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REVIEW

Rodent models in Down syndrome research: impact and future
opportunities
Yann Herault1,2,3,4,5,*, Jean M. Delabar5,6,7,8, Elizabeth M. C. Fisher5,9,10, Victor L. J. Tybulewicz5,10,11,12,
Eugene Yu5,13,14 and Veronique Brault1,2,3,4

ABSTRACT
Down syndrome is caused by trisomy of chromosome 21. To date, a
multiplicity of mouse models with Down-syndrome-related features
has been developed to understand this complex human
chromosomal disorder. These mouse models have been important
for determining genotype-phenotype relationships and identification
of dosage-sensitive genes involved in the pathophysiology of the
condition, and in exploring the impact of the additional chromosome
on the whole genome. Mouse models of Down syndrome have
also been used to test therapeutic strategies. Here, we provide an
overview of research in the last 15 years dedicated to the
development and application of rodent models for Down syndrome.
We also speculate on possible and probable future directions of
research in this fast-moving field. As our understanding of the
syndrome improves and genome engineering technologies evolve, it
is necessary to coordinate efforts to make all Down syndromemodels
available to the community, to test therapeutics in models that
replicate thewhole trisomy and design newanimal models to promote
further discovery of potential therapeutic targets.

KEY WORDS: Down syndrome, Mouse model, Chromosome
engineering, Aneuploidy, Dosage-senstive gene

Introduction
Trisomy of human chromosome 21 (Hsa21; see Box 1 for a glossary
of terms), which affects 1 in 700 live births globally (Canfield et al.,
2006), gives rise to Down syndrome (DS), a condition that

significantly impairs health and autonomy of affected individuals
(Khoshnood et al., 2011; Parker et al., 2010). Despite the wide
availability of prenatal diagnosis since the mid-1960s (Summers
et al., 2007) and the introduction of maternal serum screening in
1984 (Inglis et al., 2012), the incidence of DS has not necessarily
decreased (Natoli et al., 2012; Loane et al., 2013; de Graaf et al.,
2016); in fact, prevalence is going up, largely because of increased
lifespan and maternal age (which is the single biggest risk factor)
(Sherman et al., 2007; Loane et al., 2013).

A core set of features characterises most cases of DS, including
specific cognitive disabilities, hypotonia (Box 1) at birth and
characteristic craniofacial changes; however, other traits, such as
cardiac defects and susceptibility to leukemias, affect only a subset
of individuals with DS (OMIM 190685; ORPHA870). Later in life,
the majority of DS individuals will develop Alzheimer’s disease
(AD; approximately 60% by the age of 65), making trisomy 21 the
most common genetic cause of this neurodegenerative disease
(Ballard et al., 2016; Dekker et al., 2015; Head et al., 2015;
Wiseman et al., 2015).

The phenotypes observed in DS are likely to arise because of
dosage sensitivity of Hsa21 genes and associated gene-environment
interactions (Antonarakis et al., 2004; Antonarakis, 2016; Beach
et al., 2017), and/or a global effect of the extra chromosome on
chromatin regulation andmethylation (Letourneau et al., 2014; Hervé
et al., 2016; Mendioroz et al., 2015). Studies of patients carrying rare
segmental duplications of Hsa21 subregions have highlighted the role
of specific chromosomal regions in DS pathophysiology (Korbel
et al., 2009; Korenberg et al., 1994; Lyle et al., 2009; Delabar et al.,
1993). In addition, studies using animal models have confirmed the
involvement of homologous regions and shown how some regions
with orthologues of individual Hsa21 dosage-sensitive genes are key
for DS features (discussed in detail below). A few genes not located
on Hsa21 have been shown to contribute to individual phenotypic
variation (Roper and Reeves, 2006). Analysis of individuals with a
segmental duplication of Hsa21 has been key to building up a
phenotypic map and defining a critical DS region (Delabar et al.,
1993; Lyle et al., 2009; Korbel et al., 2009; Korenberg et al., 1994;
Rahmani et al., 1989). Nevertheless, with only about 60 duplications
reported so far in the literature, the resolution of this map is very low.
Moreover, duplications that do not induce strong phenotypes, or that
lead to embryonic death, are not represented in published studies
(Rovelet-Lecrux et al., 2006). A more detailed understanding of the
DS genotype-phenotype relationship in humans would require a
systematic analysis of very large numbers of individuals and of
stillborns. Indeed, 31-54% of DS pregnancies lead to spontaneous
foetal loss (Loane et al., 2013; Morris et al., 1999; Morris and Wald,
2007).

This Review focuses on the use of rodent models of DS, which
have been essential for the determination of genotype-phenotype
relationships for this syndrome. Owing to the genetic tractability of
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this animal, the most useful DS models to date have been derived
from the laboratory mouse. Mice are highly amenable to genome
engineering, including through chromosome engineering, to
generate precisely defined large genomic segmental duplications
to model chromosomal disorders (Brault et al., 2006; Yu and
Bradley, 2001; Ramirez-Solis et al., 1995; Hérault et al., 1998;
Tybulewicz and Fisher, 2006). Mouse models have also provided
platforms for testing interactions between cell and tissue types,
responses in the organism, and candidate therapeutics for DS. We
highlight the approaches and technologies that have been used to
generate mouse models of DS in recent years, and also discuss how
the study of these models has brought new knowledge about DS
pathophysiology, including key candidate pathways and genes, as
well as providing new therapeutic approaches.

Building up a compendium of DS models
The rapid development of genetic engineering in recent years has
stimulated the generation of multiple DS mouse models. A variety
of transgenic models for candidate genes were developed in early
attempts at modelling DS in mice (Dierssen et al., 2009), and we
discuss such experiments briefly in a later section. Here, we discuss
DS mouse models that contain larger trisomic or duplicated

chromosomal segments, thereby mimicking the trisomy observed
in humans.

Early mouse models of trisomy 21
Over the approximately 75-million years that separate humans and
mice in evolutionary time, the chromosomes have rearranged such
that Hsa21 has three orthologous regions on mouse chromosomes
10, 16, 17 in which gene order and orientation are conserved
(Mmu10, 16, 17; Mmu for Mus musculus; Fig. 1). Hsa21 carries
222 protein-coding genes, including 49 that encode keratin-
associated proteins and are clustered on Hsa21q, and 325 non-
protein-coding genes (Gupta et al., 2016). Of the 158 mouse genes
that are homologous to human protein-coding genes, most of them
lie on Mmu16 (a total of 102) between Lipi and Zbtb21, a few on
Mmu17 (19) between Abcg1 and Rrp1b, and the rest on Mmu10
(37) between Pdxk and Prmt2. Of the non-coding genes, 75
elements, such as those encoding miRNAs, are well conserved and
are distributed across all three mouse chromosomes (Gupta et al.,
2016). Because the equivalent genetic elements are distributed
between regions on three different chromosomes, modelling
trisomy 21 in the mouse is not straightforward (Antonarakis et al.,
2004). In addition, a handful of human genes [such as the prostate-,
ovary-, testis- and placenta-expressed ankyrin domain family
member D (POTED)] are not conserved in the mouse, and there
are mouse genes, such as integrin beta-2-like (Itgb2l) located
between Igsf5 and Pcp4 in the Hsa21 homologous regions, that have
no human homologues. Furthermore, we do not yet have a clear
picture of the role and function (if any) of many pseudogenes
(Gupta et al., 2016).

Early modelling was attempted by studying mice with full
trisomy of mouse 16 (Gropp et al., 1975; Gropp, 1974). These
animals have numerous defects, including, for example, cardiac
septation deficits (Box 1) (Webb et al., 1999); however, they do not
model DS because the majority of genes that are triplicated in this
model are from regions of Mmu16 without homology to Hsa21.
Furthermore, these animals die at birth and so cannot give insight
into processes beyond this stage.

The field of DS investigation moved forward by the discovery in
1990 and the phenotypic description in 1995 of the Ts65Dnmouse
(Fig. 1) (Reeves et al., 1995; Davisson et al., 1990). This mouse
has a translocation that results in an extra-small chromosome made
up of a fusion of the App-Zbtb21 region orthologous to Hsa21
found on Mmu16 with the centromeric region of Mmu17; thus, the
mouse shows aneuploidy (Box 1). The extra region of Mmu16
includes 90 conserved protein-coding Hsa21 gene orthologues
(Choong et al., 2015; Gupta et al., 2016). The Ts65Dn mouse was
the main model used to study DS for at least two decades and has
provided many new insights (see below). However, the animal
carries three copies of an extra segment (arising from Mmu17)
with non-DS-related genes, including ∼35 protein-coding genes,
15 non-protein-coding genes and 10 pseudogenes (Duchon et al.,
2011b; Reinholdt et al., 2011). Moreover, even though some
Ts65Dn males are fertile (Moore et al., 2010), transmission is
usually achieved through the maternal germline. This might affect
the phenotype of the trisomic progeny and their disomic
littermates because the mothers are trisomic, generally unlike the
situation in humans.

Other models of partial trisomy 16, the Ts1Cje (trisomic for the
Sod1-Zbtb21 region, shown in Fig. 1) and the Ts2Cje (harbours a
Robertsonian translocation between the extra chromosome in
Ts65Dn and mouse chromosome 12) (Fig. 1, Table 1), have made
important contributions to our understanding of DS. Nevertheless,

Box 1. Glossary
Aneuploid: having an abnormal or unbalanced number of
chromosomes.
Cardiac septation: partitioning of the heart.
Contextual and auditory-cue-conditioned fear task: a test to study
associativememory based on the association of environmental cues (the
chamber for the context or a sound for the auditory cue) with an aversive
stimulus (a light electric shock). The association of both stimuli will lead
to a freezing, with almost no movement of the animal tested. Recording
the percentage of immobility of the mouse after being placed backed in
the environment or with the auditory cue 24 h after the shock gives an
assessment of the associative memory.
Euploid: having a normal balanced number of chromosomes.
Hypotonia: a state of low muscle tone.
Long-term potentiation (LTP): an increase in synaptic response after
high-frequency stimulation of neurons. A strategy used to test the
plasticity and the consolidation of synapses.
Morris water maze: a test to study spatial memory, based on the normal
behaviour of a mouse to exit a water maze using an external visual cue
located outside a pool in which a small platform is hidden below the
surface of the water. The path with the distance travelled and the time
spent to reach the platform is indicative of function of spatial memory.
Mosaic: animal carries cells with different genotypes.
Novel-object recognition: a test to study non-spatial episodic memory
based on the normal interest of the animal in exploring objects in its
environment (an open field). The test evaluates recognition memory for
previously explored objects bymeasuring the time spent sniffing a known
versus a novel object.
Positive thigmotaxis: a behavioural preference displayed by some
animals to be near or in close contact with the solid wall of an enclosure.
The time spent in contact or close to the vertical wall of the open field is
measured, in the exploration of a new environment.
Transchromosomic: a transgenic animal carrying a chromosome from
a different species.
Trisomy: having a third copy of a given chromosome. Trisomy is
associated with a number of human disorders, including Down
syndrome.
Ventriculomegaly: enlargement or dilation of lateral brain ventricles.
Y-maze: a test involving a maze with three arms, which provides the
animal with a choice: to visit the arm visited before or go to a new arm.
This is a test that measures working memory.
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as with Ts65Dn, they were generated by chance rather than design,
and carry additional genetic modifications that could have an impact
on phenotypes (Sago et al., 1998; Villar et al., 2005).

Advances in engineering DS mouse models
The field of DS modelling in mice changed significantly in the
mid-2000s with the advent of two new types of mice: one that is
transchromosomic (Box 1) and those that are chromosome
engineered.
In 2005, V.L.J.T., E.M.C.F. and colleagues published the first

transchromosomic mouse line (O’Doherty et al., 2005), namely Tc1
[formally called Tc(Hsa21)1TybEmcf]. The line was generated
using irradiation microcell-mediated chromosome transfer into
embryonic stem (ES) cells, leading to a freely segregating copy of
Hsa21, transmitted through the germline. In Tc1, human Hsa21
sequences are expressed in the mouse at the mRNA, protein and
functional levels (Ahmed et al., 2013; Reynolds et al., 2010;
O’Doherty et al., 2005). For example, targeting the overexpressed
transcripts encoded by four genes restored VEGF-dependent normal
angiogenic responses in Tc1 mice (Reynolds et al., 2010). However,
the human chromosome is lost stochastically from cells, and so
the resulting mice are mosaics (Box 1): some cells carry the

supernumerary Hsa21, whereas others do not. Also, complete
sequencing of the human chromosome (Gribble et al., 2013) has
revealed that it was rearranged in the process, probably due to γ-ray-
induced de novo rearrangements, leading to incomplete trisomy.
Nevertheless, this mouse remains a unique complement to the
models that help us to understand DS and has given insight into the
condition (Hall et al., 2016; Peiris et al., 2016; Powell et al., 2016;
Witton et al., 2015).

In the mid-1990s, an approach to generate precise chromosomal
rearrangements, including duplications and deletions, was
developed in mice (Ramirez-Solis et al., 1995). This technology
has radically expanded the available mouse resources for
understanding DS by facilitating the design of partial trisomies
(Yu and Bradley, 2001; Olson et al., 2004) and producing the most
complete model we have: the triple trisomic mouse. This mouse is
partially trisomic for the Mmu10, 16 and 17 regions that are
homologous to Hsa21 (Yu et al., 2010b). Briefly, the desired
chromosomal rearrangement is first engineered in mouse ES cells
with two steps of gene targeting to introduce loxP sites upstream and
downstream of the region of interest with selectable markers, and
one additional step leading to the reconstruction of a selectable
minigene after Cre expression (Fig. 2). A specific orientation of
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Fig. 1. Mousemodels of DS. Human chromosome 21 (p and q arms; G-banding) is depicted at the top of the figure, with the mouse genome orthologous region
found on chromosome 16 (Mmu16), Mmu10 and Mmu17 shown respectively in orange, light green and red. A few known genes that are homologous to Hsa21
genes in the DS critical region are listed below each chromosome. The transchromosomic Tc1 mouse model is shown in dark green, with deletions and a
duplication (double bar) relative to Hsa21 depicted. Below, the segment of the DS critical region encompassed in different mousemodels for DS is illustrated. The
original Ts65Dn (Reeves et al., 1995) and Ts1Cje (Sago et al., 1998) models (shown in brown) originated by accidental translocation of Mmu16 segments
respectively on Mmu17 and Mmu12, with some additional changes (Duchon et al., 2011b; Reinholdt et al., 2011). Olson et al. (2004) published the first
engineered duplication (Dp) and deletion [deficiency (Df)] for the DS critical region (light blue). New models have been developed in the last 10 years by the
authors of this Review, as shown in dark blue (Duchon et al., 2011a; Lopes Pereira et al., 2009; Besson et al., 2007; Marechal et al., 2015; Sahun et al., 2014;
Raveau et al., 2012; Arbogast et al., 2015; Brault et al., 2015b), red (Jiang et al., 2015; Liu et al., 2011, 2014; Yu et al., 2010a,b,c; Li et al., 2007) and green (Lana-
Elola et al., 2016). TgBACs, a few models for BAC or PAC (P1-derived artificial chromosome) transgenic lines.
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Table 1. Mouse models of DS

MGI-approved
name [lab name]

Type of mutation/
allele Short description

Genetic
background

Chromosomal
position
(GRCm381)

First
publication Availability

Tc(HSA21)
1TybEmcf [Tc1]

Transchromosomic This mouse strain contains a freely segregating
copy of Hsa21. The mice are mosaics in that
they stochastically lose a copy of Hsa21 from
individual cells. Hsa21 has internal deletions
and some rearrangements; thus, approximately
75% of Hsa21 is present in the mouse. On
average 70% of brain nuclei carry Hsa21 in the
Tc1 mouse (O’Doherty et al., 2005).

