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Understanding Maximum Probability Domains 
with Simple Models

Osvaldo Mafra Lopes Jr., Benoı̂t Braı̈da, Mauro Causà, and Andreas Savin

Abstract The paper presents maximum probability domains (MPDs). These are
regions of the three dimensional space for which the probability to find a given
number of electrons is maximal. In order to clarify issues hidden by numerical
uncertainties, some simple models are used. They show that MPDs reproduce
features which one would expect using chemical intuition. For a given number
of electrons, there can be several solutions, corresponding to different chemical
situations (e.g. different bonds). Some of them can be equivalent, by symmetry.
Symmetry can produce, however, alternative solutions. The models show that MPDs
do not exactly partition space, and they can also be formed by disjoint subdomains.
Finally, an example shows that a partition of space, as provided by loge theory, can
lead to situations difficult to deal with, not present for MPDs.

10.1 Introduction

In the last few years a method was explored which allows to analyze electronic
wave functions by describing the regions of space for which the probability to
find a given number of electrons, ν , is maximal [1–11]. When ν = 2, it relates to
Lewis’ concept of electron pairs and provides thus a connection between quantum
mechanics and the traditional way of thinking of chemists. This paper summarizes
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its main features, and illustrates them by using simple quantum mechanical models.
These allow to clarify some features which may be blurred by numerical issues in
realistic situations.

10.2 Method

10.2.1 Maximal Probability Domains

For a system in the state described by the wave function Ψ , the probability to find ν
and only ν electrons out of N in a three-dimensional region Ω is given by

pν(Ω) =

(
N
ν

)∫
Ω

dx1...dxν

∫
Ω̄

dxν+1...dxN |Ψ (x1, ...,xN)|2 (10.1)

where Ω̄ is the complement of Ω , R3 \Ω , and the binomial coefficient is added
to take into account electron indistinguishability. A maximal probability domain,
MPD, is a region of space maximizing pν(Ω). It will be denoted by Ων .

Please notice that pν is not restricted to ground states, and that Ω can be formed
of disjoint subdomains.

The computation of pν , Eq. 10.1, is less difficult as it may seem, at least for
certain forms of the wave function. In particular, for a single Slater determinant,
one first computes the overlaps of all occupied orbitals over the regions Ω ,

Si j(Ω) =

∫
Ω

φi(x)φ j(x)dx (10.2)

Next, the eigenvalues of the matrix with elements Si j are obtained. From them, the
probabilities are quickly computed for all ν , with a recursive formula [3].

The presently running programs use a grid of small cubes. To represent a spatial
domain Ω , a collection of such cubes is used. The procedure to optimize Ω is the
following. We first start by guessing a domain, either in a trivial way, like using a
larger cube (union of small unit cubes) located in the region of interest, or by using
ELF basins [12, 13], produced, e.g., with the TopMod program [14]. In the present
version of the MPD program, two optimization algorithms are available. In one of
them, small cubes are randomly added or deleted, the step being accepted when
the probability of the new domain is increased. This algorithm was already used
and described in more detail in Ref. [15]. The other algorithm which can be used,
takes advantage of the availability of shape derivatives, as described in Ref. [3]. The
derivative indicates whether one should add or delete small cubes on the surface of
the domain in order to increase the probability.



Programs to provide MPDs now available can use single determinant wave
functions from calculations produced by the Gaussian suite of programs [16] for
molecules, or by Crystal-98 [17] for periodic systems. MPDs can be produced also
with correlated wave functions, via a Quantum Monte Carlo program, cf. [10, 15].
Probabilities can be computed for multi-determinant wave functions [18], but the
optimization of Ω is not implemented yet.

