N. Zecevic, Y. Chen, and R. Filipovic, Contributions of cortical subventricular zone to the development of the human cerebral cortex, The Journal of Comparative Neurology, vol.412, issue.2
DOI : 10.1007/978-1-4615-6619-9_2

. Comp, M. Neurol, W. B. Götz, B. E. Huttner, J. H. Lamonica et al., Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex Neuronal subtype specification in the cerebral cortex Lineage-dependent circuit assembly in the neocortex The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex Human-specific genomic signatures of neocortical expansion Neurogenic radial glia in the outer subventricular zone of human neocortex doi:10.1038/nature08845. [13] M. Marin-Padilla, Dual origin of the mammalian neocortex and evolution of the cortical plate Interneurons in the developing human neocortex Trekking across the brain: the journey of neuronal migration Neuronal migration disorders: Focus on the cytoskeleton and epilepsy Embryonic and early fetal development of the human neocortex Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex Two modes of radial migration in early development of the cerebral cortex Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex Multiple origins of Cajal-Retzius cells at the borders of the developing pallium Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years Diverse subtypes of astrocytes and their development during corticogenesis Glial cells in neuronal network function Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit ?2?-1 Genomic aberrations of the CACNA2D1 gene in three patients with epilepsy and intellectual disability Review: Roles for astrocytes in epilepsy: insights from malformations of cortical development Risk factors for congenital anomaly in a multiethnic birth cohort: an analysis of the Born in Bradford study High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays, OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease28] H.H. Ropers, Genetics of early onset cognitive impairment Somatic mutations in cerebral cortical malformations, pp.491-777, 1978.

C. M. Gibbs, S. S. Eng, E. Jamuar, L. G. Tan, B. B. Biesecker et al., Clinical application of next-generation sequencing for Mendelian diseases 10. doi:10.1186/s40246-015-0031-5. [35] Deciphering Developmental Disorders Study, Prevalence and architecture of de novo mutations in developmental disorders An approach to pediatric exome and genome sequencing Diagnostic exome sequencing in persons with severe intellectual disability, J. Med. Hum. Genomics. Nature. Curr. Opin. Pediatr. N. Engl. J. Med, vol.369, issue.367, pp.1502-1511, 1056.

/. Phenome, A. S. Project, S. F. Allen, P. Berkovic, N. Cossette et al., Epilepsy, Dlugos, M.P. Epstein, M. Fiol, N.B. Fountain

E. H. Knowlton, R. Kossoff, R. Kuperman, D. H. Kuzniecky, S. M. Lowenstein et al., De novo mutations in epileptic encephalopathies, Nature, vol.501, pp.217-221, 2013.

C. A. Yu, N. Walsh, . J. Engl, L. G. Med, N. B. Biesecker et al., A genomic view of mosaicism and human disease Prenatal diagnosis of malformations of cortical development by dedicated neurosonography Dobyns, A developmental and genetic classification for malformations of cortical development: update 2012 Malformations of cortical development: clinical features and genetic causes Surgery for malformations of cortical development causing epilepsy Human disorders of cortical development: from past to present The wide spectrum of tubulinopathies: what are the key features for the diagnosis?, Somatic mutations in cerebral cortical malformations Malformations of cortical development and epilepsy Line Jacquemont, C. Beldjord, J. Chelly, N. Bahi-Buisson, Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria, pp.733-743, 2000.

N. J. Guerrini, N. Cowan, J. Bahi-buisson, . Chelly, T. Mutations-in et al., The agyria-pachygyria complex: a spectrum of cortical malformations Neuronal migration disorders, genetics, and epileptogenesis Subcortical band heterotopia in rare affected males can be caused by missense mutations in DCX (XLIS) or LIS1 Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly doi:10.1007/s00401- 010-0768-9 Genotypically defined lissencephalies show distinct pathologies The catalytic subunit of bovine brain platelet-activating factor acetylhydrolase is a novel type of serine esterase Isolation of a Miller- Dieker lissencephaly gene containing G protein beta-subunit-like repeats Clinical and molecular diagnosis of Miller-Dieker syndrome Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome Characterization of brain malformations in the Baraitser-Winter syndrome and review of the literature, LIS1 functions in normal development and disease61] W.B. Dobyns, S. Das, LIS1-Associated Lissencephaly/Subcortical Band Heterotopia GeneReviews(®), pp.639-647, 1991.

N. Saillour, C. Carion, P. Quelin, N. Leger, C. Boddaert et al., LIS1-Related Isolated Lissencephaly, Archives of Neurology, vol.66, issue.8, 2009.
DOI : 10.1001/archneurol.2009.149

URL : https://hal.archives-ouvertes.fr/hal-01104698

. Bahi-buisson, A novel recurrent LIS1 splice site mutation in classic lissencephaly, Am. J. Med. Genet. A, vol.173, 2017.