Mice are bred on
F1 of 129S8 and
C57BL/6J

NA O’Doherty
et al., 2005

EMMA and
Jax

Ts(17<16>)65Dn
[Ts65Dn]

Radiation induced This trisomic mouse contains a segment that is
homologous to Hsa21 from Mrpl39 to the end
of the Mmu16, fused to a minichromosome 17
centromeric region.

B6C3B or
B6EiC3Sn

Unknown Reeves et al.,
1995

Jax

Ts(16C-tel)1Cje
[Ts1Cje]

Spontaneous allele Mice are trisomic for the genetic interval Sod1 to
Mx1. Sod1 is not functionally trisomic
because the Sod1 gene in the translocated
segment is inactivated by the insertion of the
neo sequence. The model is trisomic for 94
genes on Mmu16, covering approximately
two-thirds of the trisomic region in Ts65Dn
mice. Three genes from Mmu12 are missing
(Laffaire et al., 2009).

B6EiC3Sn (or B6
congenic
available)

Unknown Sago et al.,
1998

Jax

Ts(17<16>)65Dn
2Cje [Ts2Cje]

Robertsonian
translocation

A female mouse with 40 chromosomes and 41
arms was detected by chromosome analysis
of progeny from Ts(17<16>)65Dn mice. This
mouse had a unique biarmed chromosome
that appeared to be the result of a fusion
between Mmu12 and the marker
chromosome Ts(17<16>)65Dn.

B6EiC3Sn Unknown Villar et al.,
2005

Jax

Dp(16Cbr1-Fam3b)
1Rhr [Ts1Rhr;
Dp1Rhr]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal toCbr1 and distal to Fam3b results in
duplication of the genes, including Cbr1 and
Fam3b.

B6.129S6 16:93607837-
97504936

Olson et al.,
2004

Jax

Del(16Cbr1-
Fam3b)1Rhr
[Ms1Rhr; Df1Rhr]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal toCbr1 and distal to Fam3b results in
deletion of the genes, including Cbr1 and
Fam3b.

B6.129S6 16:93607837-
97504936

Olson et al.,
2004

Jax

Dp(10Prmt2-Pdxk)
2Yey [Dp(10)
1Yey; Dp2Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu10 between loxP sites in regions
proximal to Prmt2 and distal to Pdxk results in
duplication of the genes, including Prmt2 and
Pdxk.

B6N4 10:76207227-
78464975

Yu et al.,
2010b

Jax

Del(10Prmt2-Pdxk)
4Yey [Df(10)
1Yey; Df2Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu10 between loxP sites in regions
proximal to Prmt2 and distal to Pdxk resulted
in deletion of the genes, including Prmt2 and
Pdxk.

Mixed 129S7 and
129S1

10:76207227-
78464975

Yu et al.,
2010a

Jax

Dp(17Abcg1-
Rrp1b)3Yey [Dp
(17)1Yey;
Dp3Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu17 between loxP sites in regions
proximal to Abcg1 and distal to Rrp1b results
in duplication of the genes, including Abcg1
and Rrp1b.

B6N4 17:31057698-
32062865

Yu et al.,
2010b

Jax

Del(17Abcg1-
Rrp1b)5Yey [Df
(17)1Yey;
Df5Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu17 between loxP sites in regions
proximal toAbcg1 and distal toRrp1b resulted
in the deletion of the genes, including Abcg1
and Rrp1b.

Mixed 129S7 and
129S1

17:31057698-
32062865

Yu et al.,
2010a

Jax

Dp(16Lipi-Zbtb21)
1Yey [Dp(16)
1Yey; Dp1Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions proximal
to D930038D03Rik (Lipi) and distal to Zfp295
(Zbtb21) resulted in the duplication of the
genes, including Lipi and Zbtb21.

B6N5 NA Li et al., 2007 Jax

Continued
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Table 1. Continued

MGI-approved
name [lab name]

Type of mutation/
allele Short description

Genetic
background

Chromosomal
position
(GRCm381)

First
publication Availability

Dp(16Tiam1-Kcnj6)
6Yey [Dp(16)
2Yey; Dp6Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Tiam1 and distal to Kcnj6 resulted
in the duplication of the genes, including
Tiam1 and Kcnj6.

Mixed 129S7 and
129S1

16:89787111-
94997696

Liu et al.,
2011

Jax

Del(16Tiam1-
Kcnj6)7Yey [Df
(16)2Yey;
Df7Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Tiam1 and distal to Kcnj6 resulted
in the deletion of the genes, including Tiam1
and Kcnj6.

Mixed 129S7 and
129S1

16:89787111-
94997696

Liu et al.,
2011

Jax

Dp(16Tiam1-Il10rb)
8Yey [Dp(16)
3Yey; Dp8Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Tiam1 and distal to Il10rb resulted
in the duplication of the genes, including
Tiam1 and Il10rb.

Mixed 129S7 and
129S1

NA Liu et al.,
2014

Jax

Del(16Tiam1-
Il10rb)9Yey [Df
(16)3Yey;
Df9Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Tiam1 and distal to Il10rb resulted
in the deletion of the genes, including Tiam1
and Il10rb.

Mixed 129S7 and
129S1

NA Liu et al.,
2014

Jax

Dp(16Ifnar1-Kcnj6)
10Yey [Dp(16)
4Yey; Dp4Yey]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Ifnar1 and distal to Kcnj6 resulted
in the duplication of the genes, including
Ifnar1 and Kcnj6.

Mixed 129S7 and
129S1

NA Liu et al.,
2014

Jax

Del(16Ifnar1-Kcnj6)
11Yey [Df(16)
4Yey; Df11Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Ifnar1 and distal to Kcnj6 resulted
in the deletion of the genes, including Ifnar1
and Kcnj6.

Mixed 129S7 and
129S1

NA Liu et al.,
2014

Jax

Del(16Setd4-
Kcnj6)12Yey [Df
(16)5Yey;
Df12Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Setd4 and distal to Kcnj6 resulted
in the deletion of the genes, including Setd4
and Kcnj6.

C57BL/6J (>N6) NA Liu et al.,
2014

Jax

Del(16Kcnj15-Mx2)
13Yey [Df(16)
6Yey; Df13Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Kcnj15 and distal to Mx2 resulted
in the deletion of the genes, including Kcnj15
and Mx2.

C57BL/6J (>N6) NA Jiang et al.,
2015

Jax

Del(16Dyrk1a-
Kcnj6)14Yey [Df
(16)7Yey;
Df14Yey]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites in regions
proximal to Dyrk1a and distal to Kcnj6
resulted in the deletion of the genes, including
Dyrk1a and Kcnj6.

C57BL/6J (>N6) NA Jiang et al.,
2015

Jax

Dp(17Abcg1-Cbs)
1Yah [Ts1Yah;
Dp1Yah]

Duplication Cre-mediated chromosomal rearrangement on
Mmu17 between loxP sites inserted in Abcg1
and downstream ofCbs (before U2af1) region
resulted in the deletion of Abcg1 and the
duplication of the segment homologous and
syntenic to Hsa21q22.

C57BL/6J (>N6) 17:31057698-
31637199

Lopes Pereira
et al., 2009

EMMA

Dp(16Hspa13-App)
2Yah [Ts2Yah;
Dp2Yah]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in
Hspa13 and App resulted in the inactivation of
both flanking genes and the duplication of the
segment homologous to Hsa21q11-q21.

C57BL/6J (>N6) 16:75755190-
85173707

Brault et al.,
2015a

EMMA

Dp(10Cstb-Prmt2)
3Yah [Ts3Yah;
Dp3Yah]

Duplication Cre-mediated chromosomal rearrangement on
Mmu10 between loxP sites inserted in Cstb
and Col6a1 resulted in the inactivation of both
flanking genes and the duplication of the
segment homologous to Hsa21.

C57BL/6J (>N6) NA Duchon et al.,
2008

Y.H. lab

Dp(10Cstb-Prmt2)
4Yah [Ts4Yah;
Dp4Yah]

Duplication Cre-mediated chromosomal rearrangement on
Mmu10 between loxP sites inserted in Cstb
and Prmt2 resulted in the inactivation of both
flanking genes and the duplication of the
segment homologous to Hsa21.

C57BL/6J (>N6) NA Duchon et al.,
2008

Y.H. lab

Continued

1169

REVIEW Disease Models & Mechanisms (2017) 10, 1165-1186 doi:10.1242/dmm.029728

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



loxP targeted on a chromosome must be achieved by appropriate
design to induce the chromosomal change. Identification of ES cell
clones harbouring an engineered chromosomal rearrangement is

facilitated by positive selection of expression of the minigene.
Chromosomal duplications and deletions can be precisely verified
by Southern blot analysis, fluorescence in situ hybridisation,

Table 1. Continued

MGI-approved
name [lab name]

Type of mutation/
allele Short description

Genetic
background

Chromosomal
position
(GRCm381)

First
publication Availability

Dp(16App-Runx1)
5Yah [Ts5Yah;
Dp5Yah]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in App
and Runx1 resulted in the inactivation of both
flanking genes and the duplication of the
segment homologous to Hsa21.

C57BL/6J (>N6) 16:84954440-
92826149

Raveau et al.,
2012

Y.H. lab

Del(16App-Runx1)
5Yah [Ms5Yah;
Df5Yah]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in App
and Runx1 resulted in the inactivation of both
flanking genes and the deletion of the
segment homologous to Hsa21q22.

C57BL/6J (>N6) 16:84954440-
92826149

Raveau et al.,
2012

Y.H. lab

Del(16Hspa13-
App)3Yah
[Ms3Yah;
Df3Yah]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in
Hspa13 and App resulted in the inactivation of
both flanking genes and the deletion of the
segment homologous to Hsa21q22.

C57BL/6J (>N6) 16:75755190-
85173707

Brault et al.,
2015a

EMMA

Del(17Abcg1-Cbs)
2Yah [Ms2Yah;
Df2Yah]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in Abcg1
and Cbs resulted in the inactivation of both
flanking genes and the deletion of the
segment homologous to Hsa21q22.

C57BL/6J (>N6) 17:31057698-
31637199

Lopes Pereira
et al., 2009

EMMA

Del(10Prmt2-
Col6a1)1Yah
[Ms1Yah;
Df1Yah]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted inCol6a1
and Prmt2 resulted in the inactivation of both
flanking genes and the deletion of the
segment homologous to Hsa21q22.

C57BL/6J (>N6) 10:76207227-
76726168

Besson et al.,
2007

EMMA

Del(10Prmt2-Cstb)
4Yah [Ms4Yah;
Df4Yah]

Deletion Cre-mediated chromosomal rearrangement on
Mmu16 between loxP sites inserted in Cstb
and Prmt2 resulted in the inactivation of both
flanking genes and the deletion of the
segment homologous to Hsa21q22.

C57BL/6J (>N6) 10:76207227-
78427619

Duchon et al.,
2008

EMMA

Dp(16Lipi-Zbtb21)
1TybEmcf
[Dp1Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Lipi and distal
to Zbtb21.

C57BL/6J.129P2 16:74930370-
97982380

Lana-Elola
et al., 2016

EMMA

Dp(16Mis18a-
Runx1)2TybEmcf
[Dp2Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Mis18a and
distal to Runx1.

C57BL/6J.129P2 16:90563769-
93062456

Lana-Elola
et al., 2016

EMMA

Dp(16Mir802-
Zbtb21)
3TybEmcf
[Dp3Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Mir802 and
distal to Zbtb21.

C57BL/6J.129P2 16:93054020-
97982380

Lana-Elola
et al., 2016

EMMA

Dp(16Mir802-
Dscr3)4TybEmcf
[Dp4Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Mir802 and
distal to Dscr3.

C57BL/6J.129P2 16:93054020-
94546849

Lana-Elola
et al., 2016

EMMA

Dp(16Dyrk1a-
B3galt5)
5TybEmcf
[Dp5Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Dyrk1a and
distal to B3galt5.

C57BL/6J.129P2 16:94538615-
96331804

Lana-Elola
et al., 2016

EMMA

Dp(16Igsf5-Zbtb21)
6TybEmcf
[Dp6Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Igsf5 and distal
to Zbtb21.

C57BL/6J.129P2 16:96327324-
97982380

Lana-Elola
et al., 2016

EMMA

Dp(16Lipi-Hunk)
9TybEmcf
[Dp9Tyb]

Duplication Cre-mediated chromosomal rearrangement on
Mmu16 to duplicate the region between two
loxP sites inserted proximal to Lipi and distal
to Hunk.

C57BL/6J.129P2 16:74930370-
90577148

Lana-Elola
et al., 2016

EMMA

Further details about themouse strains listed here can be found at the Jackson Laboratory (Jax; www.jax.org/) or EuropeanMutant MouseArchive (EMMA; (www.
infrafrontier.eu/search) websites.
1GRCm28 refers to mouse Genome_Sequence_build: GRCm28/UCSC mm10.
Hsa21, human chromosome 21; MGI, mouse genome informatics; Mmu, Mus musculus chromosome; NA, not available; neo, neomycin resistance.
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array-based comparative genome hybridisation or whole-genome
sequencing (Yu et al., 2010b; Gribble et al., 2013). Selected ES
cells are used to establish the corresponding mouse line.
Alternatively, recombination between loxP sites can be achieved
in vivo (Brault et al., 2007; Hérault et al., 1998) in a mouse carrying
the two loxP sites and one specific Cre driver expressed in the
germline. In this case, no additional construct is needed at the
frontier of the recombined fragments, minimising potential
interference associated with the reconstruction of a minigene.
Altogether, these Cre/loxP-based technologies, carried out
independently in two laboratories, resulted in the generation of
several mouse models with segmental duplications encompassing
different segments of the mouse chromosomes orthologous to
Hsa21 (Hérault et al., 2012).
The crucial step needed for inserting loxP sites is now facilitated

using recombinant transposon-mediated insertion and further
selection (Chen et al., 2013; Ruf et al., 2011). In addition, loxP
site insertions in the mouse genome generated by transposition have
been captured in the TRACER resource with precise location and
orientation (http://tracerdatabase.embl.de), reducing the time
needed to generate new DS models to 3 years (Chen et al., 2013).
However, a major revolution is now underway with the

development of an even faster method – CRISPR-mediated
rearrangement (CRISMERE) – which is based on CRISPR/Cas9
genome-editing technology (Birling et al., 2017). Two pairs of
small guide RNA (sgRNA), each pair selected either upstream or
downstream of the region of interest, are injected with the Cas9
nuclease into one-cell mouse embryos that are reimplanted.
Newborns are analysed for chromosomal modifications and are
bred to select carrier individuals with the new rearrangement in the
next generation. The making of in vivo duplications, deletions and

inversions of genomic segments of up to 34 Mb using CRISMERE
requires less time than it takes to observe germline transmission of
recombined ES cells. CRISMERE is not limited to the mouse and
has been successfully used in rats (Table 1) (Birling et al., 2017) and
can be applied to primates. In the rat (Rattus norvegicus) genome,
the Hsa21 homologous regions are located on two chromosomes,
Rno11 and Rno20. On Rno11, the Lipi-Zbtb21 segment is almost
identical to the homologous region located on the Mmu16, whereas
Rno20 harbours a unique segment for the Umodl1-Prmt2 interval
(Fig. 1). Using CRISMERE, new models encompassing both
regions have been generated (Birling et al., 2017). These models
have the potential to facilitate testing of therapies in both mouse and
rat models to enable stronger validation prior to assessment in
clinical trials.