10.2.2 Similarities and Differences

For a well-localized pair of electrons, MPDs provide regions of space which
resemble the regions where orbitals can be localized. Notice, however, that localized
orbitals extend to infinity, while the MPDs extend over a given region of space. In
this respect, they resemble the basins showing up in the Quantum Theory of Atoms
in Molecules [19], or in the Electron Localization Function (ELF) approach [12,13].
For single Slater determinants, in the ideal limiting case of strictly localized (non-
overlapping) orbitals, the localization domain of the orbitals, the ELF basins, and
the MPDs become identical [20].

The expression for the probability pν may remind of the ν-particle reduced
density matrices. The latter are obtained, however, by integrating xν+1, ...,xN over
the whole space, not just over Ω̄ . In particular, p1(Ω) is not equal to the integral of
the one-particle density over the region Ω ,

∫
Ω

ρ(x1)dx1 = N
∫

Ω
dx1

∫
dx2...dxN |Ψ(x1, ...,xN)|2 (10.3)

The latter is, in fact, not the probability to find one particle in Ω , but the
average number of particles in Ω [1], the population of Ω . For example, for
the dissociated hydrogen molecule in its electronic ground state, the probability
to find one electron in the half-space containing one of the protons is equal
to 1, as is the population. For the ionic excited state, H+...H− ↔H−...H+, the
probability to find one electron in one half-space is zero, while the population is
still one.

With population analysis, and also with the valence bond approach, a reference
space of atomic functions is defined. Such a space is absent when defining the MPDs
as the search is carried out in three-dimensional space.

MPDs remind of Daudel’s loges [21,22] which also use pν(Ω). There, the idea is
to partition molecular space into domains, called “loges”, and look for all different
possibilities to distribute electrons into them. After some initial trials it was decided
to minimize the missing information function,

H(x1, ..,xM) =−∑
k

P(xk) ln(P(xk)) (10.4)



as the criterion to determine the partition. In the definition of H, an event xk is
a given distribution of electrons in the loges, P(xk) is the probability to have
such a distribution, and the sum goes over all possible distribution of electrons in
the loges.1

10.2.3 Models

We will treat below some non-interacting particle models for which the exact
solution of the Schrödinger equation is known, because it is possible to compute
pν(Ω) for these systems with arbitrary accuracy, e.g., with Mathematica [23]. More
details about the models can be found in the appendix.

In order to have a significance for chemistry, we will assume that particles are
fermions. Thus, although non-interacting, the particles are not independent, as they
have to obey the Pauli principle. Please notice that this holds for same-spin particles,
while particles with opposite spin are independent in these models.

In the following, we will sometimes consider situations where only particles of
a given spin are present. For N particles of one spin, the probabilities can be related
to those for N pairs of fermions of opposite spin. This can be easily seen, by writing
the wave function as a product of a Slater determinant for α spin with one for β
spin (see, e.g. [24]). This product yields the same expectation values as the Slater
determinant written with all spin-orbitals, for both spins. Equation 10.1 yields for
the probability of finding να and νβ electrons in Ω the product of the probabilities
computed for each spin individually, for να , and νβ , respectively. When we consider
the restricted Hartree-Fock closed shell form, we obtain the same terms for each
spin. Thus, one finds the same Ω when maximizing the probability of finding
να and νβ electrons as when one maximizes the probability of finding να or νβ
electrons only.

10.3 Results

10.3.1 Experience with MPDs

Up to now, experience has shown that MPD correspond to regions to which a
chemist would associate bonds, or cores, or lone pairs (see, e.g. [10]). In this
respect, when a single Lewis picture is sufficient, Ωνs resemble images produced

1The basis of the logarithm is arbitrary; we have chosen in this paper the natural logarithm, and
not the binary logarithm, as usually done.



