M. M. Ahmed, A. R. Dhanasekaran, S. Tong, F. K. Wiseman, E. M. Fisher et al., Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain, Human Molecular Genetics, vol.22, issue.9, pp.1709-1724, 2013.
DOI : 10.1093/hmg/ddt017

M. M. Ahmed, A. R. Dhanasekaran, A. Block, S. Tong, A. C. Costa et al., Protein Dynamics Associated with Failed and Rescued Learning in the Ts65Dn Mouse Model of Down Syndrome, PLOS ONE, vol.16, issue.1, 2015.
DOI : 10.1371/journal.pone.0119491.s004

K. Ahn, H. K. Jeong, H. Choi, S. Ryoo, Y. J. Kim et al., DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects, Neurobiology of Disease, vol.22, issue.3, pp.463-472, 2006.
DOI : 10.1016/j.nbd.2005.12.006

K. A. Alford, A. Slender, L. Vanes, Z. Li, E. M. Fisher et al., Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome, Blood, vol.115, issue.14, pp.2928-2937, 2010.
DOI : 10.1182/blood-2009-06-227629

X. Altafaj, M. Dierssen, C. Baamonde, E. Marti, J. Visa et al., Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome, Human Molecular Genetics, vol.10, issue.18, pp.1915-1923, 2001.
DOI : 10.1093/hmg/10.18.1915

X. Altafaj, E. D. Mart??nmart??n, J. Ortiz-abalia, A. Valderrama, C. Lao-peregr??nperegr??n et al., Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome, Neurobiology of Disease, vol.52, pp.117-127, 2013.
DOI : 10.1016/j.nbd.2012.11.017

Y. Andrade-talavera, I. Benito, ?. Casan, J. J. As, A. Rodr??guezrodr??guez-moreno et al., Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome, Neurobiology of Disease, vol.82, pp.516-525, 2015.
DOI : 10.1016/j.nbd.2015.09.005

S. E. Antonarakis, Down syndrome and the complexity of genome dosage imbalance, Nature Reviews Genetics, vol.110, issue.3, pp.147-163, 2016.
DOI : 10.1159/000084979

S. E. Antonarakis, R. Lyle, E. T. Dermitzakis, A. Reymond, and S. Deutsch, Chromosome 21 and down syndrome: from genomics to pathophysiology, Nature Reviews Genetics, vol.46, issue.10, pp.725-738, 2004.
DOI : 10.1002/dvdy.20079

T. Arbogast, M. Raveau, C. Chevalier, V. Nalesso, D. Dembele et al., Deletion of the App-Runx1 region in mice models human partial monosomy 21, Disease Models & Mechanisms, vol.8, issue.6, pp.623-634, 2015.
DOI : 10.1242/dmm.017814

T. Arbogast, A. Ouagazzal, C. Chevalier, M. Kopanitsa, N. Afinowi et al., Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes, PLOS Genetics, vol.34, issue.3, 2016.
DOI : 10.1371/journal.pgen.1005709.s019

J. A. Ash, R. Velazquez, C. M. Kelley, B. E. Powers, S. D. Ginsberg et al., Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice, Neurobiology of Disease, vol.70, pp.32-42, 2014.
DOI : 10.1016/j.nbd.2014.06.001

C. Ballard, W. Mobley, J. Hardy, G. Williams, and A. Corbett, Dementia in Down's syndrome, The Lancet Neurology, vol.15, issue.6, pp.622-636, 2016.
DOI : 10.1016/S1474-4422(16)00063-6

L. L. Baxter, T. H. Moran, J. T. Richtsmeier, J. Troncoso, and R. H. Reeves, Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse, Human Molecular Genetics, vol.9, issue.2, pp.195-202, 2000.
DOI : 10.1093/hmg/9.2.195

R. R. Beach, C. Ricci-tam, C. M. Brennan, C. A. Moomau, P. Hsu et al., Aneuploidy Causes Non-genetic Individuality, Cell, vol.169, issue.2, pp.229-242, 2017.
DOI : 10.1016/j.cell.2017.03.021

T. Begenisic, L. Baroncelli, G. Sansevero, M. Milanese, T. Bonifacino et al., Fluoxetine in adulthood normalizes GABA release and rescues hippocampal synaptic plasticity and spatial memory in a mouse model of Down Syndrome, Neurobiology of Disease, vol.63, pp.12-19, 2014.
DOI : 10.1016/j.nbd.2013.11.010

T. Begenisic, G. Sansevero, L. Baroncelli, G. Cioni, and A. Sale, Early environmental therapy rescues brain development in a mouse model of Down syndrome, Neurobiology of Disease, vol.82, pp.409-419, 2015.
DOI : 10.1016/j.nbd.2015.07.014

N. P. Belichenko, P. V. Belichenko, A. M. Kleschevnikov, A. Salehi, R. H. Reeves et al., The "Down Syndrome Critical Region" Is Sufficient in the Mouse Model to Confer Behavioral, Neurophysiological, and Synaptic Phenotypes Characteristic of Down Syndrome, Journal of Neuroscience, vol.29, issue.18, pp.5938-5948, 2009.
DOI : 10.1523/JNEUROSCI.1547-09.2009

P. V. Belichenko, A. M. Kleschevnikov, A. Becker, G. E. Wagner, L. V. Lysenko et al., Down Syndrome Cognitive Phenotypes Modeled in Mice Trisomic for All HSA 21 Homologues, PLOS ONE, vol.143, issue.7, 2015.
DOI : 10.1371/journal.pone.0134861.s001

P. V. Belichenko, R. Madani, L. Rey-bellet, M. Pihlgren, A. Becker et al., An anti-beta-amyloid vaccine for treating cognitive deficits in a mouse model of Down syndrome, PLoS ONE, vol.11, 2016.

V. Besson, V. Brault, A. Duchon, D. Togbe, J. Bizot et al., Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses, Human Molecular Genetics, vol.16, issue.17, pp.2040-2052, 2007.
DOI : 10.1093/hmg/ddm152

URL : https://hal.archives-ouvertes.fr/hal-00408331

M. F. Bhutta, M. T. Cheeseman, Y. Herault, Y. E. Yu, and S. D. Brown, Surveying the Down syndrome mouse model resource identifies critical regions responsible for chronic otitis media, Mammalian Genome, vol.19, issue.14, pp.439-445, 2013.
DOI : 10.1093/hmg/ddq179

P. Bianchi, E. Ciani, S. Guidi, S. Trazzi, D. Felice et al., Early Pharmacotherapy Restores Neurogenesis and Cognitive Performance in the Ts65Dn Mouse Model for Down Syndrome, Journal of Neuroscience, vol.30, issue.26, pp.8769-8779, 2010.
DOI : 10.1523/JNEUROSCI.0534-10.2010

M. Birling, L. Schaeffer, . Andre?, P. Andre?, L. Lindner et al., Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE, Scientific Reports, vol.17, p.43331, 2017.
DOI : 10.1038/nn.4235

J. Blanchard, S. Bolognin, M. O. Chohan, A. Rabe, K. Iqbal et al., Rescue of Synaptic Failure and Alleviation of Learning and Memory Impairments in a Trisomic Mouse Model of Down Syndrome, Journal of Neuropathology & Experimental Neurology, vol.70, issue.12, pp.1070-1079, 2011.
DOI : 10.1097/NEN.0b013e318236e9ad

J. D. Blazek, A. M. Malik, M. Tischbein, M. L. Arbones, C. S. Moore et al., Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner, Mechanisms of Development, vol.136, pp.133-142, 2015.
DOI : 10.1016/j.mod.2014.12.004

I. Branchi, Z. Bichler, L. Minghetti, J. M. Delabar, F. Malchiodi-albedi et al., Transgenic Mouse In Vivo Library of Human Down Syndrome Critical Region 1, Journal of Neuropathology & Experimental Neurology, vol.63, issue.5, pp.429-440, 2004.
DOI : 10.1093/jnen/63.5.429

J. Braudeau, L. Dauphinot, A. Duchon, A. Loistron, R. H. Dodd et al., Chronic treatment with a promnesiant GABA-A alpha5-selective inverse agonist increases immediate early genes expression during memory processing in mice and rectifies their expression levels in a Down syndrome mouse model, Adv. Pharmacol. Sci, 2011.