]. S. Hirotsune, M. W. Fleck, M. J. Gambello, G. J. Bix, A. Chen et al., Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality, Proc. Natl, pp.333-339, 1998.

. Acad, . U. Sci, Y. Tsai, A. R. Chen, R. B. Kriegstein et al., Multiple dose-dependent effects of Lis1 on cerebral cortical development Wynshaw-Boris, LIS1 controls mitosis and mitotic spindle organization via the LIS1?NDEL1?dynein complex The structure of the Nterminal domain of the product of the lissencephaly gene Lis1 and its functional implications A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein functionNUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system LIS1 and NudE induce a persistent dynein force-producing state Lis1 regulates dynein by sterically blocking its mechanochemical cycle, eLife Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein Mitotic spindle regulation by Nde1 controls cerebral cortical size Human mutations in NDE1 cause extreme microcephaly with lissencephaly, LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development, pp.98-6429, 1993.

M. Genet, S. Yamada, Y. Toba, K. Yoshida, D. Haratani et al., LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein NudEL targets dynein to microtubule ends through LIS1 Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning Lis1 is an initiation factor for dynein-driven organelle transport A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome, EMBO J. Nat. Cell Biol. Curr. Biol. CB. J. Cell Biol. Cell, vol.72, issue.92, pp.296-304, 1998.

Y. Mcconnell, P. Berwald-netter, J. Denoulet, . G. Chelly90-]-j, P. T. Gleeson et al., Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons Doublecortin mutations cluster in evolutionarily conserved functional domains, Francis, Branching and nucleokinesis defects in migrating interneurons derived from doublecortin knockout mice, pp.247-256, 1999.

H. Genet, T. Koizumi, J. G. Tanaka, H. Gleeson, H. Koizumi et al., Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain The genetics of lissencephaly, Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes, pp.1387-1400, 2006.

K. R. Taylor, A. K. Holzer, J. F. Bazan, C. A. Walsh, J. G. Gleeson et al., New insights into genotype-phenotype correlations for the doublecortin-related lissencephaly spectrum Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations Intragenic deletions and duplications of the LIS1 and DCX genes: a major disease-causing mechanism in lissencephaly and subcortical band heterotopia Doublecortin functions at the extremities of growing neuronal processes Doublecortin is required in mice for lamination of the hippocampus but not the neocortex Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency Cellular anatomy, physiology and epileptiform activity in the CA3 region of Dcx knockout mice: a neuronal lamination defect and its consequences Epilepsy in Dcx knockout mice associated with discrete lamination defects and enhanced excitability in the hippocampus Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth RNAi reveals doublecortin is required for radial migration in rat neocortex Novel embryonic neuronal migration and proliferation defects in Dcx mutant mice are exacerbated by Lis1 reduction, Patient mutations in doublecortin define a repeated tubulinbinding domain Proc. Natl. Acad. Sci. U. S. A. Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures Proc. Natl. Acad. Sci. U. S. A. Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration114] D.E. Lysko, M. Putt, J.A. Golden, SDF1 regulates leading process branching and speed of migrating interneurons, pp.34442-34450, 1523.

J. Soc, D. E. Neurosci, M. Lysko, J. A. Putt, T. Golden et al., SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration, J. Neurosci. Off. J. Soc. Neurosci. J. Cell Biol, vol.34117, issue.165, pp.31-1739, 2004.

N. Albaud, H. Cagnard, F. F. Roest-crollius, L. Digilio, M. Mcmahon et al., Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND " OFF- PATHWAY " CELLULAR MECHANISMS ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in Xlinked mental retardation, Early born neurons are abnormally positioned in the doublecortin knockout hippocampus, pp.90-108, 2002.

W. B. Zackai, T. Dobyns, M. Fullston, A. Finnis, B. Hackett et al., Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation Screening and cell-based assessment of mutations in the Aristaless-related homeobox (ARX) gene Expansion of the ARX spectrum, Hum. Mutat. Clin. Genet. Clin. Neurol. Neurosurg, vol.23, issue.80, pp.147-159, 2004.

