G. M. Shepherd, W. R. Chen, G. , and C. A. , Olfactory bulb, The Synaptic, pp.165-216, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00163062

I. Fukunaga, J. T. Herb, M. Kollo, E. S. Boyden, and A. T. Schaefer, Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb, Nature Neuroscience, vol.86, issue.9, pp.1208-1216, 2014.
DOI : 10.1152/jn.00478.2010

N. N. Urban, Lateral inhibition in the olfactory bulb and in olfaction, Physiology & Behavior, vol.77, issue.4-5, pp.607-612, 2002.
DOI : 10.1016/S0031-9384(02)00895-8

O. Gschwend, N. M. Abraham, S. Lagier, F. Begnaud, I. Rodriguez et al., Neuronal pattern separation in the olfactory bulb improves odor discrimination learning, Nature Neuroscience, vol.4, issue.10, pp.1474-1482, 2015.
DOI : 10.1073/pnas.0701846104

D. Nunes and T. Kuner, Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice, Nature Communications, vol.24, p.8950, 2015.
DOI : 10.1093/chemse/24.6.637

M. Wienisch and V. N. Murthy, Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb, Scientific Reports, vol.67, issue.1, p.29308, 2016.
DOI : 10.1007/7657_2011_18

R. Batista-brito, J. Close, R. Machold, and G. Fishell, The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes, Journal of Neuroscience, vol.28, issue.15, pp.3966-3975, 2008.
DOI : 10.1523/JNEUROSCI.5625-07.2008

S. Gribaudo, S. Bovetti, D. Garzotto, A. Fasolo, D. Marchis et al., Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb, The Journal of Comparative Neurology, vol.92, issue.5, pp.683-694, 2009.
DOI : 10.1385/MN:22:1-3:099

F. Imamura, H. Nagao, H. Naritsuka, Y. Murata, H. Taniguchi et al., A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb, The Journal of Comparative Neurology, vol.92, issue.6, pp.754-768, 2006.
DOI : 10.1093/acprof:oso/9780195159561.003.0006

N. Eant-fery, M. Erè-s, E. Nasrallah, C. Kessner, M. Gribaudo et al., A Role for Dendritic Translation of CaMKII?? mRNA in Olfactory Plasticity, PLoS ONE, vol.107, issue.6, p.40133, 2012.
DOI : 10.1371/journal.pone.0040133.g005

D. Zou, C. A. Greer, and S. Firestein, Expression pattern of ?CaMKII in the mouse main olfactory bulb, The Journal of Comparative Neurology, vol.19, issue.3, pp.226-236, 2002.
DOI : 10.1016/S0896-6273(00)80072-0

Z. Chaker, S. A?¨da?¨d, H. Berry, and M. Holzenberger, Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging, Aging Cell, vol.1, issue.5, pp.847-856, 2015.
DOI : 10.1242/dev.083154

URL : https://hal.archives-ouvertes.fr/hal-01163564

D. C. Lagace, M. C. Whitman, M. A. Noonan, J. L. Ables, N. A. Decarolis et al., Dynamic Contribution of Nestin-Expressing Stem Cells to Adult Neurogenesis, Journal of Neuroscience, vol.27, issue.46, pp.12623-12629, 2007.
DOI : 10.1523/JNEUROSCI.3812-07.2007

J. Ninkovic, T. Mori, G. Tz, and M. , Distinct Modes of Neuron Addition in Adult Mouse Neurogenesis, Journal of Neuroscience, vol.27, issue.40, pp.10906-10911, 2007.
DOI : 10.1523/JNEUROSCI.2572-07.2007

A. Gengatharan, R. R. Bammann, and A. Saghatelyan, The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb, Frontiers in Neuroscience, vol.27, issue.180, p.149, 2016.
DOI : 10.1523/JNEUROSCI.0476-07.2007

R. A. Ihrie and A. Alvarez-buylla, Lake-Front Property: A Unique Germinal Niche by the Lateral Ventricles of the Adult Brain, Neuron, vol.70, issue.4, pp.674-686, 2011.
DOI : 10.1016/j.neuron.2011.05.004

G. Lepousez, A. Nissant, and P. Lledo, Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits, Neuron, vol.86, issue.2, pp.387-401, 2015.
DOI : 10.1016/j.neuron.2015.01.002

URL : https://hal.archives-ouvertes.fr/pasteur-01587166

M. Alonso, G. Lepousez, W. Sebastien, C. Bardy, M. Gabellec et al., Activation of adult-born neurons facilitates learning and memory, Nature Neuroscience, vol.90, issue.6, pp.897-904, 2012.
DOI : 10.1152/jn.00475.2003

URL : https://hal.archives-ouvertes.fr/pasteur-01309034

M. Arruda-carvalho, K. G. Akers, A. Guskjolen, M. Sakaguchi, S. A. Josselyn et al., Posttraining Ablation of Adult-Generated Olfactory Granule Cells Degrades Odor-Reward Memories, Journal of Neuroscience, vol.34, issue.47, pp.15793-15803, 2014.
DOI : 10.1523/JNEUROSCI.2336-13.2014