J. Braudeau, B. Delatour, A. Duchon, P. L. Pereira, L. Dauphinot et al., Specific targeting of the GABA-A receptor alpha5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice, 2011.

V. Brault, P. Pereira, A. Duchon, and Y. He?raulthe?rault, Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization, PLoS Genetics, vol.38, issue.7, p.86, 2006.
DOI : 10.1016/B978-012301463-4/50003-6

URL : https://hal.archives-ouvertes.fr/hal-00408337

V. Brault, V. Besson, L. Magnol, A. Duchon, and Y. He?raulthe?rault, Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome, Handb. Exp. Pharmacol, vol.178, pp.29-48, 2007.
DOI : 10.1007/978-3-540-35109-2_2

URL : https://hal.archives-ouvertes.fr/hal-00408334

V. Brault, A. Duchon, C. Romestaing, I. Sahun, S. Pothion et al., Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Hspa13-App Region, PLOS Genetics, vol.1188, issue.3, 2015.
DOI : 10.1371/journal.pgen.1005062.s008

URL : https://hal.archives-ouvertes.fr/hal-01323519

V. Brault, C. Romestaing, I. Sahun, M. Karout, C. Borel et al., Locomotor dysfonction and hypotonia in Down syndrome mouse models for the HSPA13- APP region as a consequence of dosage sensitive genes controlling muscular metabolism and mitochondrial function, Acta Physiol, vol.214, pp.11-12, 2015.

M. A. Canfield, M. A. Honein, N. Yuskiv, J. Xing, C. T. Mai et al., National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999???2001, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.151, issue.11, pp.747-756, 1999.
DOI : 10.1001/archpedi.1997.02170480026004

A. M. Cataldo, C. M. Peterhoff, J. C. Troncoso, T. Gomez-isla, B. T. Hyman et al., Endocytic Pathway Abnormalities Precede Amyloid ?? Deposition in Sporadic Alzheimer???s Disease and Down Syndrome, The American Journal of Pathology, vol.157, issue.1, pp.277-286, 2000.
DOI : 10.1016/S0002-9440(10)64538-5

Q. Chang and P. E. Gold, Age-related changes in memory and in acetylcholine functions in the hippocampus in the Ts65Dn mouse, a model of Down syndrome, Neurobiology of Learning and Memory, vol.89, issue.2, pp.167-177, 2008.
DOI : 10.1016/j.nlm.2007.05.007

C. Chen, O. Symmons, V. V. Uslu, T. Tsujimura, S. Ruf et al., TRACER: a resource to study the regulatory architecture of the mouse genome, BMC Genomics, vol.14, issue.1, p.215, 2013.
DOI : 10.1101/gr.122879.111

X. Y. Choong, J. L. Tosh, L. J. Pulford, and E. M. Fisher, Dissecting Alzheimer disease in Down syndrome using mouse models, Frontiers in Behavioral Neuroscience, vol.31, issue.88, p.268, 2015.
DOI : 10.3233/JAD-2012-120073

S. J. Cohen, R. W. Stackman, and . Jr, Assessing rodent hippocampal involvement in the novel object recognition task. A review, Behavioural Brain Research, vol.285, pp.105-117, 2015.
DOI : 10.1016/j.bbr.2014.08.002

D. Colas, B. Chuluun, D. Warrier, M. Blank, D. Z. Wetmore et al., receptor antagonist pentylenetetrazole produces a sustained pro-cognitive benefit in a mouse model of Down's syndrome, British Journal of Pharmacology, vol.19, issue.Suppl. 1, pp.963-973, 2013.
DOI : 10.1093/hmg/ddq179

A. Contestabile, B. Greco, D. Ghezzi, V. Tucci, F. Benfenati et al., Lithium rescues synaptic plasticity and memory in Down syndrome mice, Journal of Clinical Investigation, vol.123, issue.1, 2013.
DOI : 10.1172/JCI64650DS1

A. Cooper, G. Grigoryan, L. Guy-david, M. M. Tsoory, A. Chen et al., Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice, Proc. Natl. Acad. Sci. USA, pp.2642-2647, 2012.
DOI : 10.1038/mp.2010.64

A. Corrales, P. Mart??nezmart??nez, S. Garc?á, V. Vidal, E. Garc?á et al., Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome, Journal of Pineal Research, vol.93, issue.3, pp.346-358, 2013.
DOI : 10.1073/pnas.93.23.13333

A. Corrales, R. Vidal, S. Garc?á, V. Vidal, P. Mart??nezmart??nez et al., Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome, Journal of Pineal Research, vol.22, issue.1, pp.51-61, 2014.
DOI : 10.1096/fj.07-9574LSF

A. C. Costa and M. J. Grybko, Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome, Neuroscience Letters, vol.382, issue.3, pp.317-322, 2005.
DOI : 10.1016/j.neulet.2005.03.031

A. C. Costa, J. J. Scott-mckean, and M. R. Stasko, Acute Injections of the NMDA Receptor Antagonist Memantine Rescue Performance Deficits of the Ts65Dn Mouse Model of Down Syndrome on a Fear Conditioning Test, Neuropsychopharmacology, vol.41, issue.7, pp.1624-1632, 2008.
DOI : 10.1016/j.phrs.2004.05.005

V. Dang, B. Medina, D. Das, S. Moghadam, K. J. Martin et al., Formoterol, a Long-Acting ??2 Adrenergic Agonist, Improves Cognitive Function and Promotes Dendritic Complexity in a Mouse Model of Down Syndrome, Biological Psychiatry, vol.75, issue.3, pp.179-188, 2014.
DOI : 10.1016/j.biopsych.2013.05.024

I. Das and R. H. Reeves, The use of mouse models to understand and improve cognitive deficits in Down syndrome, Disease Models & Mechanisms, vol.4, issue.5, pp.596-606, 2011.
DOI : 10.1242/dmm.007716

I. Das, J. Park, J. H. Shin, S. K. Jeon, H. Lorenzi et al., Hedgehog Agonist Therapy Corrects Structural and Cognitive Deficits in a Down Syndrome Mouse Model, Science Translational Medicine, vol.59, issue.5329, pp.201-120, 2013.
DOI : 10.1016/j.neuron.2008.05.023

M. T. Davisson, C. Schmidt, and E. C. Akeson, Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome, Prog. Clin. Biol. Res, vol.360, pp.263-280, 1990.

D. Graaf, G. Buckley, F. Skotko, and B. G. , Live births, natural losses, and elective terminations with Down syndrome in Massachusetts, Genetics in Medicine, vol.113, issue.5, pp.459-466, 2016.
DOI : 10.1016/j.ajog.2012.08.033

J. M. Delabar, D. Theophile, Z. Rahmani, Z. Chettouh, J. L. Blouin et al., Molecular Mapping of Twenty-Four Features of Down Syndrome on Chromosome 21, European Journal of Human Genetics, vol.1, issue.2, pp.114-124, 1993.
DOI : 10.1159/000472398

D. 'hooge, R. , D. Deyn, and P. P. , Applications of the Morris water maze in the study of learning and memory, Brain Res. Rev, vol.36, pp.60-90, 2001.

M. Dierssen, D. Lagra?nlagra?n, and M. M. , DYRK1A (Dual-Specificity Tyrosine-Phosphorylated and -Regulated Kinase 1A): A Gene with Dosage Effect During Development and Neurogenesis, The Scientific World JOURNAL, vol.6, pp.1911-1922, 2006.
DOI : 10.1100/tsw.2006.319

M. Dierssen, Y. Herault, and X. Estivill, Aneuploidy: From a Physiological Mechanism of Variance to Down Syndrome, Physiological Reviews, vol.89, issue.3, pp.887-920, 2009.
DOI : 10.1152/physrev.00032.2007

URL : https://hal.archives-ouvertes.fr/hal-00408268

C. Do, Z. Xing, Y. E. Yu, and B. Tycko, Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models, Epigenomics, vol.401, issue.6751, pp.189-207, 2017.
DOI : 10.1186/s12864-015-1687-x

W. K. Dowjat, T. Adayev, I. Kuchna, K. Nowicki, S. Palminiello et al., Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome, Neuroscience Letters, vol.413, issue.1, pp.77-81, 2007.
DOI : 10.1016/j.neulet.2006.11.026

A. Duchon and Y. Herault, DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome, Frontiers in Behavioral Neuroscience, vol.18, issue.47, p.104, 2016.
DOI : 10.1002/ddrr.1128