G. M. Halley and . Mancini, Asymmetric polymicrogyria and periventricular nodular heterotopia due to mutation in ARX, Am. J. Med

. A. Genet, . H. 158a-e, M. Sherr-poirier, I. Eisermann, A. Caubel et al., The ARX story (epilepsy Combination of infantile spasms, non-epileptic seizures and complex movement disorder: a new case of ARX-related epilepsy X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG) Analysis of the hypothalamus in a case of X-linked lissencephaly with abnormal genitalia (XLAG), Brain Dev Reinitiation of mRNA translation in a patient with X-linked infantile spasms with a protein-truncating variant in ARX A novel mutation in the aristaless domain of the ARX gene leads to Ohtahara syndrome, global developmental delay, and ambiguous genitalia in males and neuropsychiatric disorders in females, Curr. Opin. Pediatr. Epilepsy Res. Ann. Neurol. Acta Neuropathol. (Berl.). Eur. J. Hum. Genet. EJHG.Z. Ek?io?lu, A.W. Pong, M. Takeoka Epilepsia, vol.15, issue.24, pp.1472-1476, 2002.

P. Shoubridge, J. Mol, O. Genet, J. L. Marín, M. Rubenstein et al., Dobyns, X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term Interneuron deficits in patients with the Miller-Dieker syndrome Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A Arx together with FoxA2, regulates Shh floor plate expression Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division Opposing actions of Arx and Pax4 in endocrine pancreas development Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females The reeler gene: a clue to brain development and evolution A protein related to extracellular matrix proteins deleted in the mouse mutant reeler, Cell migration in the forebrain133] O. Marín, Interneuron dysfunction in psychiatric disorders Developmental interneuron subtype deficits after targeted loss of Arx, pp.203-214, 1991.

]. S. Soriano150, Y. Y. Hong, D. T. Shugart, S. A. Huang, P. E. Shahwan et al., Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations, Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations, pp.1345-1358, 1055.

D. A. Keays, G. Tian, K. Poirier, G. Huang, C. Siebold et al., Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with a loss-of-function mutation in CDK5 Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification RELN and VLDLR mutations underlie two distinguishable clinico-radiological phenotypes Cerebellar ataxia, mental retardation and dysequilibrium syndrome 1 (CAMRQ1) caused by an unusual constellation of VLDLR mutation A truncated Reelin protein is produced but not secreted in the " Orleans " reeler mutation (Reln C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus Reelin induces Erk1/2 signaling in cortical neurons through a non-canonical pathway Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex Reelin is a ligand for lipoprotein receptors Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration Inside-Out Radial Migration Facilitates Lineage-Dependent Neocortical Microcircuit Assembly, Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation GTPases: biochemistry and biology Reelin signals through apolipoprotein E receptor 2 and Cdc42 to increase growth cone motility and filopodia formation, pp.45-57, 1997.

J. Soc, G. M. Neurosci, W. A. Dillon, K. C. Tyler, J. Omuro et al., CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy, GeneReviews(®), pp.14759-14772, 1993.

G. Prabhakar, J. Uyanik, M. I. Rankin, D. T. Rees, K. Pilz et al., Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A), TUBB2B and TUBA1A. Uyanik, Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly, pp.136-2013, 2007.

R. A. Kumar, D. T. Pilz, T. D. Babatz, T. D. Cushion, K. Harvey et al., TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: An unusual presentation of tubulinopathy, Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects, pp.2817-2827, 2010.

G. Saillour, L. Broix, E. Bruel-jungerman, N. Lebrun, G. Muraca et al., Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown, Human Molecular Genetics, vol.23, issue.6, pp.4462-4473, 2010.
DOI : 10.1093/hmg/ddt538

URL : https://academic.oup.com/hmg/article-pdf/23/6/1516/2186548/ddt538.pdf

D. A. Cowan, R. W. Keays, M. Stottmann, A. Donlin, A. Hafner et al., A mutation in Tubb2b, a human polymicrogyria gene, leads to lethality and abnormal cortical development in the mouse Mutations in the murine homologue of TUBB5 cause microcephaly by perturbing cell cycle progression and inducing p53-associated apoptosis Gene knockout analysis of two gamma-tubulin isoforms in mice Sheen, Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia, Mutations in the ?-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities Saintpierre, A. Elmorjani, Deciphering Developmental Disorders study, pp.1554-1562, 2005.

R. Masson, D. Tripathy, C. Keays, L. Beldjord, J. Nguyen et al., Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations Autosomal recessive form of periventricular heterotopia, Nat. Genet. Brain J. Neurol, vol.48, issue.129, pp.1349-1358, 0192.

S. F. Radtke, P. R. Berkovic, C. A. Huttenlocher, . L. Walsh-]-v, V. S. Sheen et al., Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex, Neuron. Nat. Genet, vol.21, issue.36, pp.1315-1325, 1998.

J. Vanderburg, J. L. Joseph, R. Hecht, R. Folkerth, C. A. Guerrini et al., Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia doi:10.1093/hmg/ddn377, Hum. Mol. Genet, vol.18, pp.497-516, 0195.