Nowadays, the development of DS models is no longer limited at
the technical level but rather more at the conceptual level, i.e. in terms
of the challenges associated with precise delineation of the region of
interest for a particular phenotype. A key question is whether it is
better to define smaller regions of interest and generate more models
or make models for larger segments to recapitulate the human
trisomy. In any case, enhancing our understanding of the link
between phenotype and genotype is critical, as discussed below.

Assessing the genotype-phenotype relationship in DS
Many DS features show variable penetrance (http://omim.org/entry/
190685#clinicalFeatures) (Kruszka et al., 2017; Roizen and
Patterson, 2003). Understanding the molecular basis of this huge
variability between individuals could inform the development of
therapies to modulate specific features of the syndrome. Variability
in DS includes the degree of learning difficulties observed – in
39.4% of cases, IQ typically ranges between 50 and 70, but 1% of
affected individuals have an IQ around the borderline function range
of 70-80 (Antonarakis et al., 2004). The presence of cardiac
anomalies, and the incidence of leukaemia, autoimmune diseases,
AD pathology and dementia, as well as accelerated ageing, are also
quite variable (Antonarakis et al., 2004). In order to better
understand the physiopathology of the disease and to correlate
genotype with the features observed in patients, studies in animal
models and particularly mouse models have been critical (Gupta
et al., 2016).

One of the first consequences of DS is the alteration of embryonic
development, leading at the extreme to gestational loss in humans
(Loane et al., 2013; Morris et al., 1999; Morris andWald, 2007). This
phenotype is also observed in Tc1 mice, in Dp1Yey and Dp1Tyb
mice (generated in two independent groups), which duplicate the
region from Lipi to Zbtb21 (Fig. 1), in the Ts65Dn mouse, and to
some extent in the Ts1Cje mouse (Arbogast et al., 2015; Raveau
et al., 2012; Yu et al., 2010b; Li et al., 2007; Guedj et al., 2016; Lana-
Elola et al., 2016; O’Doherty et al., 2005). Reducing the dosage of the
7.7 Mb App-Runx1 region, containing 54 protein-coding genes and
25 keratin genes, in Ts65Dn mice rescued impaired postnatal
viability, and deletion of this region resulted in severe phenotypes and
lowered viability, suggesting the presence of critical genes in the
interval (Arbogast et al., 2015; Raveau et al., 2012).

In light of the characteristic intellectual deficiency in human DS,
many types of learning and memory have been monitored in DS
mouse models to explore which part of the brain is affected by the
trisomy (Das and Reeves, 2011; Gupta et al., 2016; Xing et al.,
2016; Belichenko et al., 2015; Jiang et al., 2015; Zhang et al., 2014;
Arbogast et al., 2015; Brault et al., 2015b; Marechal et al., 2015;
Sahun et al., 2014; Hérault et al., 2012). The open-field (OF) test
(Stanford, 2007) has been used in these studies to assay locomotor

A 

(Df) 

B 

(Df, Dp) 

cis  recombination trans  recombination 

P N 

P N 

N 

P 

N 

N 

P N 

N 

P 

1st targeting 

2nd targeting 

Double-targeted 
clones  

Cre electroporation Cre electroporation 

Fig. 2. Cre-loxP-mediated chromosomal engineering in mice. A loxP site
(arrow) is targeted into the first endpoint of the engineered segment (blue) in
the embryonic stem (ES) cell genome with a positive selectable marker,
such as neo (the neomycin-resistance gene; N). Next, a second loxP site is
targeted to the other endpoint with another positive selectable marker such as
puro, the puromycin resistance gene (P). A Cre expression vector is then
transferred by electroporation into double-targeted ES cell clones. If two loxP
sites are targeted onto the same chromosome homologue and oriented
in the same direction (cis), recombination between the sites will lead to a
deletion (Df; A). If two loxP sites are targeted onto two separate homologues
and oriented in the same direction (trans), the recombination will lead to a
duplication (Dp) and the reciprocal deletion (Df ) (B).
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activity, exploration and anxiety. Episodic memory (involving the
perirhinal cortex and the hippocampus) was a particular focus, with
tests for non-spatial learning such as the novel-object recognition
(NOR; Box 1) applied with two retention times: 1 h or 24 h (Cohen
and Stackman, 2015). Short-term working memory was assessed
with continuous spontaneous alternation behaviour mostly using
the Y-maze test (Box 1) (Hughes, 2004). Spatial memory, which
involves several regions of the brain (hippocampus, striatum, basal
forebrain, cerebellum and cerebral cortex), has been explored in DS
mice using the Morris water maze (MWM; Box 1) test (D’Hooge
and De Deyn, 2001; Morris, 1984). For associative memory,
the contextual and auditory-cue-conditioned fear task [FC (fear
conditioning); Box 1] (Paylor et al., 1994; Mátyás et al., 2014; Lee
et al., 2011) was used to test the connection between the
hippocampus, frontal cortex, cingulate cortex and amygdala and
the mediodorsal thalamic nucleus. These studies point to an
important role for DYRK1A (discussed in the section below).
DYRK1A, the mammalian orthologue of Drosophila minibrain
kinase (mnb) (Tejedor et al., 1995), encodes a proline/arginine-
directed dual-specificity kinase, and is overexpressed both in the
brain of trisomic mice and of individuals with DS (Dowjat et al.,
2007). Three copies of Dyrk1a are necessary and sufficient to
induce several deficits in NOR (at 1 and 24 h) and FC, but only
result in delayed learning in the MWM (García-Cerro et al., 2014;
Pons-Espinal et al., 2013; Dierssen and de Lagrán, 2006; Altafaj
et al., 2001; Duchon and Herault, 2016). Interestingly, the Ts1Rhr
trisomy mouse, which is trisomic for the DS critical region with 33
genes including Dyrk1a, displayed deficits in the OF test and in
NOR, with 24 h of retention (Belichenko et al., 2009); additionally,
trisomy of this region was necessary to alter spatial memory in
Ts65Dn mice (Olson et al., 2007). In Ts65Dn, Ts1Cje and Ts1Rhr
mice, long-term potentiation (LTP; Box 1), a measure of synaptic
plasticity, could be induced only after blocking GABA(A)-
dependent inhibitory neurotransmission in the fascia dentata, a
structure that receives inputs from the perirhinal cortex (Belichenko
et al., 2009; Kleschevnikov et al., 2012b); this result is indicative of
excessive neuronal inhibition and is consistent with previous
observations of Ts65Dn mice (Kleschevnikov et al., 2012b;
Fernandez et al., 2007). In addition, widespread enlargement of
dendritic spines and decreased density of spines in the fascia dentata
were observed, which could explain the overall reduced activation
of neuronal activity (Belichenko et al., 2009; Haas et al., 2013).
Thus, cognitive impairment in DS seems to derive from molecular
and structural changes related to an altered copy number within this
33-gene region. This conclusion was confirmed when combining
Dp1Yey mice either with deletion of the Std4-KcnJ6 interval or
Kcnj15-Mx2, which showed that both regions contain dosage-
sensitive genes contributing to cognitive phenotypes (Jiang et al.,
2015).
The Ts65Dn mouse model also displays lower performance in

finding a hidden platform compared to controls in the MWM task at
4 months of age (Reeves et al., 1995; Netzer et al., 2010; Olmos-
Serrano et al., 2016b), but this phenotype is not consistently
observed in 2- to 4-month-old Dp1Yey mice (Yu et al., 2010c;
Goodliffe et al., 2016). Nevertheless, learning is impaired for both
models in a variant of the MWM test at the age of 2-3 months
(Goodliffe et al., 2016; Olmos-Serrano et al., 2016a). Overall, the
results obtained from these studies are difficult to compare owing to
differences in age of tested individuals and more importantly in the
protocols or the genetic background used. Thus, there is a strong
need to better standardise experimental protocols to allow for more
equivalent cross-laboratory comparisons.

Another important point is that combining models with different
segmental trisomies can alter the phenotypic outcomes (Jiang et al.,
2015; Duchon et al., 2011a; García-Cerro et al., 2014; Salehi et al.,
2006). Studies in such mice strengthen the evidence for the
multigenic nature of DS, already pointed to in human genetic
studies (Korbel et al., 2009; Korenberg et al., 1994; Lyle et al.,
2009), with multiple genes interacting to induce the frequently
observed intellectual disability that characterises DS. One of the
main conclusions is that the hippocampus is a key hub whose
dysfunction is observed in many DS mouse models, altering many
types of memory, including, for example, the function of the place
cells, a type of hippocampal pyramidal neuron that acts to define a
cognitive map needed for spatial memory (Witton et al., 2015).

DS universally causes the typical plaques and tangles of AD to
appear in the brain by the age of 40, and current figures show that
two-thirds of people with DS develop dementia by the age of 60
(Wiseman et al., 2015). Individuals with DS develop Alzheimer’s-
like pathologies comparatively early in life, including progressive
degeneration of basal forebrain cholinergic neurons (BFCNs). The
Ts65Dn mouse model exhibits elevated levels of β-amyloid (Aβ)
peptide, as well as atrophy of BFCNs. Although the mechanisms are
not yet fully understood, the appearance of the pathology almost
certainly arises from overexpression of the Hsa21 gene APP, which
is known to cause early-onset AD when present in three copies, as
shown in very rare families with small internal chromosomal
duplications that include this gene (Rovelet-Lecrux et al., 2007,
2006). In line with this hypothesis, App triplication is necessary for
the age-dependent BFCN loss observed in the Ts65Dn mouse
(Salehi et al., 2006; Granholm et al., 2000) and for neuronal
abnormalities in the endosomal compartment, also reported in these
mice (Cataldo et al., 2008, 2000).

Intriguingly, not everyone with DS develops dementia, although
all individuals with DS over the age of 40 show evidence of amyloid
plaques. Individuals with duplicated APP have dementia onset that is
fully penetrant, between 39 to 64 years of age (Wiseman et al., 2015).
Conversely, individuals with DS (and thus APP in triplicate) show a
wide range in age-of-onset of dementia, and can live into their 70s
with no sign of dementia (Karmiloff-Smith et al., 2016; Krinsky-
McHale et al., 2008; Ghezzo et al., 2014). Thus, it seems likely that
there are also protective factors for AD on Hsa21, and these might be
important for understanding and treating dementia in the euploid
(Box 1) population. Although the genes involved in modulating AD
phenotypes remain to be determined, crosses of different types of AD
and DS mouse models to humanised APP will give insight into
molecular processes (Choong et al., 2015; Hamlett et al., 2016).

Insights into congenital heart defects (CHDs) in DS have also
been gained using mouse models. In humans, 40% of DS newborns
present with a CHD (Antonarakis et al., 2004). In mice, CHDs were
observed during development in Tc1 (O’Doherty et al., 2005),
Ts65Dn (Moore, 2006), Dp1Yey (Li et al., 2007), Dp1Tyb (Lana-
Elola et al., 2016) and Ts1Cje (Guedj et al., 2016) embryos.
Detailed investigation with several trisomic models refined a critical
interval between Ifnar1 andKcnJ6 (Fig. 1) (Raveau et al., 2012; Liu
et al., 2011) and a role for the most distal part of Mmu16 from
mir802 to Zbtb21 (Lana-Elola et al., 2016). In addition,
overexpression of Jam2, a gene located upstream of App that
encodes junctional adhesion molecule 2 found in the tight junctions
of endothelial cells, modifies the activity of the matricellular protein
cysteine-rich with EGF-like domain protein 1 (CRELD1), leading
to enhanced septal defects in Ts65Dn mice (Li et al., 2016).
Reducing the dosage of another key gene for heart development
located outside of Hsa21 homologous regions, T-box transcription
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factor Tbx5 worsens CHDs in the Ts65Dn mouse model, evidenced
by increasing aortic and atrial-ventricular septal defects (Polk et al.,
2015). These studies indicate that several Hsa21 homologous
regions contribute to CHDs in DS and that additional genes
involved in normal heart development canmodify the severity of the
heart phenotypes observed in DS models.
Additional DS-related features, such as craniofacial changes,

have been described in mouse models, and certain trisomic genes or
regions have been implicated in these phenotypes (Starbuck et al.,
2014; Richtsmeier et al., 2002, 2000). A mouse-based study has
also shed light on hypotonia, a major phenotype observed in DS
newborns (Vicari, 2006). Analysis of a mouse model carrying three
copies of the Hspa13-App region (Fig. 1) shows changes in
locomotor activity and in muscle strength and physiology,
suggesting the contribution of muscular deficits in the periphery
(Brault et al., 2015a).
This summary is not exhaustive and many additional DS features

have been explored using mouse models, such as the mineralisation
of long bones (Blazek et al., 2015), the risk of chronic otitis
media (Bhutta et al., 2013), and the higher risk of developing
myeloproliferative disorders and cancer (Ng et al., 2015; Sussan
et al., 2008; Malinge et al., 2012; Alford et al., 2010; Yang et al.,
2016). Each mouse strain has the potential to provide unique
information, and a range of animals, aneuploid and partially
trisomic, are important to pinpoint specific candidate genes and
dissect the underlying molecular mechanisms.

Identification of molecular mechanisms and candidate
genes for DS cognitive features
The analysis of DS mouse models has facilitated the identification
of specific Hsa21 genes involved in DS features. Initially, DS
candidate genes were pinpointed by human genetic analyses or
by parallel knowledge of gene function (Antonarakis, 2016;
Antonarakis et al., 2004). Two basic experimental approaches in
mice have been applied either to increase or decrease the expression
of a candidate gene. As described above, a 33-gene region has been
identified as being crucial for cognitive impairment in DS, based on
a number of mouse behavioural studies (Belichenko et al., 2009;
Olson et al., 2007). Among the genes from this region, Dyrk1a
was an attractive candidate for inducing cognitive-impairment
phenotypes.
Large genomic fragments such as yeast artificial chromosomes

(YACs) containing mouse DNA of the locus (Smith and Rubin,
1997; Smith et al., 1995) or bacterial artificial chromosome (BAC)
constructs covering the human (Ahn et al., 2006) or the mouse
(Guedj et al., 2012) gene, were developed in order to express
Dyrk1awith a pattern of expression similar to the endogenous gene.
The YAC transgenic mouse was used to demonstrate the role of
Dyrk1a in DS cognitive impairment (Sebrié et al., 2008; Rachidi
et al., 2007; Roubertoux et al., 2006; Branchi et al., 2004). The
evidence for this was reinforced by applying transgenic approaches
to overexpress Dyrk1a alone in mice either by using expression
vectors driven by an exogenous promoter (Altafaj et al., 2001, 2013;
Grau et al., 2014; Martinez de Lagrán et al., 2004) or by using BAC
encoding human or mouse DYRK1A (Ahn et al., 2006; Guedj et al.,
2012). All lines played an important role in understanding the
molecular consequences induced by DYRK1A overdosage and
provided important support for demonstrating molecular alterations
in synaptic plasticity pathways, particularly expression changes in
GABAergic- and glutamatergic-related proteins (Ahn et al., 2006;
Park et al., 2012, 2010; Song et al., 2015, 2013; Souchet et al., 2015;
Rachdi et al., 2014; Laguna et al., 2013; Guedj et al., 2012; Souchet

et al., 2014). Similar alterations were observed in models with
partial trisomy of Mmu16, Ts65Dn and Dp(16)1Yey, and were
reversed in the Dyrk1a+/− model (Souchet et al., 2014).
Overexpression of Dyrk1a also decreased firing rate and
γ-frequency power in the prefrontal network of anesthetised and
awake mice, indicating that excess levels of this gene reinforce
neuronal inhibition (Ruiz-Mejias et al., 2016).