A. Duchon, V. Besson, P. L. Pereira, L. Magnol, and Y. Herault, Inducing Segmental Aneuploid Mosaicism in the Mouse Through Targeted Asymmetric Sister Chromatid Event of Recombination, Genetics, vol.180, issue.1, pp.51-59, 2008.
DOI : 10.1534/genetics.108.092312

URL : https://hal.archives-ouvertes.fr/hal-00408291

A. Duchon, S. Pothion, V. Brault, A. J. Sharp, V. L. Tybulewicz et al., The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome, Behavioural Brain Research, vol.217, issue.2, pp.271-281, 2011.
DOI : 10.1016/j.bbr.2010.10.023

A. Duchon, M. Raveau, C. Chevalier, V. Nalesso, A. J. Sharp et al., Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling down syndrome, Mammalian Genome, vol.6, issue.11, pp.674-684, 2011.
DOI : 10.1111/j.1601-183X.2006.00256.x

F. Fernandez, W. Morishita, E. Zuniga, J. Nguyen, M. Blank et al., Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome, Nature Neuroscience, vol.313, pp.411-413, 2007.
DOI : 10.1001/jama.1953.02940310028007

A. M. Fortress, E. D. Hamlett, E. M. Vazey, G. Aston-jones, W. A. Cass et al., Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome, Journal of Neuroscience, vol.35, issue.4, pp.1343-1353, 2015.
DOI : 10.1523/JNEUROSCI.2658-14.2015

S. Garc?á-cerro, P. Mart??nezmart??nez, V. Vidal, A. Corrales, J. Flo?rezflo?rez et al., Overexpression of Dyrk1A Is Implicated in Several Cognitive, Electrophysiological and Neuromorphological Alterations Found in a Mouse Model of Down Syndrome, PLoS ONE, vol.29, issue.9, 2014.
DOI : 10.1371/journal.pone.0106572.t002

A. Ghezzo, S. Salvioli, M. C. Solimando, A. Palmieri, C. Chiostergi et al., Age-Related Changes of Adaptive and Neuropsychological Features in Persons with Down Syndrome, PLoS ONE, vol.6, issue.3, 2014.
DOI : 10.1371/journal.pone.0113111.s003

A. Giacomini, F. Stagni, S. Trazzi, S. Guidi, M. Emili et al., Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome, Neurobiology of Disease, vol.82, pp.385-396, 2015.
DOI : 10.1016/j.nbd.2015.08.001

J. W. Goodliffe, J. L. Olmos-serrano, N. M. Aziz, J. L. Pennings, F. Guedj et al., Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome, Journal of Neuroscience, vol.36, issue.10, pp.2926-2944, 2016.
DOI : 10.1523/JNEUROSCI.2513-15.2016

A. E. Granholm, L. A. Sanders, and L. S. Crnic, Loss of Cholinergic Phenotype in Basal Forebrain Coincides with Cognitive Decline in a Mouse Model of Down's Syndrome, Experimental Neurology, vol.161, issue.2, pp.647-663, 2000.
DOI : 10.1006/exnr.1999.7289

A. Granholm, L. Sanders, H. Seo, L. Lin, K. Ford et al., Estrogen alters amyloid precursor protein as well as dendritic and cholinergic markers in a mouse model of Down syndrome, Hippocampus, vol.2, issue.8, pp.905-914, 2003.
DOI : 10.1111/j.1749-6632.1991.tb00218.x

C. Grau, . Arato?, K. Arato?, J. M. Ferna?ndezferna?ndez-ferna?ndezferna?ndez, A. Valderrama et al., DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors, Front. Cell Neurosci, vol.8, p.331, 2014.

S. M. Gribble, F. K. Wiseman, S. Clayton, E. Prigmore, E. Langley et al., Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome, PLoS ONE, vol.319, issue.4, p.60482, 2013.
DOI : 10.1371/journal.pone.0060482.s013

A. Gropp, Animal model of human disease Autosomal trisomy, developmental impairment and fetal death, Am. J. Pathol, vol.77, pp.539-542, 1974.

A. Gropp, U. Kolbus, and D. Giers, Systematic approach to the study of trisomy in the mouse. II, Cytogenetic and Genome Research, vol.14, issue.1, pp.42-62, 1975.
DOI : 10.1159/000130318

F. Guedj, . Se?brie?, C. Se?brie?se?brie?, I. Rivals, A. Ledru et al., Green Tea Polyphenols Rescue of Brain Defects Induced by Overexpression of DYRK1A, PLoS ONE, vol.21, issue.25, p.4606, 2009.
DOI : 10.1371/journal.pone.0004606.s001

F. Guedj, P. L. Pereira, S. Najas, M. Barallobre, C. Chabert et al., DYRK1A: A master regulatory protein controlling brain growth, Neurobiology of Disease, vol.46, issue.1, pp.190-203, 2012.
DOI : 10.1016/j.nbd.2012.01.007

F. Guedj, J. L. Pennings, L. J. Massingham, H. C. Wick, A. E. Siegel et al., An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome, Scientific Reports, vol.379, issue.1, p.32353, 2016.
DOI : 10.1016/S0140-6736(11)61676-0

S. Guidi, F. Stagni, P. Bianchi, E. Ciani, A. Giacomini et al., Prenatal pharmacotherapy rescues brain development in a Down???s syndrome mouse model, Brain, vol.137, issue.2, pp.380-401, 2014.
DOI : 10.1093/brain/awt340

M. Gupta, A. R. Dhanasekaran, and K. J. Gardiner, Mouse models of Down syndrome: gene content and consequences, Mammalian Genome, vol.2, issue.3940, pp.538-555, 2016.
DOI : 10.1016/j.celrep.2012.06.010

N. Gutierrez-castellanos, B. H. Winkelman, L. Tolosa-rodriguez, B. Devenney, R. H. Reeves et al., Size Does Not Always Matter: Ts65Dn Down Syndrome Mice Show Cerebellum-Dependent Motor Learning Deficits that Cannot Be Rescued by Postnatal SAG Treatment, Journal of Neuroscience, vol.33, issue.39, pp.15408-15413, 2013.
DOI : 10.1523/JNEUROSCI.2198-13.2013

M. A. Haas, D. Bell, A. Slender, E. Lana-elola, S. Watson-scales et al., Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome, PLoS ONE, vol.106, issue.10, p.78561, 2013.
DOI : 10.1371/journal.pone.0078561.g005

J. H. Hall, F. K. Wiseman, E. M. Fisher, V. L. Tybulewicz, J. L. Harwood et al., Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory, Neurobiology of Learning and Memory, vol.130, pp.118-128, 2016.
DOI : 10.1016/j.nlm.2016.02.002

J. E. Hanson, M. Weber, W. J. Meilandt, T. Wu, T. Luu et al., GluN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations, and Behavior, Neuropsychopharmacology, vol.47, issue.7, pp.1221-1233, 2013.
DOI : 10.1016/j.neuropharm.2004.03.011

E. Head, I. T. Lott, D. M. Wilcock, and C. A. Lemere, Aging in Down Syndrome and the Development of Alzheimer's Disease Neuropathology, Current Alzheimer Research, vol.13, issue.1, 2015.
DOI : 10.2174/1567205012666151020114607

M. Heinen, M. M. Hettich, D. P. Ryan, S. Schnell, K. Paesler et al., Adult-Onset Fluoxetine Treatment Does Not Improve Behavioral Impairments and May Have Adverse Effects on the Ts65Dn Mouse Model of Down Syndrome, Neural Plasticity, vol.20, issue.24, p.467251, 2012.
DOI : 10.1523/JNEUROSCI.0534-10.2010

Y. He?raulthe?rault, M. Rassoulzadegan, F. Cuzin, and D. Duboule, Engineering chromosomes in mice through targeted meiotic recombination (TAMERE), Nat. Genet, vol.20, pp.381-384, 1998.