S. Simpson, H. Mansour, M. Mcneill, S. P. Götz, Y. Robertson et al., Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development, Nat. Genet, vol.45, pp.1300-1308, 2013.

H. Kosaki, S. Tabata, K. Saitoh, V. Nagata, A. Conti et al., Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis199] S. Bizzotto, F. Francis, Morphological and functional aspects of progenitors perturbed in cortical malformations, Front Upregulation of neurovascular communication through filamin abrogation promotes ectopic periventricular neurogenesis, eLife, the corticogenesis: possible involvement in periventricular nodular heterotopia and intellectual disability MEKK4 signaling regulates filamin expression and neuronal migration, pp.82-95, 2006.

S. H. Blair, J. A. Cross, C. A. Sayer, and . Johnson, A meckelin-filamin A interaction mediates ciliogenesis, Hum. Mol. Genet, vol.21, pp.1272-1286, 2012.

A. W. Hart, J. E. Morgan, J. Schneider, K. West, L. Mckie et al., Cardiac malformations and midline skeletal defects in mice lacking filamin A, Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response, pp.2457-2467, 2006.
DOI : 10.1093/hmg/ddl168

P. Genet, Z. Grzmil, B. Enkhbaatar, O. Gundsambuu, S. Oidovsambuu et al., Early embryonic lethality in gene trap mice with disruption of the Arfgef2 gene Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities Smooth, rough and upside-down neocortical development Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy, Int. J. Dev. Biol. Ann. Neurol. Curr. Opin. Genet. Dev. Neurogenetics, vol.39, issue.14, pp.1259-1266, 1997.

A. Campbell, N. Dystroglycan-dystrophy, . J. Engl, H. S. Med, J. L. Booler et al., Degree of Cajal-Retzius Cell Mislocalization Correlates with the Severity of Structural Brain Defects in Mouse Models of Dystroglycanopathy A role for dystroglycan in basement membrane assembly An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy, Brain Pathol. Zurich Switz. Cell. Nature, vol.364, issue.26, pp.939-946, 1998.

V. Herrmann, B. Straub, T. Talim, H. Voit, T. Topaloglu et al., Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies, POMGnT1, Dev. Cell. Nature, vol.1, issue.418, pp.717-724, 2001.

T. Campbell, M. Willer, A. O. Almuriekhi, J. Ça?layan, K. Vajsar et al., Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome, Am. J. Hum. Genet. Am. J. Hum. Genet, vol.99, pp.1181-1189, 2002.

A. S. Muntoni, W. B. Loder, T. L. Dobyns, S. Winder, K. D. Strahl et al., ISPD lossof-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly, POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome, pp.575-580, 2005.

A. Hewitt, M. Z. Steinbrecher, M. M. Seidahmed, A. Shaheed, H. G. Abomelha et al., Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome, Hum. Genet, vol.121, pp.685-690, 2007.

U. Manzini, D. Consortium, Y. Stemple, F. Lin, A. J. Muntonidystroglycan et al., POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability Ectopic clustering of Cajal-Retzius and subplate cells is an initial pathological feature in Pomgnt2-knockout mice, a model of dystroglycanopathy, Missense mutations in ?-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome Lin, H. van Bokhoven, Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of ?-dystroglycan, pp.354-365, 2012.

D. J. Dumais, E. P. Dilworth, M. Harrington, D. De-leau, Z. Lyons et al., COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker-Warburg syndrome in humans GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex, COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts, pp.3194-3209, 2010.

P. K. Genet, J. E. Grewal, S. A. Hewitt, F. Moore, J. Saito et al., Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1) Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly, FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies, pp.1573-216, 2002.

J. Barry, V. A. Rodriguez, A. Gupta, W. M. Al-qudah, J. M. Eyaid et al., Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome, Am. J. Hum. Genet, vol.91, pp.541-547, 2012.

M. A. Kang, M. Salih, E. Mora, C. A. Gussoni, M. C. Walsh et al., POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations Current concepts of polymicrogyria, Hum. Mol. Genet. Neuroradiology, vol.23, issue.52, pp.5781-5792, 2010.

A. Grosveld, M. C. Brehm, R. De-wit, W. B. Oegema, F. W. Dobyns et al., RTTN mutations link primary cilia function to organization of the human cerebral cortex A de novo mutation in PRICKLE1 in fetal agenesis of the corpus callosum and polymicrogyria, Am. J. Hum. Genet. J. Neurogenet, vol.29, pp.91-2012, 2015.

