appendix Figure 6.650
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Conclusion

The set of de�nitions we propose here, organised into a consistent framework called the hierarchical system
ontology (see appendix), enable (1) the clari�cation and uni�cation of many de�nitions of emergence and systems
and (2) the building of rigorous models of hierarchical systems in a most generic way. All the de�nitions of
emergence we have analysed to build our ontology are applicable to any hierarchical system and can be organised655

in order of increasing ‘objectivity’.

� Despite very active recent research on the use of graphs in various sciences, ignoring relations in a system
still seems to be common practice: people tend to focus on objects, especially when they belong to the
real world and are concrete, rather than on the more abstract concept of relations (e.g., even relational
SQL databases are actually collections of objects (tables), where relations are not implemented explicitly,660

but rather as querying rules). As a result, some call emergence simply a discovery that relations are
important. We called this type of emergence trivial emergence (Section 2.1).

� Beyond this, the observer often discovers that system behaviour and properties cannot be fully described
by their initial system model. The discrepancy between the real-world system and the model is interpreted
as a case of emergence from the system: a new, unpredicted behaviour. It may be that new descriptors665

are su�cient to eliminate this discrepancy. This process constitutes the very core of the experimental
method: science is an iterative process where discoveries are made from successive experiments on the
same system and allow, layer by layer, a more accurate image of the object under study to be elaborated.
We called this type of emergence discovery (Section 2.2).

� At times, systems resist simpli�cation; predicting system behaviour requires very di�cult computations in670

order to link microscopic and macroscopic properties. This obstacle to understanding, called computational
irreducibility, is considered by many as a signature of emergence. Following other authors, we called weak
emergence the existence of a computationally irreducible link between macro- and micro-states. We also
distinguished the particular case where a di�erent look at the system may solve the irreducibility problem,
called context-dependent emergence (Section 2.3).675

� Most de�nitions of emergence based on causality do not delve into the details of causal propagation over
a graph. Some disciplines, however, have identi�ed that causal loops (or feedbacks) could behave as novel
causal sources within a hierarchical system. Identifying causal loops as the source of autonomy, stability,
or collapse, has two advantages in the de�nition of emergence: (1) it is based on a precisely de�ned causal
mechanism; and (2) it does not rely only on observer surprise, but on a real process creating novelty that680

leads to system self-organisation, coherence, durability, or on the contrary, excessive fragility. We called
this ontological emergence (Section 2.4), as it is the only type of emergence independent of the observer’s
point of view. We further propose that the quali�er complex should be reserved for dynamic hierarchical
systems exhibiting this kind of emergence.

� Finally, we avoid the term strong emergence. As de�ned by various authors, strong emergence is the685

non-existence of a link between the micro-state and the macro-state, i.e. the impossibility of explaining
the macro-state from the micro-states. To pursue a scienti�c explanation is to assume that the micro- to
macro-state link always exists. Thus, strong emergence cannot exist in scienti�c discourse (Section 2.3).

Emergence and complex systems have been the topic of many papers and are still disputed concepts in many
�elds. While a number of de�nitions converge, some confusion and ambiguity still remains. Based on graph690

theory and on the common premises of all emergence de�nitions, we have proposed a consistent set of formal
de�nitions that we hope will clarify these concepts in modelling and aid further discourse. As noted in the
case of trivial emergence, what really makes the di�erence between a system and a complex system is a graph
branching pattern - but not the expected one of the system itself. Rather, it is the architecture of the causal
network associated with that system that will invoke true, ontological emergence.695
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Epilogue

An ecologist, having reached this point, may be left wondering what practical relevance this subject has for
the everyday practice of ecology. But can ecologists be content simply to describe their basic unit of study �
the ecosystem � as, in some mysterious way, complex, and leave it at that? If one message were to be taken
from this paper, it is that feedback loops are central for emergent properties. The ecological literature is replete700

with discussions of ecosystem stability, resilience, resistance, bi-stability etc for a good reason: they are central
concerns if ecology is to stake a claim as a predictive science. As all these behaviours are commonly assumed to
be emergent properties, how can we sensibly conduct such discussions without �rst agreeing on a clear de�nition
of emergence?
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The hierarchical system ontology

The following �gures represent the relations between the concepts de�ned in the
main document. They are based on a UML1 class diagram notation.

Thee is a class for every item de�ned in de�nitions and propositions of the
main document. For easier reading, the whole diagram has been splitted into 6
�gures, matching sections 1.1 to 1.5, and 2. On every �gure,

� white boxes represent de�nitions from the current section while gray boxes
represent de�nitions from outside this section;

� classes with a name in italics represent concepts de�ned outside this arti-
cle;

� number in circles match the de�nition number as appearing in the main
document; numbers pre�xed by a `P' refer to proposition numbers;

� the conventional UML triangular arrows represent specialisation relations
(e.g. in Figure 1, a relation is an element);

� the conventional UML diamond-ending lines representaggregation rela-
tions (e.g. in Figure 1, a hierarchical systemhas ne elements);

� bold lines represent other UML associations;

� numbers or number ranges (e.g. 0::� , meaning `0 ton > 0') on associations
and aggregations representmultiplicities (default to 1);

� expressions on associations areroles, the little arrow showing in which
direction the role should be read (e.g. in Figure 1, the incidence function
assigns2 componentsto 1 relation).

1Object Management Group (2015). OMG Uni�ed Modeling Language (OMG UML).
Version 2.5 formal/2015- 03-01.
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Figure 1: The hierarchical system ontology: concepts de�ned in Section 1.1.

Figure 2: The hierarchical system ontology: concepts de�ned in Section 1.2.
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Figure 3: The hierarchical system ontology: concepts de�ned in Section 1.3.

Figure 4: The hierarchical system ontology: concepts de�ned in Section 1.4.
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Figure 5: The hierarchical system ontology: concepts de�ned in Section 1.5.
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Figure 6: The relation of emergence concepts de�ned in Section 2 with the
hierarchical system ontology.
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