Y. He?raulthe?rault, A. Duchon, E. Velot, D. Mare?chalmare?chal, and V. Brault, The in vivo Down syndrome genomic library in mouse, Prog. Brain Res, vol.197, pp.169-197, 2012.
DOI : 10.1016/B978-0-444-54299-1.00009-1

R. N. Hughes, The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory, Neuroscience & Biobehavioral Reviews, vol.28, issue.5, pp.497-505, 2004.
DOI : 10.1016/j.neubiorev.2004.06.006

C. L. Hunter, D. Bachman, and A. Granholm, Minocycline prevents cholinergic loss in a mouse model of Down's syndrome, Annals of Neurology, vol.65, issue.5, pp.675-688, 2004.
DOI : 10.1212/01.WNL.0000049936.85487.7A

C. L. Hunter, H. A. Bimonte-nelson, M. Nelson, C. B. Eckman, and A. Granholm, Behavioral and neurobiological markers of Alzheimer???s disease in Ts65Dn mice: effects of estrogen, Neurobiology of Aging, vol.25, issue.7, pp.873-884, 2004.
DOI : 10.1016/j.neurobiolaging.2003.10.010

A. Ichinohe, T. Kanaumi, S. Takashima, Y. Enokido, Y. Nagai et al., Cystathionine ??-synthase is enriched in the brains of Down???s patients, Biochemical and Biophysical Research Communications, vol.338, issue.3, pp.1547-1550, 2005.
DOI : 10.1016/j.bbrc.2005.10.118

M. Incerti, L. Toso, J. Vink, R. Roberson, C. Nold et al., Prevention of Learning Deficit in a Down Syndrome Model, Obstetrics & Gynecology, vol.117, issue.2, Part 1, pp.354-361, 2011.
DOI : 10.1097/AOG.0b013e3182051ca5

M. Incerti, K. Horowitz, R. Roberson, D. Abebe, L. Toso et al., Prenatal Treatment Prevents Learning Deficit in Down Syndrome Model, PLoS ONE, vol.108, issue.11, p.50724, 2012.
DOI : 10.1371/journal.pone.0050724.g001

A. Inglis, C. Hippman, and J. C. Austin, Prenatal testing for Down syndrome: The perspectives of parents of individuals with Down syndrome, American Journal of Medical Genetics Part A, vol.29, issue.4, pp.743-750, 2012.
DOI : 10.1016/S1701-2163(16)32501-4

J. Jiang and C. Hui, Hedgehog Signaling in Development and Cancer, Developmental Cell, vol.15, issue.6, pp.801-812, 2008.
DOI : 10.1016/j.devcel.2008.11.010

X. Jiang, C. Liu, T. Yu, L. Zhang, K. Meng et al., Genetic dissection of the Down syndrome critical region, Human Molecular Genetics, vol.24, issue.22, pp.6540-6551, 2015.
DOI : 10.1093/hmg/ddv364

Y. Jiang, A. Rigoglioso, C. M. Peterhoff, M. Pawlik, Y. Sato et al., Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF, Neurobiology of Aging, vol.39, pp.90-98, 2016.
DOI : 10.1016/j.neurobiolaging.2015.11.013

K. Joshi, L. Shen, A. Michaeli, M. Salter, G. Thibault-messier et al., Infantile spasms in down syndrome: Rescue by knockdown of the GIRK2 channel, Annals of Neurology, vol.13, issue.suppl, pp.511-521, 2016.
DOI : 10.1586/ern.13.48

A. Karmiloff-smith, T. Al-janabi, H. D-'souza, J. Groet, E. Massand et al., The importance of understanding individual differences in Down syndrome, F1000Research, vol.5, 2016.
DOI : 10.12688/f1000research.7506.1

C. M. Kelley, J. A. Ash, B. E. Powers, R. Velazquez, M. J. Alldred et al., Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome, Current Alzheimer Research, vol.13, issue.1, pp.84-96, 2016.
DOI : 10.2174/1567205012666150921100515

D. S. Kern, K. N. Maclean, H. Jiang, E. Y. Synder, J. R. Sladek et al., Neural Stem Cells Reduce Hippocampal Tau and Reelin Accumulation in Aged Ts65Dn down Syndrome Mice, Cell Transplantation, vol.480, issue.3, pp.371-379, 2011.
DOI : 10.1002/cne.20344

B. Khoshnood, R. Greenlees, M. Loane, H. Dolk, E. P. Committee et al., Paper 2: EUROCAT public health indicators for congenital anomalies in Europe, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.349, issue.S1, pp.16-22, 2011.
DOI : 10.1016/S0140-6736(96)07495-8

URL : https://hal.archives-ouvertes.fr/inserm-00578498

E. Kida, A. Rabe, M. Walus, G. Albertini, and A. A. Golabek, Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn, Experimental Neurology, vol.240, pp.178-189, 2013.
DOI : 10.1016/j.expneurol.2012.11.022

A. M. Kleschevnikov, P. V. Belichenko, A. J. Villar, C. J. Epstein, R. C. Malenka et al., Hippocampal Long-Term Potentiation Suppressed by Increased Inhibition in the Ts65Dn Mouse, a Genetic Model of Down Syndrome, Journal of Neuroscience, vol.24, issue.37, 2004.
DOI : 10.1523/JNEUROSCI.1766-04.2004

A. M. Kleschevnikov, P. V. Belichenko, M. Faizi, L. F. Jacobs, K. Htun et al., Deficits in Cognition and Synaptic Plasticity in a Mouse Model of Down Syndrome Ameliorated by GABAB Receptor Antagonists, Journal of Neuroscience, vol.32, issue.27, pp.9217-9227, 2012.
DOI : 10.1523/JNEUROSCI.1673-12.2012

A. M. Kleschevnikov, P. V. Belichenko, J. Gall, L. George, R. Nosheny et al., Increased efficiency of the REVIEW Disease Models & Mechanisms, pp.1165-1186, 2012.

J. O. Korbel, T. Tirosh-wagner, A. E. Urban, X. Chen, M. Kasowski et al., The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies, Proc. Natl. Acad. Sci. USA, pp.12031-12036, 2009.
DOI : 10.1038/ejhg.2008.214

J. R. Korenberg, X. N. Chen, R. Schipper, Z. Sun, R. Gonsky et al., Down syndrome phenotypes: the consequences of chromosomal imbalance, Proc. Natl. Acad. Sci. USA 91, pp.4997-5001, 1994.

S. J. Krinsky-mchale, D. A. Devenny, H. Gu, E. C. Jenkins, P. Kittler et al., Successful Aging in a 70-Year-Old Man With Down Syndrome: A Case Study, Intellectual and Developmental Disabilities, vol.46, issue.3, pp.215-228, 2008.
DOI : 10.1352/2008.46:215-228

P. Kruszka, A. R. Porras, A. K. Sobering, F. A. Ikolo, L. Qua et al., Down syndrome in diverse populations, American Journal of Medical Genetics Part A, vol.18, issue.1, pp.42-53, 2017.
DOI : 10.1016/j.media.2014.04.002

J. Laffaire, I. Rivals, L. Dauphinot, F. Pasteau, R. Wehrle et al., Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development, BMC Genomics, vol.10, issue.1, p.138, 2009.
DOI : 10.1186/1471-2164-10-138

URL : https://hal.archives-ouvertes.fr/hal-00804586

A. Laguna, M. Barallobre, M. Marchena, C. Mateus, E. Ram??rezram??rez et al., Triplication of DYRK1A causes retinal structural and functional alterations in Down syndrome, Human Molecular Genetics, vol.22, issue.14, pp.2775-2784, 2013.
DOI : 10.1093/hmg/ddt125

S. E. Latchney, T. C. Jaramillo, P. D. Rivera, A. J. Eisch, and C. M. Powell, Chronic P7C3 treatment restores hippocampal neurogenesis, Neuroscience Letters, vol.591, pp.86-92, 2015.
DOI : 10.1016/j.neulet.2015.02.008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363293/pdf

S. Lee, T. Ahmed, H. Kim, S. Choi, D. Kim et al., Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice, Nature Neuroscience, vol.68, issue.2, pp.308-314, 2011.
DOI : 10.1523/JNEUROSCI.3126-09.2009

A. Letourneau, F. A. Santoni, X. Bonilla, M. R. Sailani, D. Gonzalez et al., Domains of genome-wide gene expression dysregulation in Down???s syndrome, Nature, vol.13, issue.7496, pp.345-350, 2014.
DOI : 10.1186/gb-2012-13-10-r87

Z. Li, T. Yu, M. Morishima, A. Pao, J. Laduca et al., Duplication of the entire 22.9??Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities, Human Molecular Genetics, vol.16, issue.11, pp.1359-1366, 2007.
DOI : 10.1093/hmg/ddm086