F. Izzi, P. Faravelli, L. Accorsi, L. Pinelli, G. Basel-vanagaite et al., Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans Expanding the phenotype of RTTN variations: a new family with primary microcephaly, severe growth failure, brain malformations and dermatitis, De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly, pp.686-696, 2012.

O. Armstrong, C. Caluseriu, B. A. Cytrynbaum, A. M. Drolet, J. L. Innes et al., Finding of Rare Disease Genes (FORGE) Canada Consortium, De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes, Nat. Genet, vol.44, 2012.

J. G. Hevner, R. Ojemann, L. O. Guerrini, W. Murphy, W. B. Winckler et al., De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, JAMA Neurol. Nat. Genet, vol.73, issue.46, pp.836-845, 2014.

D. Parrini, L. Mei, A. Tattini, E. Slavotinek, C. Blair et al., Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits, Lancet Neurol. Genes Brain Behav, vol.14, issue.13, pp.1182-1195, 2014.

S. Cooper, L. Baulac, H. B. Flores-sarnat, G. Sarnat, A. Dávila-gutiérrez et al., Hemimegalencephaly: part 2 Neuropathology suggests a disorder of cellular lineage PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects G protein-coupled receptor-dependent development of human frontal cortex GPR56 regulates pial basement membrane integrity and cortical lamination Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination, Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy What disorders of cortical development tell us about the cortex: one plus one does not always make two, pp.776-785, 1994.

T. W. Reiter, B. Yu, C. A. Bae, K. Walsh, A. K. Bilgüvar et al., Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations, Neuron. Nature, pp.92-2016, 2010.

C. Felie, W. B. Sunu, R. D. Dobyns, A. J. Folkerth, C. A. Barkovich et al., Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria Primary microcephaly with anterior predominant pachygyria caused by novel compound heterozygous mutations in ASPM Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration, WDR62 Congenital Cataracts and Gut Dysmotility in a DYNC1H1 Dyneinopathy Patient, pp.42-2071, 2010.

J. Welker, A. Chelly, F. Croquelois, N. Francis, Y. Y. Di-donato et al., Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant, Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human, pp.923-933, 2014.

J. M. Friedman and . Ervasti, Gamma-actin is required for cytoskeletal maintenance but not development, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.9703-9708, 2009.

B. Tu, H. Baran, C. Gümü?, M. S. Dilber, H. A. Zaki et al., Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors The role of ?-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration, Front, Neuron. Cell. Neurosci, vol.84, issue.215, pp.1226-1239, 2014.

S. Cappello, C. R. Böhringer, M. Bergami, K. Conzelmann, A. Ghanem et al., A radial glia-specific role of RhoA in double cortex formation, Neuron Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex, pp.73-911, 2012.

M. P. Reiter, B. Harris, C. A. Reversade, M. Walsh, O. Jin et al., Katanin p80 regulates human cortical development by limiting centriole and cilia number Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics, Neuron, vol.84, pp.1240-1257, 2014.

N. Ari, A. Burnashev, P. Represa, and . Szepetowski, Tubacin prevents neuronal migration defects and epileptic activity caused by rat Srpx2 silencing in utero, Brain J. Neurol, vol.136, pp.2457-2473, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862156

H. Oda, T. Sato, S. Kunishima, K. Nakagawa, K. Izawa et al., Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function, European Journal of Human Genetics, vol.174, issue.3, pp.408-414, 2016.
DOI : 10.3748/wjg.14.2953

P. A. Kharchenko, C. A. Sharp, and . Walsh, Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex, Cell, vol.166, 2016.

I. L. Weissman, Stem Cells, Cell, vol.100, issue.1, pp.157-168, 2000.
DOI : 10.1016/S0092-8674(00)81692-X

K. Takahashi, K. Okita, M. Nakagawa, and S. Yamanaka, Induction of pluripotent stem cells from fibroblast cultures, Nature Protocols, vol.62, issue.12, 2007.
DOI : 10.1038/nprot.2007.418

J. Yu, M. A. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. L. Frane et al., Induced pluripotent stem cell lines derived from human somatic cells Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage In vitro differentiation of transplantable neural precursors from human embryonic stem cells Organogenesis in a dish: modeling development and disease using organoid technologies Cerebral organoids model human brain development and microcephaly Human cerebral organoids recapitulate gene expression programs of fetal neocortex development Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex, Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses Proc. Natl. Acad. Sci. U. S. A, pp.318-152, 1917.

W. Yoon, L. Jeang, Y. Lin, J. Li, D. A. Thakor et al., Brain-Region-Specific Organoids Using Minibioreactors for Modeling ZIKV Exposure Induced pluripotent stem cells: past, present, and future, Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3, pp.1238-1254, 2012.