Reducing the Dyrk1a dosage in Ts65Dn mice by crossing
Ts65Dn females with heterozygous Dyrk1a+/− male mice revealed
that normalization of the Dyrk1a copy number improves spatial
working, reference memory and contextual conditioning, as well as
rescuing hippocampal LTP (García-Cerro et al., 2014). Similar
results were obtained by crossing Dp1Yey mice with Dyrk1a-
knockout mice: rescued trisomic mice with only two functional
copies of Dyrk1a showed a better performance in the T-maze and
FC assays (Jiang et al., 2015). Concomitant with these functional
improvements, normalisation of the Dyrk1a expression level in
trisomic mice restored the proliferation and differentiation of
hippocampal cells in the adult dentate gyrus (DG), and the
density of GABAergic- and glutamatergic-synapse markers in the
molecular layer of the hippocampus (García-Cerro et al., 2014).

Additional genes have been implicated in DS phenotypes in mice.
App triplication was shown to impact BFCN degeneration,
consistent with a role for this AD-associated gene in DS impaired
cognition (Salehi et al., 2006). Regulator of calcineurin 1 (Rcan1)
inhibits the calcineurin-dependent signalling pathway and its
aggregation is controlled by Dyrk1a phosphorylation (Song et al.,
2013). Increasing RCAN1 gene dosage impairs hippocampal LTP
(Xing et al., 2013), whereas genetic rescue experiments restore
sympathetic nervous system development in Dp1Yey mice (Patel
et al., 2015). The gene encoding calmodulin regulator protein
Purkinje cell protein 4 (Pcp4) has been overexpressed using a P1-
phage vector (PAC) to generate transgenic mice that display
cerebellar defects (Mouton-Liger et al., 2014, 2011). Recently,
overexpression of this gene was implicated in the brain
ventriculomegaly (Box 1) observed in Ts1Cje mice and in DS-
affected humans, and it is thought that the mechanism involves
impaired cilia function in ependymal cells, which form the lining of
the brain ventricular system (Raveau et al., 2017). Another gene that
has been linked to DS is Kcnj6, which encodes potassium-voltage-
gated channel subfamily J member 6. This gene has been shown to
contribute to CHDs (Lignon et al., 2008) and to cognitive defects,
together with another gene not yet identified (Jiang et al., 2015;
Joshi et al., 2016; Cooper et al., 2012). The gene encoding
cystathionine β-synthase (Cbs), which is involved in the
methionine/cysteine cycle, is overexpressed in the DS brain
(Ichinohe et al., 2005). Comparable overexpression of Cbs using a
PAC transgenic line leads to changes in behaviour and LTP in
mouse (Régnier et al., 2012), with similar phenotypes being
observed in trisomic mice involving larger segments that include
Cbs (Lopes Pereira et al., 2009; Yu et al., 2010c).

Several pathways that are perturbed in DS mouse models have
been brought to light using transcriptomic and proteomic
approaches. A meta-analysis of DS data, selected from human
and mouse studies, unveiled perturbed neurological processes
involved in neurodegeneration, axon guidance and nerve growth
factor (NGF) signalling (Vilardell et al., 2011). A few Hsa21 genes
(SOD1, APP, DONSON, TIAM1, COL6A2, ITSN1 and BACE2) and
the brain-derived neurotropic factor (BDNF)-dependent pathway,
involved in growth, differentiation and survival of neurons, were
found to be altered. An elevated level of BDNF and of Akt-mTOR/
Ras-ERK signalling was observed in the hippocampus of Ts1Cje
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mice, and normal mTOR activity could be restored by treatment
with the mTOR inhibitor rapamycin (Troca-Marín et al., 2014,
2011). In agreement, Ahmed et al. (2013) also showed that mTOR
signalling is deregulated in Tc1 mouse brains.
There are likely to be multiple signalling pathways affected in the

DS brain, however. In a recent systems biology study, the
transcriptomes of cells taken from DS-affected human fetuses
(and unaffected controls) were compared to transcriptome data from
the embryonic forebrains of three mouse models (Dp1Yey, Ts65Dn
and Ts1Cje) (Guedj et al., 2016). Their analyses revealed that a large
panel of cellular processes (cellular stress response, DNA-repair
signalling, regulation of cell cycle checkpoints, kinetochore
organisation, proteolytic activity and anti-apoptotic genes) and
molecular pathways (neurogenesis and neuronal differentiation,
mitochondrial function, oxidative stress response, and
inflammation) is dysregulated in DS mouse models and humans,
indicating that the disease mechanisms are likely to be similar in
both species. Another study, involving multi-regional transcriptome
analysis of human DS and euploid foetal brains, pointed to
misregulation of genes involved in the differentiation of
oligodendrocytes and in myelination (Olmos-Serrano et al.,
2016a). These findings were confirmed by analysis of Ts65Dn
trisomy mice in the same study, highlighting that defects in white
matter function could play a part in DS physiopathology. Lastly,
epigenetic profiling has revealed multiple loci with altered CpG
methylation in human DS and in mouse models, and this
phenomenon may reflect increased dosage of Hsa21-linked
methylation-pathway genes, such as DNMT3L, SLC19A1 and
others, as well as overexpression of key Hsa21-linked transcription
factors, such as RUNX1, which could affect epigenetic patterns
where they bind DNA (reviewed in Do et al., 2017). Collectively,
these studies give an idea of the complexity of DS and emphasise
the need to use an integrative approach that includes human samples
and animal models, analysed at different periods in development
(for example, foetal, early postnatal, young and late adult stages), to
better understand the sequence of altered cellular processes and
affected pathways in this disease.

Therapeutic proof-of-concept for DS
In the last 10 years, a number of studies have sought to assess the
efficacy of candidate therapeutic interventions for DS using mouse
models. A summary of studies that have explored strategies for
rectifying molecular, cellular or systemic defects in DS using mice
is given in Table 2.
Some studies have attempted to target defects in neurogenesis and

brain development in DS mouse models. The origin of the granule
cell deficit in Ts65Dn has been traced to precursors in early
postnatal development, which show a substantially reduced
mitogenic response to hedgehog protein signaling (Roper et al.,
2006; Baxter et al., 2000), a crucial pathway in development.
Activation of the sonic hedgehog (SHH) pathway can be achieved
by intraperitoneal injection of smoothened agonist (SAG) at
postnatal day 2 (P2). Treated Ts65Dn pups have partially
corrected cerebellar neurogenesis and hippocampal LTP defects,
resulting in improved spatial memory (Das et al., 2013; Gutierrez-
Castellanos et al., 2013; Roper et al., 2006). However, SAG
treatment failed to restore normal cerebellar long-term depression
and working memory. Moreover, a key limitation of systemic
targeting of the SHH pathways is the potential for such treatment to
increase the risk of several types of human cancer (Taipale and
Beachy, 2001; Jiang and Hui, 2008). An alternative strategy has
been proposed based on use of a γ-secretase inhibitor to reduce

overexpression of the SHH receptor PATCHED1 (PTCH1), which
represses the SHH pathway. Overexpression of PTCH1 has been
reported in Ts65Dn neural precursor cells (NPCs) (Trazzi et al.,
2013, 2011) and is thought to result from the over-accumulation of
the amyloid precursor protein intracellular domain (AICD), which is
produced by cleavage of the APP precursor. The increase in AICD
leads to overexpression of PTCH1 in trisomic NPCs, impairing
neurogenesis and neurite development (Trazzi et al., 2013, 2011).
Using an inhibitor of APP γ-secretase, Giacomini et al. (2015)
restored neuronal differentiation of Ts65Dn-derived NPCs and,
with postnatal treatment, restored neurogenesis in the DG and the
subventricular zone of Ts65Dn mice, while also normalising
processing of APP. Thus, indirect targeting of the SHH pathway
could form the basis of new therapeutic strategies to restore
neurogenesis in trisomic brains.

An alternative is stem-cell-based therapy, a promising strategy for
many diseases, including DS. Several studies have attempted to
implant euploid neural stem cells into the brains of Ts65Dn mice
and there is growing evidence that injected cells migrate to sites of
damage where they provide neuroprotection. When NSCs were
implanted in 12-month-old Ts65Dn mice, extrasomatic granules
positive for expression of TAU and REELIN, associated with
neuronal ageing, were reduced (Kern et al., 2011). When injected
earlier, at P2, these cells induced a significant increase in the density
of dentate granule cells and had a long-lasting positive effect on
cognitive performance (learning) (Rachubinski et al., 2012a,b).
Nevertheless, the stem-cell-based strategy has three limiting factors:
(1) cells need to be injected directly into the brain for maximum
efficacy; (2) the short-term effect is limited to the injection site and
close vicinity; and (3) benefits are transitory and, when they persist,
effects are probably linked to NSC-dependent neurotrophin
production (Rachubinski et al., 2012b).

Among the other strategies that have been tested in DS mouse
models is long-term peripheral administration of peptide 6 – an 11-
mer corresponding to an active region of ciliary neurotrophic
factor – which can enhance the pool of neural progenitor cells, and
ameliorate learning and memory impairments in Ts65Dn mice
(Blanchard et al., 2011). Three months of treatment with P7C3, an
aminopropyl carbazole that enhances hippocampal neurogenesis,
is sufficient to restore the neurogenic deficits observed in the
Ts65Dn model (Latchney et al., 2015). Prenatal treatment with
epigallocatechine gallate (EGCG), an inhibitor of DYRK1A,
normalised some craniofacial phenotypes, including the increased
cranial vault, in Ts65Dn mice (McElyea et al., 2016). Different
protocols have demonstrated a beneficial impact of environmental
enrichment – a widely used paradigm that increases sensory-motor
stimulation – on learning, memory and motor activity in Ts65Dn
mice (Llorens-Martín et al., 2010; Kida et al., 2013; Begenisic et al.,
2015). The underlying molecular mechanisms responsible for this
rescue are poorly understood, although it is thought that increased
neurogenesis and synaptogenesis might be involved.

As highlighted above, the mTOR pathway has been implicated in
DS. Treatment with the specific mTOR inhibitor rapamycin
improved the spatial-memory performance of Ts1Cje mice and
restored BDNF-dependent LTP in hippocampal slices (Andrade-
Talavera et al., 2015). The same authors showed that deficits in
synaptic plasticity (i.e. BDNF-LTP) and in the persistence of spatial
memory were fully reversed using rapamycin in the Ts65Dn model
(Andrade-Talavera et al., 2015), indicating that targeting mTOR
hyperactivation may be a novel pharmacotherapeutical approach
for DS. Consistent with this, administration of α-Tocopherol
(vitamin E), also known to act upon the mTOR pathway, led to
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Table 2. Candidate therapeutic approaches for DS

Target; drug and dose Mouse model
Treatment start/
duration/age at test Main impact

Long term
effect
observed?
(age) Publication

Neurogenesis, brain development
SHH and neurogenesis; SHH
agonist (SAG-1.1; 20 mg/kg)

Ts65Dn P0/1 injection/P6 Restored cerebellar neurogenesis Roper et al., 2006

SHH and neurogenesis; SHH
agonist (SAG-1.1; 20 mg/kg)

Ts65Dn P0/1 injection/4 m Improved spatial memory in MWM,
hippocampal LTP, cerebellar LTD,
neurogenesis and normalisation of
cerebellar morphology but no effect in
working memory

Yes (4 m) Das et al., 2013

SHH and neurogenesis; SHH
agonist (SAG-1.1; 20 mg/kg)

Ts65Dn P0/1 injection/4 m No impact on the deficient vestibulo-ocular
reflex, a cerebellar function found defective
in the Ts65Dn mouse model

Gutierrez-
Castellanos
et al., 2013

SHH and neurogenesis;
γ-secretase inhibitor
(ELND006)

Ts65Dn P3/12 d/P15 Restored neurogenesis and synapse
development, reduction of expression of
AICD and APP

Giacomini et al.,
2015

Brain development; injections
with neural progenitor cells

Ts65Dn P2/acute/P2-P15
and 4 m

Migration of implanted neuronal progenitors
and increased density of dentate granule
cells but no change in the cognitive deficits
observed in Ts65Dn mice during the
neonatal period or adulthood (plus maze,
MWM, conditioned task avoidance)

Rachubinski et al.,
2012b

Neurotrophic factors; peptide 6
(CNTF)

Ts65Dn 11-15 m/1 m/12-16 m Improved spatial memory (MWM),
neurogenesis and connectivity

Blanchard et al.,
2011

Neurogenesis; P7C3
(18 mg/kg)

Ts65Dn 1-2.5 m/3 m/4-6 m Improved neurogenesis with increase in total
Ki67+, DCX+ and surviving BrdU+ cells

Latchney et al.,
2015

DYRK1A; EGCG (200 mg/kg) Ts65Dn E7/2 d/6 w Normalisation of some craniofacial
phenotypes, and of Ptch1, Ets2, Rcan1
and Shh expression

McElyea et al.,
2016

Voluntary exercise Ts65Dn 10-12 m/7 w/12-14 m Improved performance inMWM, increased in
DCX+ and phospho-histone-3+
hippocampal neurons

Llorens-Martin
et al., 2010

Voluntary exercise/running Ts65Dn 21 d/9 m/10 m Improved performance in the rotarod and
NOR tests, and reduced overexpression of
DYRK1A, APP, MAP2ab and SOD1

Kida et al., 2013

Voluntary exercise/running Ts65Dn 6 m/7 m/13 m Only improved performance in the rotarod
not in NOR

Kida et al., 2013

Neurogenesis, brain function;
EET

Ts65Dn Gestation/2 m/2 m Improvement in maternal care and
normalisation of cognition in NOR and of
hippocampal LTP in adults treated during
gestation

Begenisic et al.,
2015

Oxidative stress,
development

Astrocytes, brain
development, oxidative
stress; NAP+SAL (20 μg; IP)

Ts65Dn E8/4 d/P5-P20 Better motor and sensory milestones Yes (8-10 m) Begenisic et al.,
2015

Astrocytes, brain
development, oxidative
stress; NAP+SAL (20 μg; IP)