H. Li, S. Edie, D. Klinedinst, J. S. Jeong, S. Blackshaw et al., Penetrance of Congenital Heart Disease in a Mouse Model of Down Syndrome Depends on a Trisomic Potentiator of a Disomic Modifier, Genetics, vol.203, issue.2, pp.763-770, 2016.
DOI : 10.1534/genetics.116.188045

J. M. Lignon, Z. Bichler, B. Hivert, F. E. Gannier, P. Cosnay et al., Altered heart rate control in transgenic mice carrying the KCNJ6 gene of the human chromosome 21, Physiological Genomics, vol.33, issue.2, pp.230-239, 2008.
DOI : 10.1152/physiolgenomics.00143.2007

C. Liu, M. Morishima, T. Yu, S. Matsui, L. Zhang et al., Genetic analysis of Down syndrome-associated heart defects in mice, Human Genetics, vol.19, issue.5, pp.623-632, 2011.
DOI : 10.1093/hmg/ddq179

C. Liu, M. Morishima, X. Jiang, T. Yu, K. Meng et al., Engineered chromosome-based genetic mapping establishes a 3.7??Mb critical genomic region for Down syndrome-associated heart defects in mice, Human Genetics, vol.3, issue.205, pp.743-753, 2014.
DOI : 10.4161/bbug.3.1.17696

M. V. Llorens-mart??nmart??n, N. Rueda, G. S. Tejeda, J. Flo?rezflo?rez, J. L. Trejo et al., Effects of voluntary physical exercise on adult hippocampal neurogenesis and behavior of Ts65Dn mice, a model of Down syndrome, Neuroscience, vol.171, issue.4, pp.1228-1240, 2010.
DOI : 10.1016/j.neuroscience.2010.09.043

M. Loane, J. K. Morris, M. Addor, L. Arriola, J. Budd et al., Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening, European Journal of Human Genetics, vol.30, issue.1, pp.27-33, 2013.
DOI : 10.1002/pd.1443

J. Lockrow, A. Prakasam, P. Huang, H. Bimonte-nelson, K. Sambamurti et al., Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model, Experimental Neurology, vol.216, issue.2, pp.278-289, 2009.
DOI : 10.1016/j.expneurol.2008.11.021

J. Lockrow, H. Boger, H. Bimonte-nelson, and A. Granholm, Effects of long-term memantine on memory and neuropathology in Ts65Dn mice, a model for Down syndrome, Behavioural Brain Research, vol.221, issue.2, pp.610-622, 2011.
DOI : 10.1016/j.bbr.2010.03.036

L. Pereira, P. Magnol, L. Sahu?nsahu?n, I. Brault, V. Duchon et al., A new mouse model for the trisomy of the Abcg1???U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome, Human Molecular Genetics, vol.18, issue.24, pp.4756-4769, 2009.
DOI : 10.1093/hmg/ddp438

R. Lyle, F. Be?nabe?na, S. Gagos, C. Gehrig, G. Lopez et al., Genotype???phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21, European Journal of Human Genetics, vol.49, issue.4, pp.454-466, 2009.
DOI : 10.1086/520000

L. V. Lysenko, J. Kim, C. Henry, A. Tyrtyshnaia, R. A. Kohnz et al., Monoacylglycerol Lipase Inhibitor JZL184 Improves Behavior and Neural Properties in Ts65Dn Mice, a Model of Down Syndrome, PLoS ONE, vol.34, issue.12, 2014.
DOI : 10.1371/journal.pone.0114521.s003

S. Malinge, M. Bliss-moreau, G. Kirsammer, L. Diebold, T. Chlon et al., Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome, Journal of Clinical Investigation, vol.122, issue.3, pp.948-962, 2012.
DOI : 10.1172/JCI60455DS1

D. Marechal, P. Lopes-pereira, A. Duchon, and Y. Herault, Dosage of the Abcg1-U2af1 Region Modifies Locomotor and Cognitive Deficits Observed in the Tc1 Mouse Model of Down Syndrome, PLOS ONE, vol.21, issue.2, 2015.
DOI : 10.1371/journal.pone.0115302.t001

C. Martinez-cue, P. Martinez, N. Rueda, R. Vidal, S. Garcia et al., Reducing GABAA ??5 Receptor-Mediated Inhibition Rescues Functional and Neuromorphological Deficits in a Mouse Model of Down Syndrome, Journal of Neuroscience, vol.33, issue.9, pp.3953-3966, 2013.
DOI : 10.1523/JNEUROSCI.1203-12.2013

M. Martinez-de-lagra?nlagra?n, X. Altafaj, X. Gallego, . Mart??, E. Mart?? et al., Motor phenotypic alterations in TgDyrk1a transgenic mice implicate DYRK1A in Down syndrome motor dysfunction, Neurobiology of Disease, vol.15, issue.1, pp.132-142, 2004.
DOI : 10.1016/j.nbd.2003.10.002

F. Ma?tya?sma?tya?ma?tya?s, J. H. Lee, H. Shin, and L. Acsa?dyacsa?dy, The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala, European Journal of Neuroscience, vol.995, issue.11, pp.1810-1823, 2014.
DOI : 10.1016/j.brainres.2003.10.006

J. C. Mccann, M. Hudes, and B. N. Ames, An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring, Neuroscience & Biobehavioral Reviews, vol.30, issue.5, pp.696-712, 2006.
DOI : 10.1016/j.neubiorev.2005.12.003

S. D. Mcelyea, J. M. Starbuck, D. M. Tumbleson-brink, E. Harrington, J. D. Blazek et al., Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome, Hum. Mol. Genet, vol.25, pp.4856-4869, 2016.

M. Mendioroz, C. Do, X. Jiang, C. Liu, H. K. Darbary et al., Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models, Genome Biology, vol.5, issue.Suppl 4, p.263, 2015.
DOI : 10.1371/journal.pone.0008394

J. Moon, M. Chen, S. U. Gandhy, M. Strawderman, D. A. Levitsky et al., Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome., Behavioral Neuroscience, vol.124, issue.3, pp.346-361, 2010.
DOI : 10.1037/a0019590

C. S. Moore, Postnatal lethality and cardiac anomalies in the Ts65Dn Down Syndrome mouse model, Mammalian Genome, vol.359, issue.10, pp.1005-1012, 2006.
DOI : 10.1007/s00335-006-0032-8

C. S. Moore, C. Hawkins, A. Franca, A. Lawler, B. Devenney et al., Increased male reproductive success in Ts65Dn ???Down syndrome??? mice, Mammalian Genome, vol.237, issue.11-12, pp.543-549, 2010.
DOI : 10.1007/s00335-010-9300-8

T. H. Moran, G. T. Capone, S. Knipp, M. T. Davisson, R. H. Reeves et al., The effects of piracetam on cognitive performance in a mouse model of Down's syndrome, Physiology & Behavior, vol.77, issue.2-3, pp.403-409, 2002.
DOI : 10.1016/S0031-9384(02)00873-9

R. Morris, Developments of a water-maze procedure for studying spatial learning in the rat, Journal of Neuroscience Methods, vol.11, issue.1, pp.47-60, 1984.
DOI : 10.1016/0165-0270(84)90007-4

J. K. Morris and N. J. Wald, Estimating the risk of Down's syndrome in antenatal screening and the gestation at which this risk applies, Journal of Medical Screening, vol.14, issue.1, pp.5-7, 2007.
DOI : 10.1258/096914107780154549

J. K. Morris, N. J. Wald, and H. C. Watt, Fetal loss in Down syndrome pregnancies, Prenatal Diagnosis, vol.306, issue.2, pp.142-145, 1999.
DOI : 10.1111/j.1471-0528.1995.tb10845.x

F. Mouton-liger, S. Thomas, R. Rattenbach, L. Magnol, V. Larigaldie et al., PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulindependent kinase II delta activation in mouse models of down syndrome, J. Comp. Neurol, vol.63, pp.92-106, 2011.