P. P. Garcez, E. C. Loiola, R. Madeiro-da-costa, L. M. Higa, P. Trindade et al., Zika virus impairs growth in human neurospheres and brain organoids Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells, Science. Cell Stem Cell, vol.352, issue.18, pp.816-818, 2016.

H. Jin, G. Song, and . Ming, Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth, Cell Stem Cell, vol.18, 2016.

M. Bershteyn, T. J. Nowakowski, A. A. Pollen, E. D. Lullo, A. Nene et al., Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome Zika virus -reigniting the TORCH, 303] J.D. Sanchez, PAHO WHO | Regional Zika Epidemiological Update (Americas, pp.435-449, 2007.

E. Petersen, M. E. Wilson, S. Touch, B. Mccloskey, P. Mwaba et al., Rapid Spread of Zika Virus in The Americas, Implications for Public Health Preparedness for Mass Gatherings at the 2016

. Brazil-olympic-games, . J. Int, . Infect, G. Dis, R. S. Calvet et al., Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study Mussi-Pinhata, Congenital Zika virus infection induces severe spinal cord injury, Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection Shi, C.-F. Qin, Z. Xu, Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice, pp.11-15, 2016.

M. Onorati, Z. Li, F. Liu, A. M. Sousa, N. Nakagawa et al., Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia, Cell Rep Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids, Cell Stem Cell, vol.16, issue.20, pp.2576-2592, 2016.

J. R. Beaudet, S. E. Lupski, R. A. Plon, C. M. Gibbs, and . Eng, Molecular findings among patients referred for clinical whole-exome sequencing A new subtype of progenitor cell in the mouse embryonic neocortex, Nat. Neurosci, pp.14-555, 2011.

V. Borrell, M. Götz-albert, E. Taverna, T. Namba, H. Brandl et al., Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex, cerebral cortex folding, pp.39-46, 2011.

D. A. Diaz, A. A. Lim, J. A. Leyrat, A. R. West, K. A. Kriegstein et al., Molecular identity of human outer radial glia during cortical development, Differential Gene Expression in the Human Brain Is Associated with Conserved, but Not Accelerated, Noncoding Sequences, pp.55-67, 2015.

J. L. Boyd, S. L. Skove, J. P. Rouanet, L. Pilaz, T. Bepler et al., Human-Chimpanzee Differences in a FZD8 Enhancer Alter Cell-Cycle Dynamics in the Developing Neocortex, Current Biology, vol.25, issue.6, pp.772-779, 2015.
DOI : 10.1016/j.cub.2015.01.041

K. Toyo-oka, A. Shionoya, M. J. Gambello, C. Cardoso, R. Leventer et al., 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome, Nat. Genet, pp.34-274, 1038.

L. F. Petit, M. Jalabert, E. Buhler, A. Malvache, A. Peret et al., Normotopic cortex is the major contributor to epilepsy in experimental double cortex The reeler mouse as a model of brain development, Adv Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension, Proc. Natl. Acad. Sci. U. S. A. 93 The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells, pp.428-442, 1996.

C. Li, Z. Huang, R. Kingsley, X. Zhou, F. Li et al., Biochemical Alterations in the Retinas of Very Low-Density Lipoprotein Receptor Knockout Mice, Archives of Ophthalmology, vol.125, issue.6, pp.795-803, 1960.
DOI : 10.1001/archopht.125.6.795

N. D. Donato, A. Rump, R. Koenig, V. M. Der-kaloustian, F. Halal et al., Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations, Eur

T. M. Bunnell, B. J. Burbach, Y. Shimizu, J. M. Ervasti, M. H. Willemsen et al., Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects, Mol. Biol. Cell. J. Med. Genet, vol.22, issue.49, pp.4047-4058, 2011.

Y. Yamasaki, K. Kanemura, S. Kosaki, S. Kojima, H. Saitoh et al., TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis De Novo TUBB2A Variant Presenting With Anterior Temporal Pachygyria, Sci. Rep. J. Child Neurol, vol.5, issue.32, pp.127-131, 2017.

D. A. Robertson, J. B. Mackey, T. D. Ruddle, I. Bird, C. Gottlob et al., Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance West syndrome, microcephaly, grey matter heterotopia and hypoplasia of corpus callosum due to a novel ARFGEF2 mutation, 340] M. Alders, L. Al-Gazali, I. Cordeiro, B. Dallapiccola, L. Garavelli, B. Tuysuz, F. Salehi, M.A. Haagmans, pp.74-87, 2010.