Ts65Dn 10 m/9 d/10 m Improved MWM learning performance Yes (8-10 m) Incerti et al., 2011

Astrocytes, brain
development, oxidative
stress; NAP+SAL (20 μg; IP)

Ts65Dn E8/4 d/8 m Decreased latency to find the platform in the
MWM but no probe test shown

Incerti et al., 2012

ROS; vitamin E (tocopherol;
400 mg/kg in food)

Ts65Dn 4 m/6 m/10 m Improved workingmemory in the RAWMwith
reduced production of cortical ROS,
reduced degeneration of cholinergic
neurons (TrkA+) in the medial septal
nucleus with no change in brain APP level,
and reduced loss of calbindin hippocampal
CA1 neurons in 10-m-old mice

Lockrow et al., 2009

ROS; vitamin E (α-tocopherol;
160 mg/kg in food)

Ts65Dn Gestation/3 m/3 m Reduced anxiety in the elevated plus maze,
improved latency to find the platform with
rescue in the probe test of the MWM, no
impact on hyperactivity during circadian
activity, variable normalisation of several
lipid peroxidation products in plasma,
cortex and hippocampus

Shichiri et al., 2011

Continued

1175

REVIEW Disease Models & Mechanisms (2017) 10, 1165-1186 doi:10.1242/dmm.029728

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



Table 2. Continued

Target; drug and dose Mouse model
Treatment start/
duration/age at test Main impact

Long term
effect
observed?
(age) Publication

Neurotransmission
Endocannabinoid signalling;
inhibitor of monoacylglycerol
lipase

Ts65Dn 11 m/4 w/12 m Reduced ambulatory activity (but no change
in the thigmotaxic behaviour) in the open
field and the Y-maze, no improvement in
spontaneous alternation (Y-maze) or NOR
with 10-min retention time but
improvement in the NOR with 24 h
retention, normalisation of LTP in the CA1,
changes in the level of brain
endocannabinoids and their metabolites,
reduced levels of Aβ40 and Aβ42 (APP-
derived peptides)

Lysenko et al., 2014

GABA-A receptor;
PTZ (3 mg/kg in food)

Ts65Dn 3-4 m/17 d/4-5 m Rescued performance in the NOR (24-h
retention time) and spontaneous
alternation in the T-maze, improved
hippocampal LTP (DG)

Fernandez et al.,
2007

GABA-A receptor;
PTZ (3 mg/kg in food)

Ts65Dn 4 m/7 w/5-6 m No effect on hyperactivity during circadian
monitoring and on sensorimotor tests,
including rotarod; normalisation of learning
performance in the MWM

Rueda et al., 2008a

GABA-A α5;
α5IA (5 mg/kg; IP)

Ts65Dn 3 m/1 d-2 w/3-4 m Improvement in NOR (10-min retention time)
and in the learning phase of the MWM, no
change in the locomotor activity (open
field) or the anxiety level (open field and
elevated plus maze), enhancement of the
early gene c-fos products in brain region

Braudeau et al.,
2011b

GABA synthesis; gabapentin
(10 mg/kg; IP)

Ts65Dn 3 m/10 w/4-6 m No effect on sensiromotor abilities, motor
coordination or spontaneous activity, on
anxiety (open field and elevated plus
maze), in the MWM and in the FC test

Vidal et al., 2012

GABA-A receptor; PTZ
(0.03 mg/kg; IP)

Ts65Dn 2-3 m, 12-15 m/2-3 w/
5-12 m, 5-15.5 m

Improvement in NOR (24-h retention time)
8 days after 2-w treatment

Colas et al., 2013

GABA-A receptor; PTX Ts65Dn 3-4 m/acute/3-4 m Restoration of the LTP in the DG Kleschevnikov
et al., 2004

GABA-A receptor; PTX Ts65Dn 4-6 m/acute/4-6 m Restoration of the LTP-induced theta-burst
stimulation in the CA1

Costa and Grybko,
2005

GABA-B; CGP55845
(0.5 mg/kg; IP)

Ts65Dn 2-3 m/3 w/3-4 m Memory restored in the novel-place
recognition, NOR and FC tasks, but no
effect on locomotion and performance in T-
maze; increased production of BDNF and
restoration of the LTP in the DG

Kleschevnikov
et al., 2012a

GABA-A α5; RO4938581
(20 mg/kg in food)

Ts65Dn 3-4 m/6 w/4-6 m Improved spatial learning and memory
(MWM), hippocampal synaptic plasticity
(LTP) and adult neurogenesis

Martinez-Cue et al.,
2013

NMDA receptor; memantine
(5 mg/kg; IP)

Ts65Dn 4-6 m/acute/4-6 m Analysis of proteomic changes after rescue
in the FC test show increased NR2A and
NR1 in the hippocampus and cortex

Costa et al., 2008;
Ahmed et al.,
2015

NMDA receptor; memantine
(30 mg/kg; IP)

Ts65Dn 9 m/8-9 w/11 m Improved spatial learning in MWM with
reduced brain Aβ level and increased brain
VGLUT1 level

Rueda et al., 2010

NMDA receptor; memantine
(20 mg/kg in food)

Ts65Dn 4/10 m Memory improvement in the RAWM and the
NOR (24-h retention time) but no effect on
hyper-exploration activity with increased
BDNF gene expression in the
hippocampus and BDNF protein in the
frontal cortex

Lockrow et al., 2011

NMDA receptor; R025-6981 Ts65Dn 3-6 m/acute or 2 w/3-
6 m or 3.5-6.5 m

Reduced synaptic NMDA-receptor
responses in CA1 and γ-oscillation deficits,
with restoration of LTP in CA1 but no effect
on spontaneous alternation (Y-maze) or in
the Barnes maze

Hanson et al., 2013

mTOR; rapamycin (10 mg/kg) Ts1Cje 2 m/5 d/2 m Restoration of BDNF-induced LTP at CA3-
CA1 hippocampal synapses, and increase
spatial learning and memory in the Barnes
maze

Andrade-Talavera
et al., 2015

Continued
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Table 2. Continued

Target; drug and dose Mouse model
Treatment start/
duration/age at test Main impact

Long term
effect
observed?
(age) Publication

Neurogenesis, 5-HT reuptake;
fluoxetine (5-10 mg/kg; IP)

Ts65Dn P3/13 d/P45 Increased thickness of the mossy fibres and
increased synaptophysin and VGLUT1
reactivity in the CA3 with improvement of
the spine density and better basal synaptic
plasticity in CA3 neurons with higher
BDNF level

Yes (1 m) Stagni et al., 2013

Neurogenesis, 5-HT reuptake;
fluoxetine

Ts65Dn E10/10 d/1.5 m Restoration of neuronal precursor
proliferation and cellularity in the forebrain
with normal dendritic development, cortical
and hippocampal synapse development
and brain volume associated with
normalisation of activity in the open field,
and in the FC test but no effect on NOR
(4-h or 24-h retention time)

Yes (1.5 m) Guidi et al., 2014

Neurogenesis, 5-HT reuptake;
fluoxetine (5-10 mg/kg; IP)

Ts65Dn P3/13 d/3 m Maintenance of the cellular restoration
observed at P3 and P10 and improved
hippocampal function in the MWM, NOR
(1-h retention time) and passive avoidance
tests

Yes (3 m) Stagni et al., 2015

Neurogenesis, 5-HT reuptake;
fluoxetine (5-10 mg/kg; IP)

Ts65Dn 2-5 m/24 d/2.5-5.5 m Increased neurogenesis and neuronal
survival in the hippocampus

Clark et al., 2006

Neurogenesis, 5-HT reuptake;
fluoxetine (5-10 mg/kg; IP)

Ts65dn P3-P15/2 h or 1 m Restored proliferation in the hippocampus
with normal expression of R-HT1A
receptors and BDNF associated with a
complete recovery in the FC test

Bianchi et al., 2010

Neurogenesis, 5-HT reuptake;
fluoxetine (0.2 mg/ml water)

Ts65Dn 4-6 m/4 w/5-7 m Reduced exploratory activity in the open field
but no effect in the MWM and increased
adverse effects (seizure and mortality)

Heinen et al., 2012

Neurogenesis, 5-HT reuptake;
fluoxetine (10 mg/kg in
water)

Ts65Dn 2 m/8 w/4 m Recovery of spatial memory in the novel-
place recognition and spontaneous
alternation (Y-maze) tests, and of
hippocampal LTP in CA1 with
normalisation of GABA release in the
hippocampus

Begenisic et al.,
2014

Neurogenesis; lithium Ts65Dn 5-6 m/4 w/6-7 m Restoration of the number of newborn
neurons, the adult neurogenesis and the
LTP in DG, associated with improved FC
and novel-place recognition (24 h) but no
change in the spontaneous alternation
(T-maze)

Contestabile et al.,
2013

Glutamatergic and cholinergic
pathways; piracetam (75,
150 or 300 mg/kg; IP)

Ts65Dn 1.5-2 m/4 w/2.1-3 m Improved performance in the MWM (75-
150 mg/kg) and only the 300 mg/kg
reduced the nocturnal spontaneous
activity

Moran et al., 2002

Glutamatergic and cholinergic
pathways; piracetam, SGS-
111

Ts65Dn 4-6 m/6 w/5.5-7.5 m Reduced hyperactivity (home-cage, open-
field and hole board tests) but no
improvement in spatial learning in the
MWM or in the passive avoidance test

Rueda et al., 2008b

Glutamatergic and cholinergic
pathways; piracetam, SGS-
111

Ts65Dn gestation/5 m/5 m No effect on hyperactivity or spatial memory
in the MWM or in the passive avoidance
test

Rueda et al., 2008b

NE, locus coeruleus neurons;
DREADDs

Ts65Dn 11-14 m/acute/
11-14 m

Improved NOR, normalised spontaneous
activity in the four-arm maze

Fortress et al., 2015

NE; formoterol (2 mg/kg)
+nadolol (4 mg/kg) (IP)

Ts65Dn 5-6 m/15 d/5.5-6.5 m Reversal of FC failure with restored synaptic
density and neuronal activity (c-fos after
stimulation), and increased cell
proliferation and dendritic arborisation

Dang et al., 2014

NE; L-DOPS Ts65Dn 11 m/2 w/12 m Improved NOR, normalised spontaneous
activity in the four-arm maze with reduced
β1-adrenergic-receptor staining in the
hippocampus

Fortress et al., 2015

Continued
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Table 2. Continued

Target; drug and dose Mouse model
Treatment start/
duration/age at test Main impact

Long term
effect
observed?
(age) Publication

NE; L-DOPS, xamoterol Ts65Dn 3-5 m/acute/3-5 m Recovery of contextual fear learning and
nesting behaviour, with increased NE
hippocampal concentration. Xamoterol, an
β1-adrenergic-receptor agonist, failed to
rescue contextual learning, suggesting a
β1-adrenergic-receptor-dependent
mechanism in the L-DOPS rescue

Salehi et al., 2009

Norepinephrine; xamoterol,
(1-10 mg/kg; IP)

Ts65Dn 9-12 m/acute/9-12 m Restoration of the memory deficit in FC,
spontaneous alternation (Y-maze and T-
maze) and NOR (24-h retention time) but
no effect on ambulatory activity (open field,
PhenoTyper)

Faizi et al., 2011

Cholinergic pathway;
donepezil (3.3 mg/kg in
food)

Ts65Dn 4 m/7 w/5-6 m No modification of learning and memory in
the MWM

Rueda et al., 2008a

Cholinergic pathway;
physiostigmine (50 µg/kg)

Ts65Dn 4, 10, 16 m/acute/
4, 10, 16 m

Reversal of spontaneous alternation in the
four-arm maze only at 4 months of age

Chang and Gold,
2008

Cholinergic pathway;
galantamine

Ts65Dn 3-6 m/acute/3-6 m Better performance in olfactory learning de Souza et al.,
2011

Cholinergic pathway; choline
(1.1 and 5.0 g/kg in the diet)

Ts65Dn Gestation/13 m Improved spatial recognition in RAWM and
neurogenesis

Yes (13 m) Velazquez et al.,
2013

Glutamatergic pathway;
melatonin (20 mg/kg)

Ts65Dn 5 m/5 m/10 m Recovered spatial learning (latency) and
memory in the MWM and increased the
number of ChAT+ cells in the medial
septum but no effect on APP level, on
sensorimotor tests, in rotarod, on anxiety
(elevated plus maze and open field) or on
spontaneous locomotor activity. Increased
exploratory activity (hole board and open
field). Recued adult neurogenesis, density
of hippocampal granule cells and
hippocampal cortical 4-hydroxynonenal
protein adducts, and LTP (CA1). Increased
VGLUT1 signal in the hippocampal DG

Corrales et al.,
2013; Corrales
et al., 2014

Individual genes
KCNJ6; ETH (150 mg/kg; IP) Ts65Dn 3 m/10 w/4-6 m No effect on sensiromotor abilities, motor

coordination or spontaneous activity, on
anxiety (open field and elevated plus
maze), in the MWM and/or in the FC test

Vidal et al., 2012

DYRK1a; shRNA, AAV
(IC – striatum)

Tg(MT1A-Dyrk1a) 2-3 m/4-5 m Attenuation of hyperactivity (open field) and
motor alterations (treadmill)

Ortiz-Abalia et al.,
2008

DYRK1a; shRNA, AAV
(IC – hippocampus)

Ts65Dn 2 m/1 injection/3 m Normalised ratio of pERK1:ERK1 and
pCREB:CREB, improvement of
hippocampal CA1 LTP, no rescue of MWM
but reduced thigmotaxis

Altafaj et al., 2013

DYRK1a; EGCG (10 µM) Ts65Dn 2-5 m/acute/2-5 m Normalisation of hippocampal CA3-CA1 LTP Xie et al., 2008
DYRK1a; EGCG-GT
(30-60 mg/kg in food)

Tg(CEPHY152F7)
12Hgc

Gestation-4.5 m/
4.5 m

Rescued NOR with effect on brain volume
and normalised level of BDNF and TrkB

Guedj et al., 2009

DYRK1a; POL60-EGCG
(60 mg/kg in food)

Tg(MT1A-Dyrk1a),
Ts65Dn

4.5 m/1 m/5.5 m Restoration of spatial memory in the MWM
and NOR, with normalisation of
homocysteine plasma level

De la Torre et al.,
2014

DYRK1a; MGTE-EGCG
(60 mg/kg in food)

Tg(Dyrk1a)
189N3YahJmd

4 m/1 m/5 m Rescued prefrontal LTP (but not long-term
depression) and normalisation of
pCAMK2:CAMK2 ratio in the prefronal
cortex

Thomazeau et al.,
2014

DYRK1a; EGCG Ts65Dn P3/13 d/P15-P45 Restored neurogenesis in the subventricular
zone and the DG, normalisation of total
hippocampal granule cells and level of pre-
and post-synaptic proteins (SYN and
PSD95), but no long-term effect at P45

Stagni et al., 2016

DYRK1a; POL60-EGCG
(60 mg/kg in food)

Tg(Dyrk1a)
189N3YahJmd,
Ts65Dn

4.5 m/1 m/5.5 m Normalisation of the component level of the
GABAergic and glutamatergic pathway in
cortex and hippocampus but not
cerebellum, and rescue of the
spontaneous alternation in the Y-maze

Souchet et al., 2015

Continued
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attenuation of cognitive impairments in the Ts65Dn model
(Lockrow et al., 2009; Shichiri et al., 2011).
Different neurotransmission pathways have been shown to be

altered in mouse models of DS, and these pathways have been
targeted in attempts to improve cognition. In one example, Ts65Dn
mice were treated with JZL 184, a selective inhibitor of
monoacylglycerol lipase. The lipase degrades the most abundant
endocannabinoid and its inactivation improves synaptic plasticity and
memory in mouse (Pan et al., 2011). Thus, hippocampal LTP, long-
term memory and locomotor activity were restored to a normal level
in JZL-184-treated Ts65Dn mice; however, positive thigmotaxis
(Box 1) and short-term memory defects remained unchanged
(Lysenko et al., 2014).
Ts65Dn mice show perturbations of the excitatory/inhibitory

balance towards an excess of GABA transmission; this imbalance
may also explain cognitive dysfunction in human DS. The ability of
antagonists of GABA receptors [including pentylenetetrazol (PTZ),
RO4938581 and CGP55845] to normalise this balance has been
tested in mouse models. These compounds rescued long-term and

spatial memory, hippocampal LTP and the expression of several key
molecular markers, including BDNF, GAD65/67 and VGAT
(Fernandez et al., 2007; Rueda et al., 2008a; Braudeau et al.,
2011a,b; Colas et al., 2013; Vidal et al., 2012; Kleschevnikov et al.,
2004, 2012b; Martinez-Cue et al., 2013; Costa and Grybko, 2005).
Similarly, the N-methyl-D-aspartate receptor antagonists memantine
and MK-801 successfully rescued learning and improved memory,
partly by normalising the levels of APP, vGlut1 and BDNF (Costa
et al., 2008; Ahmed et al., 2015; Rueda et al., 2010; Lockrow et al.,
2011; Hanson et al., 2013). A memantine clinical study is currently
underway to assess the effects of this treatment on adolescents with
DS (https://www.clinicaltrials.gov/).