F. Mouton-liger, I. Sahu?nsahu?n, T. Collin, P. Lopes-pereira, D. Masini et al., Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: Implications for Down syndrome, Neurobiology of Disease, vol.63, pp.92-106, 2014.
DOI : 10.1016/j.nbd.2013.11.016

URL : https://hal.archives-ouvertes.fr/hal-01179506

J. L. Natoli, D. L. Ackerman, S. Mcdermott, and J. G. Edwards, Prenatal diagnosis of Down syndrome: a systematic review of termination rates (1995-2011), Prenatal Diagnosis, vol.33, issue.3, pp.142-153, 1995.
DOI : 10.1002/uog.6233

W. J. Netzer, C. Powell, Y. Nong, J. Blundell, L. Wong et al., Lowering beta-amyloid levels rescues learning and memory in a Down syndrome mouse model, PLoS ONE, vol.5, 2010.

A. P. Ng, Y. Hu, D. Metcalf, C. D. Hyland, H. Ierino et al., Early Lineage Priming by Trisomy of Erg Leads to Myeloproliferation in a Down Syndrome Model, PLOS Genetics, vol.113, issue.5, 2015.
DOI : 10.1371/journal.pgen.1005211.s006

O. Doherty, A. Ruf, S. Mulligan, C. Hildreth, V. Errington et al., An Aneuploid Mouse Strain Carrying Human Chromosome 21 with Down Syndrome Phenotypes, Science, vol.309, issue.5743, pp.2033-2037, 2005.
DOI : 10.1126/science.1114535

J. L. Olmos-serrano, H. J. Kang, W. A. Tyler, J. C. Silbereis, F. Cheng et al., Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination, Neuron, vol.89, issue.6, pp.1208-1222, 2016.
DOI : 10.1016/j.neuron.2016.01.042

URL : https://doi.org/10.1016/j.neuron.2016.01.042

J. L. Olmos-serrano, W. A. Tyler, H. J. Cabral, and T. F. Haydar, Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and defining modalities for therapeutic intervention in Down syndrome, Experimental Neurology, vol.279, pp.40-56, 2016.
DOI : 10.1016/j.expneurol.2016.02.005

L. E. Olson, J. T. Richtsmeier, J. Leszl, and R. H. Reeves, A Chromosome 21 Critical Region Does Not Cause Specific Down Syndrome Phenotypes, Science, vol.306, issue.5696, pp.687-690, 2004.
DOI : 10.1126/science.1098992

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019810/pdf

J. Ortiz-abalia, I. Sahu?nsahu?n, X. Altafaj, N. Andreu, X. Estivill et al., Targeting Dyrk1A with AAVshRNA Attenuates Motor Alterations in TgDyrk1A, a Mouse Model of Down Syndrome, The American Journal of Human Genetics, vol.83, issue.4, pp.479-488, 2008.
DOI : 10.1016/j.ajhg.2008.09.010

B. Pan, W. Wang, P. Zhong, J. L. Blankman, B. F. Cravatt et al., Alterations of Endocannabinoid Signaling, Synaptic Plasticity, Learning, and Memory in Monoacylglycerol Lipase Knock-out Mice, Journal of Neuroscience, vol.31, issue.38, pp.13420-13430, 2011.
DOI : 10.1523/JNEUROSCI.2075-11.2011

J. Park, Y. Oh, L. Yoo, M. Jung, W. Song et al., Dyrk1A Phosphorylates p53 and Inhibits Proliferation of Embryonic Neuronal Cells, Journal of Biological Chemistry, vol.17, issue.41, pp.31895-31906, 2010.
DOI : 10.1093/hmg/ddp047

J. Park, J. Y. Sung, W. Song, S. Chang, and K. C. Chung, Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP, Journal of Cell Science, vol.125, issue.1, pp.67-80, 2012.
DOI : 10.1242/jcs.086124

S. E. Parker, C. T. Mai, M. A. Canfield, R. Rickard, Y. Wang et al., Updated national birth prevalence estimates for selected birth defects in the United States, 2004-2006, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.146, issue.Suppl 2, pp.1008-1016, 2004.
DOI : 10.1001/archpedi.1992.02160190089028

A. Patel, N. Yamashita, M. Ascan-?-o, D. Bodmer, E. Boehm et al., RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome, Nature Communications, vol.27, 2015.
DOI : 10.1016/S0896-6273(00)00061-1

R. Paylor, R. Tracy, J. Wehner, and J. W. Rudy, DBA/2 and C57BL/6 mice differ in contextual fear but not auditory fear conditioning., Behavioral Neuroscience, vol.108, issue.4, pp.810-817, 1994.
DOI : 10.1037/0735-7044.108.4.810

H. Peiris, M. D. Duffield, J. Fadista, C. F. Jessup, V. Kashmir et al., A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to ??-Cell Mitochondrial Dysfunction in Type 2 Diabetes, PLOS Genetics, vol.41, issue.Supplement, 2016.
DOI : 10.1371/journal.pgen.1006033.s004

R. C. Polk, P. Gergics, J. D. Steimle, H. Li, I. P. Moskowitz et al., The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model, BMC Developmental Biology, vol.252, issue.1, p.30, 2015.
DOI : 10.1006/dbio.2002.0835

M. Pons-espinal, M. Martinez-de-lagran, and M. Dierssen, Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A, Neurobiology of Disease, vol.60, pp.18-31, 2013.
DOI : 10.1016/j.nbd.2013.08.008

L. Rachdi, D. Kariyawasam, V. Aïello, Y. Herault, N. Janel et al., Dyrk1A induces pancreatic ?? cell mass expansion and improves glucose tolerance, Cell Cycle, vol.1, issue.14, pp.2221-2229, 2014.
DOI : 10.2337/db11-0765

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.29250?needAccess=true

M. Rachidi, C. Lopes, C. Vayssettes, D. J. Smith, E. M. Rubin et al., New cerebellar phenotypes in YAC transgenic mouse in vivo library of human Down syndrome critical region-1, Biochemical and Biophysical Research Communications, vol.364, issue.3, pp.488-494, 2007.
DOI : 10.1016/j.bbrc.2007.10.035

A. L. Rachubinski, S. K. Crowley, J. R. Sladek, . Jr, K. N. Maclean et al., Effects of Neonatal Neural Progenitor Cell Implantation on Adult Neuroanatomy and Cognition in the Ts65Dn Model of Down Syndrome, PLoS ONE, vol.3, issue.4, p.36082, 2012.
DOI : 10.1371/journal.pone.0036082.s007

R. Ramirez-solis, P. Liu, and A. Bradley, Chromosome engineering in mice, Nature, vol.201, issue.6558, pp.720-724, 1995.
DOI : 10.1128/MCB.14.4.2404

M. Raveau, J. M. Lignon, V. Nalesso, A. Duchon, Y. Groner et al., The App-Runx1 Region Is Critical for Birth Defects and Electrocardiographic Dysfunctions Observed in a Down Syndrome Mouse Model, PLoS Genetics, vol.3, issue.5, 2012.
DOI : 10.1371/journal.pgen.1002724.s003

M. Raveau, T. Nakahari, S. Asada, K. Ishihara, K. Amano et al., dose-dependent cilia dysfunction., Human Molecular Genetics, vol.26, pp.923-931, 2017.
DOI : 10.1093/hmg/ddx007

R. H. Reeves, N. G. Irving, T. H. Moran, A. Wohn, C. Kitt et al., A mouse model for Down syndrome exhibits learning and behaviour deficits, Nature Genetics, vol.5, issue.2, pp.177-184, 1995.
DOI : 10.1016/0092-8674(86)90493-9

V. Re?gnierre?gnier, J. Billard, S. Gupta, B. Potier, S. Woerner et al., Brain phenotype of transgenic mice overexpressing cystathionine ?-synthase, PLoS One, vol.7, 2012.

L. G. Reinholdt, Y. Ding, G. J. Gilbert, G. T. Gilbert, A. Czechanski et al., Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn, Mammalian Genome, vol.19, issue.11-12, pp.685-691, 2011.
DOI : 10.1101/gr.073585.107

L. E. Reynolds, A. R. Watson, M. Baker, T. A. Jones, G. Robinson et al., Tumour angiogenesis is reduced in the Tc1 mouse model of Down???s syndrome, Nature, vol.49, issue.7299, pp.813-817, 2010.
DOI : 10.1091/mbc.11.9.2915

J. T. Richtsmeier, L. L. Baxter, and R. H. Reeves, Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice, Developmental Dynamics, vol.5, issue.2, pp.137-145, 2000.
DOI : 10.1177/000992286600500812

J. T. Richtsmeier, A. Zumwalt, E. J. Carlson, C. J. Epstein, and R. H. Reeves, Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome, American Journal of Medical Genetics, vol.26, issue.4, pp.317-324, 2002.
DOI : 10.1177/000992286600500812

N. J. Roizen and D. Patterson, Down's syndrome, The Lancet, vol.361, issue.9365, pp.1281-1289, 2003.
DOI : 10.1016/S0140-6736(03)12987-X

R. J. Roper and R. H. Reeves, Understanding the Basis for Down Syndrome Phenotypes, PLoS Genetics, vol.44, issue.3, p.50, 2006.
DOI : 1545-5017(2005)044[0040:GMIDSI]2.0.CO;2

R. J. Roper, L. L. Baxter, N. G. Saran, D. K. Klinedinst, P. A. Beachy et al., Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice, Proc. Natl. Acad. Sci. USA 103, pp.1452-1456, 2006.