M. M. Majoie, R. C. Mannens, and . Hennekam, Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome, Hum. Genet, vol.133, pp.1161-1167, 2014.

S. Cheung, T. Yanpallewar, D. C. Wang, E. Koh, G. Quarta et al., Nedd4-2 haploinsufficiency causes hyperactivity and increased sensitivity to inflammatory stimuli, Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27, pp.84-2177, 2015.

]. T. Willer, B. Prados, J. M. Falcón-pérez, I. Renner-müller, G. K. Przemeck et al., Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality, Proceedings of the National Academy of Sciences, vol.131, issue.10, pp.14126-14131, 2004.
DOI : 10.1242/dev.01112

P. J. Holzfeind, P. K. Grewal, H. A. Reitsamer, J. Kechvar, H. Lassmann et al., Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Largemyd mouse defines a natural model for glycosylation-deficient muscle - eye - brain disorders, Human Molecular Genetics, vol.11, issue.21, pp.2673-2687, 2002.
DOI : 10.1093/hmg/11.21.2673

E. J. Yun and T. H. Vu, mSmile is Necessary for Bronchial Smooth Muscle and Alveolar Myofibroblast Development, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.175, issue.1, pp.167-176, 2007.
DOI : 10.1006/dbio.1996.0110

URL : http://onlinelibrary.wiley.com/doi/10.1002/ar.21475/pdf

K. M. Wright, K. A. Lyon, H. Leung, D. J. Leahy, L. Ma et al., Dystroglycan Organizes Axon Guidance Cue Localization and Axonal Pathfinding, Neuron, vol.76, issue.5, pp.931-944, 2012.
DOI : 10.1016/j.neuron.2012.10.009

URL : https://doi.org/10.1016/j.neuron.2012.10.009

G. Astrea, I. Pezzini, E. Picillo, R. Pasquariello, F. Moro et al., TMEM5-associated dystroglycanopathy presenting with CMD and mild limb-girdle muscle involvement, Proc. Natl. Acad. Sci. U. S. A. 99, pp.459-461, 2002.
DOI : 10.1016/j.nmd.2016.05.003

URL : https://doi.org/10.1016/j.nmd.2016.05.003

S. Tokuda, C. L. Mahaffey, B. Monks, C. R. Faulkner, M. J. Birnbaum et al., A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice, Human Molecular Genetics, vol.20, issue.5, pp.988-999, 2011.
DOI : 10.1093/hmg/ddq544

B. F. Barry, J. J. Bourgeois, A. J. Riviello, P. M. Barkovich, K. L. Black et al., Somatic activation of AKT3 causes hemispheric developmental brain malformations Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia, Neuron. Mol. Genet. Metab, vol.74, issue.114, pp.41-48, 2012.

M. Murakami, T. Ichisaka, M. Maeda, N. Oshiro, K. Hara et al., New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning, Learn. Mem. Cold Spring Harb Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus Determination of the migratory capacity of embryonic cortical cells lacking the transcription factor Pax-6 Pax-6 is required for thalamocortical pathway formation in fetal rats, Auditory interhemispheric transfer deficits, hearing difficulties, and brain magnetic resonance imaging abnormalities in children with congenital aniridia due to PAX6 mutations, pp.6710-6718, 1993.

T. Nakayama, M. Fisher, K. Nakajima, A. O. Odeleye, K. B. Zimmerman et al., Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients, Developmental Biology, vol.408, issue.2, 2015.
DOI : 10.1016/j.ydbio.2015.02.012

URL : https://doi.org/10.1016/j.ydbio.2015.02.012

D. Ainsworth, E. Horn, T. R. Rosser, I. Cole, K. Stolte-dijkstra et al., Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome, Nat. Genet, vol.37, 2005.

. Sasaki, Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3, Proc. Natl

. Acad, . U. Sci, R. Morris-rosendahl, A. P. Segel, C. Born et al., New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome, Eur. J. Hum. Genet. EJHG. Neuron. Am. J. Hum. Genet, vol.103, issue.78, pp.10029-10034, 2006.

J. M. Williams, W. B. Graham, L. Dobyns, J. R. Burglen, P. Ainsworth et al., Aligianis, Loss-of-function mutations in RAB18 cause Warburg micro syndrome, Am. J. Hum. Genet, vol.88, pp.499-507, 2011.

M. A. Wishart, T. H. Cousin, I. A. Gillingwater, I. J. Aligianis, A. K. Jackson et al., WDR62 is associated with the spindle pole and is mutated in human microcephaly Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis An essential role for katanin p80 and microtubule severing in male gamete production, Nat. Genet. Open Biol. Nat. Commun. Am. J. Hum. Genet. PLoS Genet, vol.7, issue.8, pp.711-722, 2010.