Prenatal or early postnatal treatment with fluoxetine, which
targets the serotoninergic system, rescued neurogenesis, long-term
memory and synaptic plasticity in Ts65Dn mice (Guidi et al.,
2014; Stagni et al., 2015). Adult treatment enhanced neurogenesis
without improving learning/memory deficits at a high dose of
fluoxetine (Heinen et al., 2012); however, an improvement in
short-term memory was observed using a low dose (Begenisic

Table 2. Continued

Target; drug and dose Mouse model
Treatment start/
duration/age at test Main impact

Long term
effect
observed?
(age) Publication

Neurodegeneration
Aβ; γ-secretase inhibitor
(DAPT; 100 mg/kg; SC)

Ts65Dn (female) 4 m/acute/4 m Improved spatial learning and memory in the
MWM with increased brain APP-CTF and
lower Aβ levels

Netzer et al., 2010

Aβ; anti-Aβ vaccine Ts65Dn 5 m/1 injection/8 m Reduction of brain Aβ level and restoration of
NOR and FC, with reduction of cholinergic
neuron atrophy

Belichenko et al.,
2016

Aβ; EET Ts65Dn 2.5 m/9.5 m/12 m Normalisation of hippocampal Aβ oligomer
and improved spatial learning and memory
(MWM) and spontaneous alternation (Y-
maze)

Sansevero et al.,
2016

Cholinergic pathway; choline-
supplemented diet

Ts65Dn Pregnancy-weaning/
40 d/14-18 m

Improved in the RAWM and increased
hippocampal ChAT innervation

Kelley et al., 2016

ChAT+ neurons; genetic,
Bace1+/–

Ts2 4 m/9 m/16 m Prevention of endosomal pathology in the
medial septal nucleus and the cerebral
cortex, normalised the number of ChAT+
neurons

Jiang et al., 2016

BFCNs, neurodegeneration;
estrogen (class B)

Ts65Dn (female) 11-15 m/2 m/13-17 m Improved learning in the T-maze escape task
(plus reversal) with increased number of
ChAT+ neurons in the medial septal
nucleus and normalisation of NGF level in
the basal forebrain

Granholm et al.,
2002

BFCNs; estrogen (class B) Ts65Dn (female) 9-15 m/2 m/11-17 m Normalisation of MAP2 and AChE staining in
the hippocampus

Granholm et al.,
2003

BFCNs; estrogen (class B) Ts65Dn (male) 5 m/12 d/6 m No improvement of cognitive ability in the
RAWM

Hunter et al., 2004b

Inflammation; minocycline Ts65Dn 7 m/3 m/10 m Prevention of microglial activation,
progressive BFCN decline and improved
performance in the RAWM

Hunter et al., 2004a

BFCNs; choline (25 mM in
the diet)

Ts65Dn Pregnancy-lactation/
40 d/6 m

Improved attention tasks Yes (6 m) Moon et al., 2010

Cholinergic pathway; choline
(1.1 or 5 g/kg in the diet)

Gestation/13-17 m Improved spatial mapping in the RAWM, and
increased number, density and size of
medial septum BFCNs

Yes (13 m) Ash et al., 2014

5-HT, serotonin; Aβ, β-amyloid; AAV, adeno-associated virus; AICD, amyloid precursor protein intracellular domain; BDNF, brain-derived neurotropic factor;
BFCNs, basal forebrain cholinergic neurons; ChAT, choline acetyltransferase; CNTF, ciliary neurotrophic factor; d, day; DCX, doublecortin; DG, dentate gyrus;
DREADDs, designer receptors exclusively activated by designer drugs; E, embryonic day; EET, enriched environment treatment; EGCG, epigallocatechine
gallate; ETH, ethosuximide; FC, contextual and auditory-cue-conditioned fear task (fear conditioning); GT, green tea extract; IC, internal capsule; IP,
intraperitoneal injection; L-DOPS, droxidopa; LTP, long-term potentiation; m, month; MGTE, modified green tea extract; MWM, Morris water maze; NAP, peptide
D-NAPVSIPQ; NE, norepinephrine; NGF, nerve growth factor; NOR, novel-object recognition; P, postnatal day; POL60, polyphenon 60; PTZ, pentylenetetrazol;
RAWM, radial-arm water maze; ROS, reactive oxygen species; SAG, smoothened agonist; SAL, peptide D-SALLRSIPA; SC, subcutaneous; w, week.
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et al., 2014). As seen with fluoxetine treatment, early
administration of lithium, another antidepressant drug acting
also upon the serotonin pathway, fully rescued short- and long-
term memory, and LTP as well as neurogenesis in Ts65Dn mice
(Contestabile et al., 2013).
Therapeutic targeting of key candidate genes implicated in DS

has also been attempted. Partial display of DS phenotypes in mice
harbouring a single trisomy of Kcnj6 provides compelling evidence
for a functional role of increased channel expression in some of the
abnormal neurological phenotypes found in DS. However,
treatment of Ts65Dn mice with ethosuximide (ETH), an inhibitor
of KCNJ6, failed to rescue impairments of motor coordination or
cognitive performance (MWM or FC) (Vidal et al., 2012). Given its
putative role in DS, researchers have also explored the potential of
DYRK1A as a therapeutic target. Studies involving inhibition of
DYRK1A enzymatic activity using a safe and naturally available
inhibitor (EGCG) demonstrated that learning/memory phenotypes
could be rescued in different models, including in Ts65Dn mice
(Xie et al., 2008; Guedj et al., 2009; De la Torre et al., 2014;
Thomazeau et al., 2014), despite the fact that other genes are
trisomic in this model.
As mentioned above, individuals with DS are at increased risk of

developing AD during ageing, and the presence of three copies of
APP is known to contribute to this phenomena. Thus, several
therapies targeting the APP pathways have been tested. For
example, the γ-secretase inhibitor DAPT was shown to improve
memory and prevented neurodegeneration in Ts65Dn mice (Netzer
et al., 2010). Anti-Aβ vaccine failed to rescue a normal level of
Aβ40 and 42 but improved spatial learning of trisomic mice
(Belichenko et al., 2016), suggesting that there is no direct
relationship between the levels of Aβ and defects in spatial
learning. In wild-type rodents, supplementing the maternal diet with
additional choline (∼4.5× the amount in normal chow) enhances
spatial memory and attention in the offspring, and exerts structural
and functional changes in the septo-hippocampal cholinergic
system (McCann et al., 2006): these results suggested that
maternal choline supplementation (MCS) could enhance cognitive
function and protect against BFCN degeneration. MCS given to
Ts65Dn mice significantly improved spatial mapping and increased
the number, density and size of medial septum BFCNs (Moon et al.,
2010; Ash et al., 2014). MCS also seems to protect against
hippocampal cholinergic projection system degeneration (Kelley
et al., 2016).
Long-term exposure to environmental enrichment reduces Aβ

oligomers and rescues spatial-memory abilities in 12-month-old
trisomic mice (Sansevero et al., 2016). Estrogen treatment partially
rescued working memory (T-maze test) and prevented
neurodegeneration in aged Ts65Dn animals (11- to 17-months
old) (Granholm et al., 2002, 2003). Consistent with a role for
inflammatory processes in BFCN degeneration, minocycline
treatment inhibits microglial activation, prevents progressive
BFCN decline and markedly improves performance of Ts65Dn
mice on a working and reference memory task (Hunter et al.,
2004a). Partially reducing β-secretase 1 (BACE1) by deleting one
BACE1 allele blocked development of age-related endosome
enlargement in the medial septal nucleus, cerebral cortex and
hippocampus, and prevented loss of choline acetyltransferase
(ChAT)-positive medial septal nucleus neurons (Jiang et al., 2016).
These potential therapeutic approaches have been tested

‘preclinically’ in DS mouse models (mostly in Ts65Dn mice)
across different laboratories. Many different compounds and
manipulations have produced beneficial effects. However, apart

from EGCG and GABA-targeting compounds, the efficacy of
specific strategies have not been validated in an independent study.
Testing for interlaboratory reproducibility of the results, and
reproducibility in more than one mouse model, will be crucial
next steps in this exciting research area.

Future directions for DS research
As highlighted here, DS mouse models are providing important
insight into this complex disorder. Chromosome engineering
technologies now enable us to address more refined questions,
including, for example, on synergy and epistatic interaction between
Hsa21 genes. The panel of new technologies provides the
opportunity to broaden the range of animal models to include the
rat or primates, although it must be emphasised that such models
should only be developed where justified by the scientific question
and there is clear added value compared to available models. A key
limitation of DS mouse models is that most of the phenotypes have
been described in a few genetic backgrounds, mostly pure inbred
C57BL/6J mice, and for a few lines only in the F1, potentially
reducing complex genetic interactions and their influence on the
penetrance and expressivity of the phenotypes. It is widely known
that the genetic background can impact on phenotypic outcome in
mice; for example, in some backgrounds, homozygous knockout of
epidermal growth factor receptor (EGFR) is lethal, whereas, in other
backgrounds, the mutant is viable (Threadgill et al., 1995; Sanford
et al., 2001). An impact on phenotype is also observed when
modelling intellectual disabilities, autism spectrum disorders or
psychiatric diseases (Sittig et al., 2016; Arbogast et al., 2016). Thus,
addressing the interindividual phenotypic variability in DS will
require strategies either to develop models in various genetic mixed
backgrounds, e.g. with the F1 modelling approach proposed by
Sittig et al. (2016), or to bring new genetic diversity using, for
example, the Collaborative Cross lines (http://csbio.unc.edu/
CCstatus/index.py) or using large cohorts derived in an outbred
genetic background. In parallel, the use of large cohorts of
ethnically and genetically diverse DS individuals will help to
capture the variability in the human population.

The complex nature of DS creates the need for collaborative,
multidiscliplinary research to understand its biology. One key step
was the formation of the T21 Research Society (T21RS), a global
initiative that provides freely available, curated and therefore up-to-
date web resources, including validated models and protocols for
behavioural and pharmacological treatment. The T21RS society is
unique and aims to develop and coordinate action to generate new
models to make them available and to propose standard operating
protocols for behavioural investigation of DS. Moreover, mouse-
based research into DS has resulted in the advancement of a few
different treatments to human clinical trials. Promising results have
been obtained in terms of improvement of cognitive function and the
autonomy of individuals with DS (de la Torre et al., 2016, 2014), but
more work is needed to better assess drug efficacy, the consequence
of long-term treatment and the impact of treatment timing. In
addition, most of the treatments were evaluated in a Ts65Dn mouse
model, which only recapitulates the trisomy partially, lacking about
half of the mouse genes that are homologous to those on Hsa21. The
use of more complex mouse models, such as Dp1Yey and Dp1Tyb or
those that combine trisomies for Mmu16, Mmu17 and Mmu10
homologous regions (Yu et al., 2010b), should be developed for
reliable therapeutic assessment.

Models developed in other species, such as rat, are likely to be
helpful to validate genotype-phenotype relationships and the
outcome of preclinical treatments. Furthermore, we may have

1180

REVIEW Disease Models & Mechanisms (2017) 10, 1165-1186 doi:10.1242/dmm.029728

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://csbio.unc.edu/CCstatus/index.py
http://csbio.unc.edu/CCstatus/index.py
http://csbio.unc.edu/CCstatus/index.py


access to new avenues for therapeutic intervention. Firstly, we could
adapt a treatment to the age of DS individuals, so aiming to
counteract neurodevelopmental defects as early as possible, and
decreasing the risk of comorbidities in the adult and during ageing.
Before devising strategies for prenatal treatment, it is important to
understand in depth the development of disomic versus trisomic
human foetuses. New tools will also certainly contribute to new
strategies. Notably, the use of CRISPR/Cas9 or CRISMERE tools
could lead to therapeutic strategies for reducing the overdosage of a
given gene or a genomic region in trisomic individuals by
inactivating one of the three alleles, for example, in transplantable
stem cells or induced pluripotent stem cells. Finally, DSmodels will
continue to be improved in the next few years. As noted above, most
drug candidates to date have been tested in the Ts65Dn model,
which carries only ∼90 of the Hsa21 homologous genes and
includes ∼60 additional genes that are not orthologous to Hsa21.
Thus, we must consider more complete models to evaluate
therapeutic options even though these may be difficult to breed at
present (Belichenko et al., 2015). An intriguing alternative is
provided by the transchromosomic strategy that brings a complete
set of Hsa21 genes into the mouse genome. However, this approach
has some pitfalls: (1) human proteins or non-coding RNAs may not
be able to interact with the same efficiency and efficacy with their
mouse partners; (2) the regulation of human sequences may differ
from the mouse genes, leading to unexpected domains of
expression; and (3) the human allelic repertoire will be fixed in
each strain. Despite the limitations, the progress to date has been
promising and there is little doubt that mouse-based DS research
will be important for translation into therapies for DS in the future.
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Fitó, M., Benejam, B., Langohr, K., Rodriguez, J. et al. (2014).
Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in
Down syndromemousemodels and in humans.Mol. Nutr. FoodRes. 58, 278-288.