P. L. Roubertoux, Z. Bichler, W. Pinoteau, M. Jamon, Z. Se?re?gazase?re?se?re?gaza et al., Pre-weaning Sensorial and Motor Development in Mice Transpolygenic for the Critical Region of Trisomy 21, Behavior Genetics, vol.108, issue.3, pp.377-386, 2006.
DOI : 10.1007/s10519-006-9055-x

A. Rovelet-lecrux, D. Hannequin, G. Raux, L. Meur, N. Laquerrie?-re et al., APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy, Nature Genetics, vol.302, issue.1, pp.24-26, 2006.
DOI : 10.1212/WNL.56.7.979

A. Rovelet-lecrux, T. Frebourg, H. Tuominen, K. Majamaa, D. Campion et al., APP locus duplication in a Finnish family with dementia and intracerebral haemorrhage, Journal of Neurology, Neurosurgery & Psychiatry, vol.78, issue.10, pp.1158-1159, 2007.
DOI : 10.1136/jnnp.2006.113514

N. Rueda, J. Flo?rezflo?rez, . Mart??nezmart??nez-cue?, and C. Cue?, Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome, Neuroscience Letters, vol.433, issue.1, pp.22-27, 2008.
DOI : 10.1016/j.neulet.2007.12.039

N. Rueda, J. Florez, and C. Martinez-cue, Effects of chronic administration of SGS-111 during adulthood and during the pre- and post-natal periods on the cognitive deficits of Ts65Dn mice, a model of Down syndrome, Behavioural Brain Research, vol.188, issue.2, pp.355-367, 2008.
DOI : 10.1016/j.bbr.2007.11.020

N. Rueda, M. Llorens-mart??nmart??n, J. Flo?rezflo?rez, E. Valdiza?nvaldiza?n, P. Banerjee et al., Memantine Normalizes Several Phenotypic Features in the Ts65Dn Mouse Model of Down Syndrome, Journal of Alzheimer's Disease, vol.21, issue.1, pp.277-290, 2010.
DOI : 10.3233/JAD-2010-100240

S. Ruf, O. Symmons, V. V. Uslu, D. Dolle, C. Hot et al., Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor, Nature Genetics, vol.139, issue.4, pp.379-386, 2011.
DOI : 10.1002/dvdy.21482

H. Sago, E. J. Carlson, D. J. Smith, J. Kilbridge, E. M. Rubin et al., Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities, Proc. Natl, 1998.
DOI : 10.1038/39315

I. Sahun, D. Marechal, P. L. Pereira, V. Nalesso, A. Gruart et al., Cognition and Hippocampal Plasticity in the Mouse Is Altered by Monosomy of a Genomic Region Implicated in Down Syndrome, Genetics, vol.197, issue.3, pp.899-912, 2014.
DOI : 10.1534/genetics.114.165241

A. Salehi, J. Delcroix, P. V. Belichenko, K. Zhan, C. Wu et al., Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF Transport and Causes Cholinergic Neuron Degeneration, Neuron, vol.51, issue.1, pp.29-42, 2006.
DOI : 10.1016/j.neuron.2006.05.022

A. Salehi, M. Faizi, D. Colas, J. Valletta, J. Laguna et al., Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome, Science Translational Medicine, vol.277, issue.16, pp.7-17, 2009.
DOI : 10.1016/S0024-3205(00)00787-6

L. P. Sanford, S. Kallapur, I. Ormsby, and T. Doetschman, Influence of Genetic Background on Knockout Mouse Phenotypes, Methods Mol. Biol, vol.158, pp.217-225, 2001.
DOI : 10.1385/1-59259-220-1:217

G. Sansevero, T. Begenisic, M. Mainardi, and A. Sale, Experience-dependent reduction of soluble ??-amyloid oligomers and rescue of cognitive abilities in middle-age Ts65Dn mice, a model of Down syndrome, Experimental Neurology, vol.283, pp.49-56, 2016.
DOI : 10.1016/j.expneurol.2016.06.006

S. Sebrie?, C. Chabert, C. Ledru, A. Guedj, F. Po et al., Increased Dosage ofDYRK1A and Brain Volumetric Alterations in a YAC Model of Partial Trisomy 21, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.934, issue.3, pp.254-262, 2008.
DOI : 10.1212/WNL.45.2.356

S. L. Sherman, E. G. Allen, L. H. Bean, and S. B. Freeman, Epidemiology of Down syndrome, Mental Retardation and Developmental Disabilities Research Reviews, vol.58, issue.3, pp.221-227, 2007.
DOI : 10.1037/11220-000

M. Shichiri, Y. Yoshida, N. Ishida, Y. Hagihara, H. Iwahashi et al., alpha-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic, Biol. Med, vol.50, pp.1801-1811, 2011.

L. J. Sittig, P. Carbonetto, K. A. Engel, K. S. Krauss, C. M. Barrios-camacho et al., Genetic Background Limits Generalizability of Genotype-Phenotype Relationships, Neuron, vol.91, issue.6, pp.1253-1259, 2016.
DOI : 10.1016/j.neuron.2016.08.013

D. J. Smith and E. M. Rubin, Functional screening and complex traits: human 21q22.2 sequences affecting learning in mice, Human Molecular Genetics, vol.6, issue.10, pp.1729-1733, 1997.
DOI : 10.1093/hmg/6.10.1729

D. J. Smith, Y. W. Zhu, J. L. Zhang, J. F. Cheng, and E. M. Rubin, Construction of a Panel of Transgenic Mice Containing a Contiguous 2-Mb Set of YAC/P1 Clones from Human Chromosome 21q22.2, Genomics, vol.27, issue.3, pp.425-434, 1995.
DOI : 10.1006/geno.1995.1073

W. Song, E. C. Song, S. Choi, H. Baik, B. K. Jin et al., Dyrk1A-mediated phosphorylation of RCAN1 promotes the formation of insoluble RCAN1 aggregates, Neuroscience Letters, vol.554, pp.135-140, 2013.
DOI : 10.1016/j.neulet.2013.08.066

W. Song, E. C. Song, M. Jung, S. Choi, H. Baik et al., Phosphorylation and Inactivation of Glycogen Synthase Kinase 3?? (GSK3??) by Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1A (Dyrk1A), Journal of Biological Chemistry, vol.296, issue.4, pp.2321-2333, 2015.
DOI : 10.1128/MCB.00580-06

B. Souchet, F. Guedj, I. Sahu?nsahu?n, A. Duchon, F. Daubigney et al., Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage, Neurobiology of Disease, vol.69, pp.65-75, 2014.
DOI : 10.1016/j.nbd.2014.04.016

B. Souchet, F. Guedj, Z. Penke-verdier, F. Daubigney, A. Duchon et al., Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models, Frontiers in Behavioral Neuroscience, vol.79, p.267, 2015.
DOI : 10.1111/j.1399-0004.2010.01544.x

URL : https://hal.archives-ouvertes.fr/hal-01263753

F. Stagni, J. Magistretti, S. Guidi, E. Ciani, C. Mangano et al., Pharmacotherapy with Fluoxetine Restores Functional Connectivity from the Dentate Gyrus to Field CA3 in the Ts65Dn Mouse Model of Down Syndrome, PLoS ONE, vol.24, issue.4, 2013.
DOI : 10.1371/journal.pone.0061689.g010

F. Stagni, A. Giacomini, S. Guidi, E. Ciani, E. Ragazzi et al., Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice, Neurobiology of Disease, vol.74, pp.204-218, 2015.
DOI : 10.1016/j.nbd.2014.12.005