Fig. 10.1 Ω10 solutions for
the MgO crystal: Mg2+, top,
and O2−, bottom

by other tools, e.g., ELF basins [12, 13]. For example, for the MgO crystal, when
maximizing p10, it yields two solutions, one corresponding to Mg2+ and another
to O2−, see Fig. 10.1. In fact, it was noticed that the results are slightly closer
to chemical intuition than with ELF. For example, with MPDs, the population of
atomic shells is closer to the integer numbers one intuitively expects than it is with
ELF basins [1].
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Fig. 10.2 p1([x1,x2]) for three same-spin fermions in a box. The dots mark the maxima

10.3.2 MPDs Are not Unique

In general, there can be several MPDs, Ων , for a given ν . We just mentioned
(cf. Fig. 10.1) that maximizing p10 can yield two physically relevant solutions,
one corresponding to Mg2+, and another corresponding to O2−. This is physically
motivated, and is not a limitation of MPDs. From the practical viewpoint, it means
that the program searching for Ων can yield several solutions, typically by using
different starting guesses.

An accurate calculation showing multiple solutions can be produced for three
same-spin particles in a box of unit length. The probability to find one particle in the
interval between x1 and x2, p([x1,x2]), is shown in Fig. 10.2. There are two maxima
corresponding to symmetrically arranged Ω , given by the intervals [0,0.35], at the
left of the box, and [0.65,1], at the right of the box. There is a third Ω between them.
It is no surprise that the values for p1 are different for the Ω1 at the borders of the
box (≈0.84) and in the center of the box (≈0.75). The lower value for the central
Ω1 can be understood by the existence of two penetrable walls for this MPD, while
there is only one for the terminal Ω1s.

The example above also shows that there are solutions which are equivalent, the
Ω1 corresponding to the left is equivalent to that on the right border of the box. The
origin of this equivalence, is the symmetry of the box. It reminds of the equivalence
of localized orbitals [25]: a symmetry operation can transform one localized orbital
into another. In a molecule, such equivalent MPDs are common. For example, in



Fig. 10.3 The two lone pair
Ω2s in the H2O molecule

the water molecule, there is a MPD corresponding to one of the lone pairs, that is
equivalent to another one, corresponding to the other lone pair, cf. Fig. 10.3.

However, symmetry operations can also produce physically reasonable, equiv-
alent solutions, but not transform one chemically relevant unit (like a bond)
into another. In certain situations, there may be an infinite number of equivalent
solutions. Take, for example, three same-spin particles in a ring. There is a solution
corresponding to θ between 0 and ≈ 2π/3. Of course, there are two more solutions,
one corresponding to roughly [2π/3,4π/3], and another one for roughly [4π/3,2π ].
These are produced from the first domain by threefold rotations. However, the
ring is invariant to rotations by an arbitrary angle. Thus, besides the chemically
understandable existence of threefold solutions, one can find an infinity of Ω1, as
produced by a rotation by an arbitrary angle: p1 ≈ 0.68 does not change when the
lower and the upper limit of the interval is displaced by the same arbitrary constant.

A similar result is obtained for acetylene. There is a solution corresponding to
one of the banana bonds, see Fig. 10.4. There are two more MPDs, corresponding to
the other two banana bonds. One can generate, however, infinitely many new Ω1, by
rotating the previous Ω1s around the internuclear axis. Please notice that the three
Ω produced by the rotation about a threefold axis are essentially non-overlapping.
One can see the rotation by an arbitrary angle as the arbitrariness in the choice of
the set of three banana bonds.

Sometimes, there only is a finite number of supplementary solutions dictated by
symmetry. Let us consider the case of three protons at infinite separation, occupying
the vertices of an equilateral triangle. Let us put two electrons of the same spin into
this system. One of the degenerate wave functions of the system is given by the
Slater determinant:

Φa =

∣∣∣∣ 1√
3
(χa + χb + χc)

1√
6
(2χa − χb − χc)

∣∣∣∣ (10.5)

It can also be written as:

Φa =
1√
2
(|χaχb|+ |χaχc|) (10.6)



Fig. 10.4 Two views of an
Ω2 corresponding to one of
the three banana bonds in
acetylene

From the latter formulation, one can immediately see that for this wave function, one
has p1 = 1 when Ω1 contains either the space associated to one proton, Ha, or that
for two of them, Hb and Hc, cf. Fig. 10.5. One has a system H...H+

2 . This separation
can be done, of course, also by isolating Hb, or Hc. These solutions can be obtained
by a rotation along the threefold axis. Notice that there are three solutions, but as
there are only two electrons of same spin these solutions overlap significantly, and
do not form a partition of space, as it is given by H...H+

2 . Symmetry thus provides
alternative chemically equivalent solutions.