De la Torre, R., De Sola, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J.,
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A., Hérault, Y., Verney, C. and Créau, N. (2011). PCP4 (PEP19) overexpression
induces premature neuronal differentiation associated with Ca(2+) /calmodulin-
dependent kinase II delta activation inmousemodels of down syndrome. J. Comp.
Neurol. 63, 92-106

Mouton-Liger, F., Sahún, I., Collin, T., Lopes Pereira, P., Masini, D., Thomas, S.,
Paly, E., Luilier, S., Même, S., Jouhault, Q. et al. (2014). Developmental
molecular and functional cerebellar alterations induced by PCP4/PEP19
overexpression: implications for Down syndrome. Neurobiol. Dis. 63, 92-106.

Natoli, J. L., Ackerman, D. L., Mcdermott, S. and Edwards, J. G. (2012). Prenatal
diagnosis of Down syndrome: a systematic review of termination rates (1995-
2011). Prenat. Diagn. 32, 142-153.

Netzer, W. J., Powell, C., Nong, Y., Blundell, J., Wong, L., Duff, K., Flajolet, M.
and Greengard, P. (2010). Lowering beta-amyloid levels rescues learning and
memory in a Down syndrome mouse model. PLoS ONE 5, e10943.

Ng,A.P., Hu, Y., Metcalf, D., Hyland, C.D., Ierino, H., Phipson, B.,Wu, D., Baldwin,
T. M., Kauppi, M., Kiu, H. et al. (2015). Early lineage priming by trisomyof Erg leads
to myeloproliferation in a Down syndrome model. PLoS Genet. 11, e1005211.

O’Doherty, A., Ruf, S., Mulligan, C., Hildreth, V., Errington, M. L., Cooke, S.,
Sesay, A., Modino, S., Vanes, L., Hernandez, D. et al. (2005). An aneuploid
mouse strain carrying human chromosome 21 with Down syndrome phenotypes.
Science 309, 2033-2037.

Olmos-Serrano, J. L., Kang, H. J., Tyler, W. A., Silbereis, J. C., Cheng, F., Zhu,
Y., Pletikos, M., Jankovic-Rapan, L., Cramer, N. P., Galdzicki, Z. et al. (2016a).
Down syndrome developmental brain transcriptome reveals defective
oligodendrocyte differentiation and myelination. Neuron 89, 1208-1222.

1184

REVIEW Disease Models & Mechanisms (2017) 10, 1165-1186 doi:10.1242/dmm.029728

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dx.doi.org/10.1016/j.nbd.2011.10.009
http://dx.doi.org/10.1016/j.nbd.2011.10.009
http://dx.doi.org/10.1073/pnas.0813248106
http://dx.doi.org/10.1073/pnas.0813248106
http://dx.doi.org/10.1073/pnas.0813248106
http://dx.doi.org/10.1073/pnas.0813248106
http://dx.doi.org/10.1073/pnas.91.11.4997
http://dx.doi.org/10.1073/pnas.91.11.4997
http://dx.doi.org/10.1073/pnas.91.11.4997
http://dx.doi.org/10.1073/pnas.91.11.4997
http://dx.doi.org/10.1352/2008.46:215-228
http://dx.doi.org/10.1352/2008.46:215-228
http://dx.doi.org/10.1352/2008.46:215-228
http://dx.doi.org/10.1352/2008.46:215-228
http://dx.doi.org/10.1002/ajmg.a.38043
http://dx.doi.org/10.1002/ajmg.a.38043
http://dx.doi.org/10.1002/ajmg.a.38043
http://dx.doi.org/10.1186/1471-2164-10-138
http://dx.doi.org/10.1186/1471-2164-10-138
http://dx.doi.org/10.1186/1471-2164-10-138
http://dx.doi.org/10.1186/1471-2164-10-138
http://dx.doi.org/10.1093/hmg/ddt125
http://dx.doi.org/10.1093/hmg/ddt125
http://dx.doi.org/10.1093/hmg/ddt125
http://dx.doi.org/10.1093/hmg/ddt125
http://dx.doi.org/10.7554/eLife.11614
http://dx.doi.org/10.7554/eLife.11614
http://dx.doi.org/10.7554/eLife.11614
http://dx.doi.org/10.7554/eLife.11614
http://dx.doi.org/10.1016/j.neulet.2015.02.008
http://dx.doi.org/10.1016/j.neulet.2015.02.008
http://dx.doi.org/10.1016/j.neulet.2015.02.008
http://dx.doi.org/10.1038/nn.2999
http://dx.doi.org/10.1038/nn.2999
http://dx.doi.org/10.1038/nn.2999
http://dx.doi.org/10.1038/nature13200
http://dx.doi.org/10.1038/nature13200
http://dx.doi.org/10.1038/nature13200
http://dx.doi.org/10.1038/nature13200
http://dx.doi.org/10.1093/hmg/ddm086
http://dx.doi.org/10.1093/hmg/ddm086
http://dx.doi.org/10.1093/hmg/ddm086
http://dx.doi.org/10.1093/hmg/ddm086
http://dx.doi.org/10.1093/hmg/ddm086
http://dx.doi.org/10.1534/genetics.116.188045
http://dx.doi.org/10.1534/genetics.116.188045
http://dx.doi.org/10.1534/genetics.116.188045
http://dx.doi.org/10.1534/genetics.116.188045
http://dx.doi.org/10.1152/physiolgenomics.00143.2007
http://dx.doi.org/10.1152/physiolgenomics.00143.2007
http://dx.doi.org/10.1152/physiolgenomics.00143.2007
http://dx.doi.org/10.1152/physiolgenomics.00143.2007
http://dx.doi.org/10.1007/s00439-011-0980-2
http://dx.doi.org/10.1007/s00439-011-0980-2
http://dx.doi.org/10.1007/s00439-011-0980-2
http://dx.doi.org/10.1007/s00439-013-1407-z
http://dx.doi.org/10.1007/s00439-013-1407-z
http://dx.doi.org/10.1007/s00439-013-1407-z
http://dx.doi.org/10.1007/s00439-013-1407-z
http://dx.doi.org/10.1016/j.neuroscience.2010.09.043
http://dx.doi.org/10.1016/j.neuroscience.2010.09.043
http://dx.doi.org/10.1016/j.neuroscience.2010.09.043
http://dx.doi.org/10.1016/j.neuroscience.2010.09.043
http://dx.doi.org/10.1038/ejhg.2012.94
http://dx.doi.org/10.1038/ejhg.2012.94
http://dx.doi.org/10.1038/ejhg.2012.94
http://dx.doi.org/10.1038/ejhg.2012.94
http://dx.doi.org/10.1016/j.expneurol.2008.11.021
http://dx.doi.org/10.1016/j.expneurol.2008.11.021
http://dx.doi.org/10.1016/j.expneurol.2008.11.021
http://dx.doi.org/10.1016/j.bbr.2010.03.036
http://dx.doi.org/10.1016/j.bbr.2010.03.036
http://dx.doi.org/10.1016/j.bbr.2010.03.036
http://dx.doi.org/10.1093/hmg/ddp438
http://dx.doi.org/10.1093/hmg/ddp438
http://dx.doi.org/10.1093/hmg/ddp438
http://dx.doi.org/10.1093/hmg/ddp438
http://dx.doi.org/10.1093/hmg/ddp438
http://dx.doi.org/10.1038/ejhg.2008.214
http://dx.doi.org/10.1038/ejhg.2008.214
http://dx.doi.org/10.1038/ejhg.2008.214
http://dx.doi.org/10.1038/ejhg.2008.214
http://dx.doi.org/10.1371/journal.pone.0114521
http://dx.doi.org/10.1371/journal.pone.0114521
http://dx.doi.org/10.1371/journal.pone.0114521
http://dx.doi.org/10.1371/journal.pone.0114521
http://dx.doi.org/10.1172/JCI60455
http://dx.doi.org/10.1172/JCI60455
http://dx.doi.org/10.1172/JCI60455
http://dx.doi.org/10.1172/JCI60455
http://dx.doi.org/10.1371/journal.pone.0115302
http://dx.doi.org/10.1371/journal.pone.0115302
http://dx.doi.org/10.1371/journal.pone.0115302
http://dx.doi.org/10.1523/JNEUROSCI.1203-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1203-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1203-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1203-12.2013
http://dx.doi.org/10.1016/j.nbd.2003.10.002
http://dx.doi.org/10.1016/j.nbd.2003.10.002
http://dx.doi.org/10.1016/j.nbd.2003.10.002
http://dx.doi.org/10.1016/j.nbd.2003.10.002
http://dx.doi.org/10.1111/ejn.12610
http://dx.doi.org/10.1111/ejn.12610
http://dx.doi.org/10.1111/ejn.12610
http://dx.doi.org/10.1016/j.neubiorev.2005.12.003
http://dx.doi.org/10.1016/j.neubiorev.2005.12.003
http://dx.doi.org/10.1016/j.neubiorev.2005.12.003
http://dx.doi.org/10.1093/hmg/ddw309
http://dx.doi.org/10.1093/hmg/ddw309
http://dx.doi.org/10.1093/hmg/ddw309
http://dx.doi.org/10.1093/hmg/ddw309
http://dx.doi.org/10.1186/s13059-015-0827-6
http://dx.doi.org/10.1186/s13059-015-0827-6
http://dx.doi.org/10.1186/s13059-015-0827-6
http://dx.doi.org/10.1186/s13059-015-0827-6
http://dx.doi.org/10.1037/a0019590
http://dx.doi.org/10.1037/a0019590
http://dx.doi.org/10.1037/a0019590
http://dx.doi.org/10.1037/a0019590
http://dx.doi.org/10.1007/s00335-006-0032-8
http://dx.doi.org/10.1007/s00335-006-0032-8
http://dx.doi.org/10.1007/s00335-010-9300-8
http://dx.doi.org/10.1007/s00335-010-9300-8
http://dx.doi.org/10.1007/s00335-010-9300-8
http://dx.doi.org/10.1016/S0031-9384(02)00873-9
http://dx.doi.org/10.1016/S0031-9384(02)00873-9
http://dx.doi.org/10.1016/S0031-9384(02)00873-9
http://dx.doi.org/10.1016/0165-0270(84)90007-4
http://dx.doi.org/10.1016/0165-0270(84)90007-4
http://dx.doi.org/10.1258/096914107780154549
http://dx.doi.org/10.1258/096914107780154549
http://dx.doi.org/10.1258/096914107780154549
http://dx.doi.org/10.1002/(SICI)1097-0223(199902)19:2%3C142::AID-PD486%3E3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0223(199902)19:2%3C142::AID-PD486%3E3.0.CO;2-7
http://dx.doi.org/10.1002/cne.22651
http://dx.doi.org/10.1002/cne.22651
http://dx.doi.org/10.1002/cne.22651
http://dx.doi.org/10.1002/cne.22651
http://dx.doi.org/10.1002/cne.22651
http://dx.doi.org/10.1016/j.nbd.2013.11.016
http://dx.doi.org/10.1016/j.nbd.2013.11.016
http://dx.doi.org/10.1016/j.nbd.2013.11.016
http://dx.doi.org/10.1016/j.nbd.2013.11.016
http://dx.doi.org/10.1002/pd.2910
http://dx.doi.org/10.1002/pd.2910
http://dx.doi.org/10.1002/pd.2910
http://dx.doi.org/10.1371/journal.pone.0010943
http://dx.doi.org/10.1371/journal.pone.0010943
http://dx.doi.org/10.1371/journal.pone.0010943
http://dx.doi.org/10.1371/journal.pgen.1005211
http://dx.doi.org/10.1371/journal.pgen.1005211
http://dx.doi.org/10.1371/journal.pgen.1005211
http://dx.doi.org/10.1126/science.1114535
http://dx.doi.org/10.1126/science.1114535
http://dx.doi.org/10.1126/science.1114535
http://dx.doi.org/10.1126/science.1114535
http://dx.doi.org/10.1016/j.neuron.2016.01.042
http://dx.doi.org/10.1016/j.neuron.2016.01.042
http://dx.doi.org/10.1016/j.neuron.2016.01.042
http://dx.doi.org/10.1016/j.neuron.2016.01.042


Olmos-Serrano, J. L., Tyler, W. A., Cabral, H. J. and Haydar, T. F. (2016b).
Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and
defining modalities for therapeutic intervention in Down syndrome. Exp. Neurol.
279, 40-56.

Olson, L. E., Richtsmeier, J. T., Leszl, J. and Reeves, R. H. (2004). A
chromosome 21 critical region does not cause specific Down syndrome
phenotypes. Science 306, 687-690.

Olson, L. E., Roper, R. J., Sengstaken, C. L., Peterson, E. A., Aquino, V.,
Galdzicki, Z., Siarey, R., Pletnikov, M., Moran, T. H. and Reeves, R. H. (2007).
Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for
brain phenotypes of trisomic mice. Hum. Mol. Genet. 16, 774-782.

Ortiz-Abalia, J., Sahún, I., Altafaj, X., Andreu, N., Estivill, X., Dierssen, M. and
Fillat, C. (2008). Targeting Dyrk1A with AAVshRNA attenuates motor alterations
in TgDyrk1a, a mouse model of Down syndrome. Am. J. Hum. Genet. 83,
479-488.

Pan, B., Wang, W., Zhong, P., Blankman, J. L., Cravatt, B. F. and Liu, Q.-S.
(2011). Alterations of endocannabinoid signaling, synaptic plasticity, learning, and
memory in monoacylglycerol lipase knock-out mice. J. Neurosci. 31,
13420-13430.

Park, J., Oh, Y., Yoo, L., Jung, M.-S., Song,W.-J., Lee, S.-H., Seo, H. and Chung,
K. C. (2010). Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic
neuronal cells. J. Biol. Chem. 285, 31895-31906.

Park, J., Sung, J. Y., Song, W.-J., Chang, S. and Chung, K. C. (2012). Dyrk1A
negatively regulates the actin cytoskeleton through threonine phosphorylation of
N-WASP. J. Cell Sci. 125, 67-80.

Parker, S. E., Mai, C. T., Canfield, M. A., Rickard, R., Wang, Y., Meyer, R. E.,
Anderson, P., Mason, C. A., Collins, J. S., Kirby, R. S. et al. (2010). Updated
National Birth Prevalence estimates for selected birth defects in the United States,
2004-2006. Birth Defects Res. A Clin. Mol. Teratol 88, 1008-1016.

Patel, A., Yamashita, N., Ascan ̃o, M., Bodmer, D., Boehm, E., Bodkin-Clarke, C.,
Ryu, Y. K. and Kuruvilla, R. (2015). RCAN1 links impaired neurotrophin
trafficking to aberrant development of the sympathetic nervous system in Down
syndrome. Nat. Commun. 6, 10119.

Paylor, R., Tracy, R.,Wehner, J. andRudy, J.W. (1994). DBA/2 andC57BL/6mice
differ in contextual fear but not auditory fear conditioning. Behav. Neurosci. 108,
810-817.

Peiris, H., Duffield, M. D., Fadista, J., Jessup, C. F., Kashmir, V., Genders, A. J.,
Mcgee, S. L., Martin, A. M., Saiedi, M., Morton, N. et al. (2016). A syntenic cross
species aneuploidy genetic screen links RCAN1 expression to β-cell
mitochondrial dysfunction in type 2 diabetes. PLoS Genet. 12, e1006033.