F. Stagni, A. Giacomini, M. Emili, S. Trazzi, S. Guidi et al., Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome, Neuroscience, vol.333, pp.277-301, 2016.
DOI : 10.1016/j.neuroscience.2016.07.031

S. C. Stanford, The Open Field Test: reinventing the wheel, Journal of Psychopharmacology, vol.21, issue.2, pp.134-135, 2007.
DOI : 10.1037/0033-2909.83.3.482

J. M. Starbuck, T. Dutka, T. S. Ratliff, R. H. Reeves, and J. T. Richtsmeier, Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice, American Journal of Medical Genetics Part A, vol.18, issue.8, pp.1981-1990, 2014.
DOI : 10.1093/hmg/ddp010

A. M. Summers, S. Langlois, P. Wyatt, R. D. Wilson, and S. O. Canada, Prenatal Screening for Fetal Aneuploidy, Journal of Obstetrics and Gynaecology Canada, vol.29, issue.2, pp.146-179, 2007.
DOI : 10.1016/S1701-2163(16)32379-9

T. E. Sussan, A. Yang, F. Li, M. C. Ostrowski, and R. H. Reeves, Trisomy represses ApcMin-mediated tumours in mouse models of Down???s syndrome, Nature, vol.20, issue.7174, pp.73-75, 2008.
DOI : 10.1038/nature06446

J. Taipale and P. A. Beachy, The Hedgehog and Wnt signaling pathways in cancer, Nature, vol.411, issue.6835, pp.349-354, 2001.
DOI : 10.1038/35077219

F. Tejedor, X. R. Zhu, E. Kaltenbach, A. Ackermann, A. Baumann et al., minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila, Neuron, vol.14, issue.2, pp.287-301, 1995.
DOI : 10.1016/0896-6273(95)90286-4

A. Thomazeau, O. Lassalle, J. Iafrati, B. Souchet, F. Guedj et al., Prefrontal Deficits in a Murine Model Overexpressing the Down Syndrome Candidate Gene Dyrk1a, Journal of Neuroscience, vol.34, issue.4, pp.1138-1147, 2014.
DOI : 10.1523/JNEUROSCI.2852-13.2014

D. W. Threadgill, A. A. Dlugosz, L. A. Hansen, T. Tennenbaum, U. Lichti et al., Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype, Science, vol.269, issue.5221, pp.230-234, 1995.
DOI : 10.1126/science.7618084

S. Trazzi, V. M. Mitrugno, E. Valli, C. Fuchs, S. Rizzi et al., APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome, Human Molecular Genetics, vol.20, issue.8, pp.1560-1573, 2011.
DOI : 10.1093/hmg/ddr033

S. Trazzi, C. Fuchs, E. Valli, G. Perini, R. Bartesaghi et al., The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome, Journal of Biological Chemistry, vol.77, issue.29, pp.20817-20829, 2013.
DOI : 10.1073/pnas.0813248106

J. A. Troca-marin, A. Alves-sampaio, and M. L. Montesinos, An Increase in Basal BDNF Provokes Hyperactivation of the Akt-Mammalian Target of Rapamycin Pathway and Deregulation of Local Dendritic Translation in a Mouse Model of Down's Syndrome, Journal of Neuroscience, vol.31, issue.26, pp.9445-9455, 2011.
DOI : 10.1523/JNEUROSCI.0011-11.2011

J. A. Troca-mar??nmar??n, ?. Casan, J. J. As, I. Benito, and M. L. Montesinos, The Akt-mTOR Pathway in Down???s Syndrome: The Potential Use of Rapamycin/Rapalogs for Treating Cognitive Deficits, CNS & Neurological Disorders - Drug Targets, vol.13, issue.1, pp.34-40, 2014.
DOI : 10.2174/18715273113126660184

V. L. Tybulewicz and E. M. Fisher, New techniques to understand chromosome dosage: mouse models of aneuploidy, Human Molecular Genetics, vol.15, issue.suppl_2, pp.103-109, 2006.
DOI : 10.1093/hmg/ddl179

R. Velazquez, J. A. Ash, B. E. Powers, C. M. Kelley, M. Strawderman et al., Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome, Neurobiology of Disease, vol.58, pp.92-101, 2013.
DOI : 10.1016/j.nbd.2013.04.016

S. Vicari, Motor Development and Neuropsychological Patterns in Persons with Down Syndrome, Behavior Genetics, vol.7, issue.3, pp.355-364, 2006.
DOI : 10.1017/S1355617704106073

V. Vidal, S. Garc?á, P. Mart??nezmart??nez, A. Corrales, J. Flo?rezflo?rez et al., Lack of behavioral and cognitive effects of chronic ethosuximide and gabapentin treatment in the Ts65Dn mouse model of Down syndrome, Neuroscience, vol.220, pp.158-168, 2012.
DOI : 10.1016/j.neuroscience.2012.06.031

M. Vilardell, A. Rasche, A. Thormann, E. Maschke-dutz, L. A. Pe?rezpe?rez-jurado et al., Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes, BMC Genomics, vol.51, issue.1, p.229, 2011.
DOI : 10.1139/G07-100

A. J. Villar, P. V. Belichenko, A. M. Gillespie, H. M. Kozy, W. C. Mobley et al., Identification and characterization of a new Down syndrome model, )) 2Cje, resulting from a spontaneous Robertsonian fusion between T(17(16))65Dn and mouse Chromosome 12, pp.79-90, 2005.

S. Webb, R. H. Anderson, W. H. Lamers, and N. A. Brown, Mechanisms of Deficient Cardiac Septation in the Mouse With Trisomy 16, Circulation Research, vol.84, issue.8, pp.897-905, 1999.
DOI : 10.1161/01.RES.84.8.897

F. K. Wiseman, T. Al-janabi, J. Hardy, A. Karmiloff-smith, D. Nizetic et al., A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome, Nature Reviews Neuroscience, vol.20, issue.9, pp.564-574, 2015.
DOI : 10.1038/srep08744

W. Xie, N. Ramakrishna, A. Wieraszko, and Y. Hwang, Promotion of Neuronal Plasticity by (???)-Epigallocatechin-3-Gallate, Neurochemical Research, vol.45, issue.5, pp.776-783, 2008.
DOI : 10.1007/s11064-007-9494-7

L. Xing, M. Salas, H. Zhang, J. Gittler, T. Ludwig et al., Creation and characterization of BAC-transgenic mice with physiological overexpression of epitope-tagged RCAN1 (DSCR1), Mammalian Genome, vol.107, issue.1-2, pp.30-43, 2013.
DOI : 10.1016/S0092-8674(01)00585-2

Z. Xing, Y. Li, A. Pao, A. S. Bennett, B. Tycko et al., Mouse-based genetic modeling and analysis of Down syndrome, British Medical Bulletin, vol.120, issue.1, pp.111-122, 2016.
DOI : 10.1093/bmb/ldw040

A. Yang, D. Currier, J. L. Poitras, and R. H. Reeves, Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome, PLOS ONE, vol.23, issue.23, 2016.
DOI : 10.1371/journal.pone.0146570.s006

Y. Yu and A. Bradley, MOUSE GENOMIC TECHNOLOGIES: ENGINEERING CHROMOSOMAL REARRANGEMENTS IN MICE, Nature Reviews Genetics, vol.2, issue.10, pp.780-790, 2001.
DOI : 10.1038/35093564

T. Yu, S. J. Clapcote, Z. Li, C. Liu, A. Pao et al., Deficiencies in the region syntenic to human 21q22.3 cause cognitive deficits in mice, Mammalian Genome, vol.27, issue.5-6, pp.258-267, 2010.
DOI : 10.1002/ajmg.a.31519

T. Yu, Z. Li, Z. Jia, S. J. Clapcote, C. Liu et al., A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions, Human Molecular Genetics, vol.19, issue.14, pp.2780-2791, 2010.
DOI : 10.1093/hmg/ddq179

T. Yu, C. H. Liu, P. Belichenko, S. J. Clapcote, S. M. Li et al., Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice, Brain Research, vol.1366, pp.162-171, 2010.
DOI : 10.1016/j.brainres.2010.09.107

L. Zhang, K. Meng, X. Jiang, C. Liu, A. Pao et al., Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits, Human Molecular Genetics, vol.23, issue.3, pp.578-589, 2014.
DOI : 10.1093/hmg/ddt446