A similar situation has been noticed for the Si2H2 molecule, in D2h symmetry
(bent acetylene structure) [10]. One also obtains MPDs corresponding to banana
bonds. By the bending, however, the C∞ axis which was present in acetylene is not
present anymore, so that an arbitrary rotation around the Si-Si axis does not produce
an equivalent solution. The molecule still has inversion symmetry. By inversion,
the arrangement of the three banana bond like MPDs, in the � arrangement, are
transformed into one having a � arrangement.



Fig. 10.5 Two choices leading to Ω1 with p1 = 1 for three protons and two same-spin electrons

10.3.3 MPDs do not Always Provide an Exact Partition of Space

In the ground state of two non-interacting same-spin fermions in a one-dimensional
box, Ω1 corresponds to exactly one half of the box. The two solutions for Ω1

thus provide a partition of the box. In general, however, MPDs do not necessarily
provide an exact partition of space. For example, small overlaps were noticed in
some molecular calculations (CH+

5 or FHF− [10]). However, the discretization by
small cubes, and numerical noise left a question mark with this statement. In order
to clarify whether MPDs necessarily provide a partition of space, we consider now
a model, for which we can state with certitude that MPDs do not provide a partition
of space. We choose again the example of the three non-interacting fermions of
the same spin in a one-dimensional box. The Ω1s are given by: 0 ≤ x ≤ 0.3547,
0.3572 ≤ x ≤ 0.6428, and 0.6453 ≤ x ≤ 1. Small regions 0.3547 < x < 0.3572 and
0.6428 < x < 0.6453 have not been attributed. Similarly, for the three electrons on
a ring, Ω1 is not delimited by 0 and exactly 2π/3; the upper limit is ≈2.06 < 2π/3.
With the present accuracy of our programs, such small effects could not yet be
detected with certainty in molecular or crystalline systems.

10.3.4 MPDs can be Disjoint in Space

We have seen that for the ground state of two same-spin non-interacting fermions
in a box, the Ω1 correspond to half of the box, with p1 ≈ 0.86. In the excited states,
this is not the case anymore. For example, if one fermion is excited from the n = 2
to the n = 3 state, there is a solution for Ω1, x ∈ [0.32,0.62] with p1 ≈ 0.88. There
is another solution for Ω1, with the same p1, for the rest of the box, x ∈ [0,0.32]∪
[0.62,1]. For it, a description with a single basin is not possible. This is a situation
that does not correspond to the classical image of localized electrons, but shows
nevertheless a high probability. Such a situation can appear in resonating systems
(when several Lewis structures are needed).
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Fig. 10.6 Missing information function H for loges defined by the intervals [0,x], (x,1− x), [1−
x,1], as a function of x

10.3.5 MPDs and Loges

In this section we will highlight some differences between MPDs and loges. Let us
consider again the system of three same-spin non-interacting particles in a box. We
define the loges by the intervals [0,x], (x,1− x), [1− x,1]. The missing information
function H, Eq. 10.4, depends on x, see Fig. 10.6. H presents a minimum, for x ≈
0.3565, close to the value obtained by maximizing p1. This is a local minimum, and
there are two other, lower minima. The first one, at x = 0 is trivial. It corresponds to
making the border loges vanish, keeping only the central loge. It is a minimum of H,
as the probability of finding all three electrons in the whole box is equal to 1. This
situation can be easily identified and discarded. There is another minimum, however,
for x = 1/2 taking a lower value than for the physically interesting minimum. It is
the case where the central box vanishes, and only the distributions where there is no
electron in the central box contribute to H. Please notice that taking x < 1/2, but
close to this value, the central loge has not vanished yet, but H takes a low value.
Thus, it is not easy to detect such a situation when minimizing H.