M. P. Reiter, B. Harris, C. A. Reversade, U. Walsh, M. J. Rudolph et al., Katanin p80 regulates human cortical development by limiting centriole and cilia number Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice, Neuron. Nat. Genet, vol.84, issue.10, pp.1240-1257, 1995.

A. Kini, E. K. Ruzzo, J. Capo-chichi, B. Ben-zeev, D. Chitayat et al., Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy, HNRNPK causing a Kabuki-like syndrome with nodular heterotopia Salih, O.B. Abdulbasit, A. Samadi, K. Al Hussien, A.M. Miqdad, M.S. Biary, A.M. Alazami, pp.258-262, 2013.

M. M. Alorainy, R. Kabiraj, F. S. Shaheen, . Alkuraya, P. M. Hyperekplexia et al., microcephaly and simplified gyral pattern caused by novel ASNS mutations, case report Yunis-Varón syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase, BMC Neurol. Am. J. Hum. Genet, vol.16, issue.92, pp.781-791, 2013.

C. Poirier, S. Hubans, R. Ferreira, R. Guerrini, K. H. Ouazzani et al., Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina, Neurology. Vis. Neurosci, vol.82, issue.24, pp.1068-1075, 2007.

S. Kaymakçalan, M. Y?lmaz, A. O. Bak?rc?o?lu, A. K. Ca?layan, K. Oztürk et al., Recessive LAMC3 mutations cause malformations of occipital cortical development The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes, Nat. Genet. J. Med, vol.43, pp.590-594, 2011.

O. Schulzke, P. Røsby, S. Miny, T. Tercanli, P. Oppedal et al., Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors, A homozygous IER3IP1 mutation causes microcephaly with simplified gyral pattern, epilepsy, and permanent neonatal diabetes syndrome (MEDS), pp.265-276, 2011.

. Med, . A. Genet, . A. 158a, R. H. Bassuk, A. Wallace et al., A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome, Am. J. Hum. Genet, pp.2788-2796, 2008.

T. Montine, L. G. Bird, J. A. Shaffer, J. Rosenfeld, S. Mcconnell et al., Mutations in prickle orthologs cause seizures in flies, mice, and humans, Am. J. Hum. Genet. N. Roeckel-Trevisiol, vol.88, pp.138-149, 2011.

P. Cau and . Szepetowski, SRPX2 mutations in disorders of language cortex and cognition, Hum. Mol. Genet, vol.15, pp.1195-1207, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00089725

B. Royer-zemmour, M. Ponsole-lenfant, H. Gara, P. Roll, C. Lévêque et al., Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR, Human Molecular Genetics, vol.17, issue.23, pp.3617-3630, 2008.
DOI : 10.1093/hmg/ddn256

M. J. Wilson, L. Evans, S. Baala, H. C. Briault, F. Etchevers et al., Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes Variable expression pattern in Donnai-Barrow syndrome: Report of two novel LRP2 mutations and review of the literature Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline Disruption of Aspm causes microcephaly with abnormal neuronal differentiation, Vasioukhin, alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway Y.H. Youn, T. Pramparo, S. Hirotsune, A. Wynshaw-Boris, Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice, pp.404-95, 1523.

D. J. Doobin, S. Kemal, T. J. Dantas, R. B. Vallee, H. Nakanishi et al., Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages, Nature Communications, vol.131
DOI : 10.1016/bs.mcb.2015.06.013

URL : http://www.nature.com/articles/ncomms12551.pdf

S. Mizoguchi, Y. Nishikawa, and . Takai, Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis, J. Cell Biol, vol.146, pp.1117-1132, 1999.

C. Gil-sanz, B. Landeira, C. Ramos, M. R. Costa, and U. Müller, Proliferative Defects and Formation of a Double Cortex in Mice Lacking Mltt4 and Cdh2 in the Dorsal Telencephalon, Journal of Neuroscience, vol.34, issue.32, pp.10475-10487, 2014.
DOI : 10.1523/JNEUROSCI.1793-14.2014

A. Satyanarayana, K. O. Gudmundsson, X. Chen, V. Coppola, L. Tessarollo et al., RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis, Blood, vol.116, issue.16, pp.2921-2931, 2010.
DOI : 10.1182/blood-2010-01-262964

URL : http://www.bloodjournal.org/content/bloodjournal/116/16/2921.full.pdf

K. Nde1, IUE: E16) rat Cell cycle arrest progenitor cells, impaired neuronal migration # mutations in all RAB3GAP1 / 2 / RAB18 cause an indistinguishable phenotype ranging from WMS to Martsolf, making it likely that there is some overlap