Polk, R. C., Gergics, P., Steimle, J. D., Li, H., Moskowitz, I. P., Camper, S. A. and
Reeves, R. H. (2015). The pattern of congenital heart defects arising from
reduced Tbx5 expression is altered in a Down syndromemousemodel. BMCDev.
Biol. 15, 30.

Pons-Espinal, M., Martinez de Lagran, M. and Dierssen, M. (2013).
Environmental enrichment rescues DYRK1A activity and hippocampal adult
neurogenesis in TgDyrk1A. Neurobiol. Dis. 60, 18-31.

Powell, N. M., Modat, M., Cardoso, M. J., Ma, D., Holmes, H. E., Yu, Y.,
O’callaghan, J., Cleary, J. O., Sinclair, B., Wiseman, F. K. et al. (2016). Fully-
automated μMRI morphometric phenotyping of the Tc1 mouse model of Down
syndrome. PLoS One 11, e0162974.

Rachdi, L., Kariyawasam, D., Aïello, V., Herault, Y., Janel, N., Delabar, J.-M.,
Polak, M. and Scharfmann, R. (2014). Dyrk1A induces pancreatic β cell mass
expansion and improves glucose tolerance. Cell Cycle 13, 2221-2229.

Rachidi, M., Lopes, C., Vayssettes, C., Smith, D. J., Rubin, E. M. and Delabar,
J. M. (2007). New cerebellar phenotypes in YAC transgenic mouse in vivo library
of human Down syndrome critical region-1. Biochem. Biophys. Res. Commun.
364, 488-494.

Rachubinski, A. L., Crowley, S. K., Sladek, J. R., Jr, Maclean, K. N. and
Bjugstad, K. B. (2012a). Effects of neonatal neural progenitor cell implantation on
adult neuroanatomy and cognition in the Ts65Dnmodel of Down syndrome. PLoS
ONE 7, e36082.

Rachubinski, A. L., Maclean, K. N., Evans, J. R. and Bjugstad, K. B. (2012b).
Modulating cognitive deficits and tau accumulation in a mouse model of aging
Down syndrome through neonatal implantation of neural progenitor cells. Exp.
Gerontol. 47, 723-733.

Rahmani, Z., Blouin, J. L., Creau-Goldberg, N., Watkins, P. C., Mattei, J. F.,
Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., Aurias, A. et al. (1989).
Critical role of the D21S55 region on chromosome 21 in the pathogenesis of Down
syndrome. Proc. Natl. Acad. Sci. USA 86, 5958-5962.

Ramirez-Solis, R., Liu, P. and Bradley, A. (1995). Chromosome engineering in
mice. Nature 378, 720-724.

Raveau, M., Lignon, J. M., Nalesso, V., Duchon, A., Groner, Y., Sharp, A. J.,
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Lehrach, H. and Herwig, R. (2011). Meta-analysis of heterogeneous Down
Syndrome data reveals consistent genome-wide dosage effects related to
neurological processes. BMC Genomics 12, 229.

Villar, A. J., Belichenko, P. V., Gillespie, A. M., Kozy, H. M., Mobley, W. C. and
Epstein, C. J. (2005). Identification and characterization of a newDown syndrome
model, Ts Rb(12.17(16)) 2Cje, resulting from a spontaneous Robertsonian fusion
between T(17(16))65Dn and mouse Chromosome 12. Mamm. Genome 16,
79-90.

Webb, S., Anderson, R. H., Lamers, W. H. and Brown, N. A. (1999). Mechanisms
of deficient cardiac septation in themousewith trisomy 16.Circ. Res. 84, 897-905.

Wiseman, F. K., Al-Janabi, T., Hardy, J., Karmiloff-Smith, A., Nizetic, D.,
Tybulewicz, V. L. J., Fisher, E. M. C. and Strydom, A. (2015). A genetic cause of
Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev.
Neurosci. 16, 564-574.

Witton, J., Padmashri, R., Zinyuk, L. E., Popov, V. I., Kraev, I., Line, S. J.,
Jensen, T. P., Tedoldi, A., Cummings, D. M., Tybulewicz, V. L. J. et al. (2015).
Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nat.
Neurosci. 18, 1291-1298.

Xie, W., Ramakrishna, N., Wieraszko, A. and Hwang, Y.-W. (2008). Promotion of
neuronal plasticity by (−)-epigallocatechin-3-gallate. Neurochem. Res. 33, 776-783.

Xing, L., Salas, M., Zhang, H., Gittler, J., Ludwig, T., Lin, C.-S., Murty, V. V.,
Silverman, W., Arancio, O. and Tycko, B. (2013). Creation and characterization
of BAC-transgenic mice with physiological overexpression of epitope-tagged
RCAN1 (DSCR1). Mamm. Genome 24, 30-43.

Xing, Z., Li, Y., Pao, A., Bennett, A. S., Tycko, B., Mobley, W. C. and Yu, Y. E.
(2016). Mouse-based genetic modeling and analysis of Down syndrome. Br. Med.
Bull. 120, 111-122.

Yang, A., Currier, D., Poitras, J. L. andReeves, R. H. (2016). Increased skin tumor
incidence and keratinocyte hyper-proliferation in a mouse model of Down
syndrome. PLoS ONE 11, e0146570.

Yu, Y. and Bradley, A. (2001). Engineering chromosomal rearrangements in mice.
Nat. Rev. Genet. 2, 780-790.

Yu, T., Clapcote, S. J., Li, Z., Liu, C., Pao, A., Bechard, A. R., Carattini-Rivera, S.,
Matsui, S.-I., Roder, J. C., Baldini, A. et al. (2010a). Deficiencies in the region
syntenic to human 21q22.3 cause cognitive deficits in mice. Mamm. Genome 21,
258-267.

Yu, T., Li, Z., Jia, Z., Clapcote, S. J., Liu, C., Li, S., Asrar, S., Pao, A., Chen, R.,
Fan, N. et al. (2010b). A mouse model of Down syndrome trisomic for all human
chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780-2791.

Yu, T., Liu, C. H., Belichenko, P., Clapcote, S. J., Li, S. M., Pao, A. N.,
Kleschevnikov, A., Bechard, A. R., Asrar, S., Chen, R. Q. et al. (2010c). Effects
of individual segmental trisomies of human chromosome 21 syntenic regions on
hippocampal long-term potentiation and cognitive behaviors in mice. Brain Res.
1366, 162-171.

Zhang, L., Meng, K., Jiang, X., Liu, C., Pao, A., Belichenko, P. V.,
Kleschevnikov, A. M., Josselyn, S., Liang, P., Ye, P. et al. (2014). Human
chromosome 21 orthologous region on mouse chromosome 17 is a major
determinant of Down syndrome-related developmental cognitive deficits. Hum.
Mol. Genet. 23, 578-589.

1186

REVIEW Disease Models & Mechanisms (2017) 10, 1165-1186 doi:10.1242/dmm.029728

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dx.doi.org/10.1002/ar.20640
http://dx.doi.org/10.1002/ar.20640
http://dx.doi.org/10.1002/ar.20640
http://dx.doi.org/10.1002/ar.20640
http://dx.doi.org/10.1002/mrdd.20157
http://dx.doi.org/10.1002/mrdd.20157
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.023
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.023
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.023
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.023
http://dx.doi.org/10.1016/j.neuron.2016.08.013
http://dx.doi.org/10.1016/j.neuron.2016.08.013
http://dx.doi.org/10.1016/j.neuron.2016.08.013
http://dx.doi.org/10.1093/hmg/6.10.1729
http://dx.doi.org/10.1093/hmg/6.10.1729
http://dx.doi.org/10.1006/geno.1995.1073
http://dx.doi.org/10.1006/geno.1995.1073
http://dx.doi.org/10.1006/geno.1995.1073
http://dx.doi.org/10.1016/j.neulet.2013.08.066
http://dx.doi.org/10.1016/j.neulet.2013.08.066
http://dx.doi.org/10.1016/j.neulet.2013.08.066
http://dx.doi.org/10.1074/jbc.M114.594952
http://dx.doi.org/10.1074/jbc.M114.594952
http://dx.doi.org/10.1074/jbc.M114.594952
http://dx.doi.org/10.1074/jbc.M114.594952
http://dx.doi.org/10.1016/j.nbd.2014.04.016
http://dx.doi.org/10.1016/j.nbd.2014.04.016
http://dx.doi.org/10.1016/j.nbd.2014.04.016
http://dx.doi.org/10.1016/j.nbd.2014.04.016
http://dx.doi.org/10.3389/fnbeh.2015.00267
http://dx.doi.org/10.3389/fnbeh.2015.00267
http://dx.doi.org/10.3389/fnbeh.2015.00267
http://dx.doi.org/10.3389/fnbeh.2015.00267
http://dx.doi.org/10.1371/journal.pone.0061689
http://dx.doi.org/10.1371/journal.pone.0061689
http://dx.doi.org/10.1371/journal.pone.0061689
http://dx.doi.org/10.1371/journal.pone.0061689
http://dx.doi.org/10.1016/j.nbd.2014.12.005
http://dx.doi.org/10.1016/j.nbd.2014.12.005
http://dx.doi.org/10.1016/j.nbd.2014.12.005
http://dx.doi.org/10.1016/j.nbd.2014.12.005
http://dx.doi.org/10.1016/j.neuroscience.2016.07.031
http://dx.doi.org/10.1016/j.neuroscience.2016.07.031
http://dx.doi.org/10.1016/j.neuroscience.2016.07.031
http://dx.doi.org/10.1016/j.neuroscience.2016.07.031
http://dx.doi.org/10.1177/0269881107073199
http://dx.doi.org/10.1177/0269881107073199
http://dx.doi.org/10.1002/ajmg.a.36594
http://dx.doi.org/10.1002/ajmg.a.36594
http://dx.doi.org/10.1002/ajmg.a.36594
http://dx.doi.org/10.1002/ajmg.a.36594
http://dx.doi.org/10.1016/S1701-2163(16)32379-9
http://dx.doi.org/10.1016/S1701-2163(16)32379-9
http://dx.doi.org/10.1016/S1701-2163(16)32379-9
http://dx.doi.org/10.1038/nature06446
http://dx.doi.org/10.1038/nature06446
http://dx.doi.org/10.1038/nature06446
http://dx.doi.org/10.1038/35077219
http://dx.doi.org/10.1038/35077219
http://dx.doi.org/10.1016/0896-6273(95)90286-4
http://dx.doi.org/10.1016/0896-6273(95)90286-4
http://dx.doi.org/10.1016/0896-6273(95)90286-4
http://dx.doi.org/10.1016/0896-6273(95)90286-4
http://dx.doi.org/10.1523/JNEUROSCI.2852-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.2852-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.2852-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.2852-13.2014
http://dx.doi.org/10.1126/science.7618084
http://dx.doi.org/10.1126/science.7618084
http://dx.doi.org/10.1126/science.7618084
http://dx.doi.org/10.1126/science.7618084
http://dx.doi.org/10.1093/hmg/ddr033
http://dx.doi.org/10.1093/hmg/ddr033
http://dx.doi.org/10.1093/hmg/ddr033
http://dx.doi.org/10.1093/hmg/ddr033
http://dx.doi.org/10.1074/jbc.M113.451088
http://dx.doi.org/10.1074/jbc.M113.451088
http://dx.doi.org/10.1074/jbc.M113.451088
http://dx.doi.org/10.1074/jbc.M113.451088
http://dx.doi.org/10.1523/JNEUROSCI.0011-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.0011-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.0011-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.0011-11.2011
http://dx.doi.org/10.2174/18715273113126660184
http://dx.doi.org/10.2174/18715273113126660184
http://dx.doi.org/10.2174/18715273113126660184
http://dx.doi.org/10.1093/hmg/ddl179
http://dx.doi.org/10.1093/hmg/ddl179
http://dx.doi.org/10.1093/hmg/ddl179
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://dx.doi.org/10.1007/s10519-006-9057-8
http://dx.doi.org/10.1007/s10519-006-9057-8
http://dx.doi.org/10.1016/j.neuroscience.2012.06.031
http://dx.doi.org/10.1016/j.neuroscience.2012.06.031
http://dx.doi.org/10.1016/j.neuroscience.2012.06.031
http://dx.doi.org/10.1016/j.neuroscience.2012.06.031
http://dx.doi.org/10.1186/1471-2164-12-229
http://dx.doi.org/10.1186/1471-2164-12-229
http://dx.doi.org/10.1186/1471-2164-12-229
http://dx.doi.org/10.1186/1471-2164-12-229
http://dx.doi.org/10.1007/s00335-004-2428-7
http://dx.doi.org/10.1007/s00335-004-2428-7
http://dx.doi.org/10.1007/s00335-004-2428-7
http://dx.doi.org/10.1007/s00335-004-2428-7
http://dx.doi.org/10.1007/s00335-004-2428-7
http://dx.doi.org/10.1161/01.RES.84.8.897
http://dx.doi.org/10.1161/01.RES.84.8.897
http://dx.doi.org/10.1038/nrn3983
http://dx.doi.org/10.1038/nrn3983
http://dx.doi.org/10.1038/nrn3983
http://dx.doi.org/10.1038/nrn3983
http://dx.doi.org/10.1038/nn.4072
http://dx.doi.org/10.1038/nn.4072
http://dx.doi.org/10.1038/nn.4072
http://dx.doi.org/10.1038/nn.4072
http://dx.doi.org/10.1007/s11064-007-9494-7
http://dx.doi.org/10.1007/s11064-007-9494-7
http://dx.doi.org/10.1007/s00335-012-9436-9
http://dx.doi.org/10.1007/s00335-012-9436-9
http://dx.doi.org/10.1007/s00335-012-9436-9
http://dx.doi.org/10.1007/s00335-012-9436-9
http://dx.doi.org/10.1093/bmb/ldw040
http://dx.doi.org/10.1093/bmb/ldw040
http://dx.doi.org/10.1093/bmb/ldw040
http://dx.doi.org/10.1371/journal.pone.0146570
http://dx.doi.org/10.1371/journal.pone.0146570
http://dx.doi.org/10.1371/journal.pone.0146570
http://dx.doi.org/10.1038/35093564
http://dx.doi.org/10.1038/35093564
http://dx.doi.org/10.1007/s00335-010-9262-x
http://dx.doi.org/10.1007/s00335-010-9262-x
http://dx.doi.org/10.1007/s00335-010-9262-x
http://dx.doi.org/10.1007/s00335-010-9262-x
http://dx.doi.org/10.1093/hmg/ddq179
http://dx.doi.org/10.1093/hmg/ddq179
http://dx.doi.org/10.1093/hmg/ddq179
http://dx.doi.org/10.1016/j.brainres.2010.09.107
http://dx.doi.org/10.1016/j.brainres.2010.09.107
http://dx.doi.org/10.1016/j.brainres.2010.09.107
http://dx.doi.org/10.1016/j.brainres.2010.09.107
http://dx.doi.org/10.1016/j.brainres.2010.09.107
http://dx.doi.org/10.1093/hmg/ddt446
http://dx.doi.org/10.1093/hmg/ddt446
http://dx.doi.org/10.1093/hmg/ddt446
http://dx.doi.org/10.1093/hmg/ddt446
http://dx.doi.org/10.1093/hmg/ddt446