10.4 Conclusions

In order to better understand the maximum probability domains (the region of space
maximizing the probability to find a given number of electrons in it), we studied
some simple model systems.

Electronic systems well described by a single Lewis structure produce MPDs
which correspond roughly to a partition of space which permits an association to
bonds, lone pairs, or cores. However, our models have shown that this partition is
not strict. A further point is that symmetry can produce alternative solutions.



The model calculations have proven that MPDs formed by disjoint subdomains
can exist.

It was shown that using the missing information function, as it is done in loge
theory, can produce unwanted results.

10.5 Appendix: Detailed Description of the Models

Let us now describe the simple models used in this paper. The first one is that of
non-interacting particles in a one-dimensional box. We will choose the box to have
unit length, and the orbitals are given by:

ϕn(x) =
√

2sin(nπx) (10.7)

The overlaps for Ω defined by the interval [x1,x2] is given by

Si j([x1,x2]) =

∫ x2

x1

ϕi(x)ϕ j(x)dx (10.8)

and easily computed and diagonalized, yielding the eigenvalues λi. For two fermions
of the same spin the probability to find one electron in this interval is given by [3]

p1([x1,x2]) = λ1 +λ2 −2λ1λ2 (10.9)

A slightly more complicated expression is obtained for three particles of the
same spin.

For particles in a ring, the orbitals are given by

ϕk(θ ) =
1√
2π

eikθ (10.10)

for θ between 0 and 2π .
For three infinitely distant hydrogen atoms, with the nuclei on the vertices of an

equilateral triangle, the orbitals are:

ϕ1 =
1√
3
(χa + χb + χc)

ϕ2 =
1√
6
(2χa − χb − χc)

ϕ3 =
1√
6
(−χa + 2χb− χc)

ϕ4 =
1√
6
(−χa − χb +2χb) (10.11)



where only two of ϕ2,ϕ3,ϕ4 are linearly independent. Please notice that S(Ω) is
simplified as all products between the functions centered on different atoms are
vanishing.
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Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09
revision A.1. Gaussian Inc., Wallingford CT

17. Saunders VR, Dovesi R, Roetti C, Orlando R, Harrison NM, Zicovich-Wilson CM (1998)
CRYSTAL98 (CRYSTAL98 user’s manual). University of Torino, Torino

18. Francisco E, Pendás AM, Blanco MA (2008) Comput Phys Commun 178:621
19. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford
20. Savin A (2005) J Chem Sci 117:473
21. Daudel R (1953) CR Acad Sci France 237:691
22. Aslangul C, Constanciel R, Daudel R, Kottis P (1972) Adv Quantum Chem 6:93
23. Wolfram S (2008) Mathematica edition: version 7.0. Wolfram Research, Inc., Champaign
24. Wigner E (1934) Phys Rev 46:1002
25. Lennard-Jones J, Pople JA (1950) Proc Roy Soc A 202:166


	Chapter 10 Understanding Maximum Probability Domainswith Simple Models
	10.1 Introduction
	10.2 Method
	10.2.1 Maximal Probability Domains
	10.2.2 Similarities and Differences
	10.2.3 Models

	10.3 Results
	10.3.1 Experience with MPDs
	10.3.2 MPDs Are not Unique
	10.3.3 MPDs do not Always Provide an Exact Partition of Space
	10.3.4 MPDs can be Disjoint in Space
	10.3.5 MPDs and Loges

	10.4 Conclusions
	10.5 Appendix: Detailed Description of the Models
	References