URL : http://www.jneurosci.org/content/jneuro/34/47/15793.full.pdf

V. Breton-provencher, M. Lemasson, M. R. Peralta, and A. Saghatelyan, Interneurons Produced in Adulthood Are Required for the Normal Functioning of the Olfactory Bulb Network and for the Execution of Selected Olfactory Behaviors, Journal of Neuroscience, vol.29, issue.48, pp.15245-15257, 2009.
DOI : 10.1523/JNEUROSCI.3606-09.2009

I. Imayoshi, M. Sakamoto, T. Ohtsuka, K. Takao, T. Miyakawa et al., Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain, Nature Neuroscience, vol.28, issue.10, pp.1153-1161, 2008.
DOI : 10.1038/nn.2185

S. Malvaut and A. Saghatelyan, The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network, Neural Plasticity, vol.22, issue.7, p.1614329, 2016.
DOI : 10.1523/jneurosci.3082-08.2008

H. K. Kato, M. W. Chu, J. S. Isaacson, and T. Komiyama, Dynamic Sensory Representations in the Olfactory Bulb: Modulation by Wakefulness and Experience, Neuron, vol.76, issue.5, pp.962-975, 2012.
DOI : 10.1016/j.neuron.2012.09.037

V. Breton-provencher, K. Bakhshetyan, D. Hardy, R. R. Bammann, F. Cavarretta et al., Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb, Nature Communications, vol.114, p.12659, 2016.
DOI : 10.1162/neco.1997.9.6.1179

Y. Livneh, N. Feinstein, M. Klein, and A. Mizrahi, Sensory Input Enhances Synaptogenesis of Adult-Born Neurons, Journal of Neuroscience, vol.29, issue.1, pp.86-97, 2009.
DOI : 10.1523/JNEUROSCI.4105-08.2009

K. Inaki, Y. K. Takahashi, S. Nagayama, and K. Mori, Molecular-feature domains with posterodorsal-anteroventral polarity in the symmetrical sensory maps of the mouse olfactory bulb: mapping of odourant-induced Zif268 expression, European Journal of Neuroscience, vol.414, issue.Suppl. 1, pp.1563-1574, 2002.
DOI : 10.1038/35102506

N. Mandairon, A. Didier, and C. Linster, Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception, Neurobiology of Learning and Memory, vol.90, issue.1, pp.178-184, 2008.
DOI : 10.1016/j.nlm.2008.02.008

L. Daroles, S. Gribaudo, M. Doulazmi, S. Scotto-lomassese, C. Dubacq et al., Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning, Biological Psychiatry, vol.80, issue.2, pp.149-159, 2016.
DOI : 10.1016/j.biopsych.2015.07.023

B. L. Roth, DREADDs for Neuroscientists, Neuron, vol.89, issue.4, pp.683-694, 2016.
DOI : 10.1016/j.neuron.2016.01.040

URL : https://doi.org/10.1016/j.neuron.2016.01.040

F. T. Merkle, L. C. Fuentealba, T. A. Sanders, L. Magno, N. Kessaris et al., Adult neural stem cells in distinct microdomains generate previously unknown interneuron types, Nature Neuroscience, vol.17, issue.2, pp.207-214, 2014.
DOI : 10.1006/geno.2000.6451

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100623/pdf

K. Murata, M. Imai, S. Nakanishi, D. Watanabe, I. Pastan et al., Compensation of Depleted Neuronal Subsets by New Neurons in a Local Area of the Adult Olfactory Bulb, Journal of Neuroscience, vol.31, issue.29, pp.10540-10557, 2011.
DOI : 10.1523/JNEUROSCI.1285-11.2011

L. S. David, M. Schachner, and A. Saghatelyan, The Extracellular Matrix Glycoprotein Tenascin-R Affects Adult But Not Developmental Neurogenesis in the Olfactory Bulb, Journal of Neuroscience, vol.33, issue.25, pp.10324-10339, 2013.
DOI : 10.1523/JNEUROSCI.5728-12.2013

G. K. Mak, E. K. Enwere, C. Gregg, T. Pakarainen, M. Poutanen et al., Male pheromone???stimulated neurogenesis in the adult female brain: possible role in mating behavior., Nature Neuroscience, vol.105, issue.8, pp.1003-1011, 2007.
DOI : 10.1210/en.141.10.3564

M. M. Moreno, C. Linster, O. Escanilla, J. Sacquet, A. Didier et al., Olfactory perceptual learning requires adult neurogenesis, Proc. Natl. Acad. Sci. USA, pp.17980-17985, 2009.
DOI : 10.1016/S0166-2236(03)00228-5

URL : http://www.pnas.org/content/106/42/17980.full.pdf

T. Shingo, C. Gregg, E. Enwere, H. Fujikawa, R. Hassam et al., Pregnancy-Stimulated Neurogenesis in the Adult Female Forebrain Mediated by Prolactin, Science, vol.299, issue.5603, pp.117-120, 2003.
DOI : 10.1126/science.1076647

J. Lisman, H. Schulman, and H. Cline, THE MOLECULAR BASIS OF CaMKII FUNCTION IN SYNAPTIC AND BEHAVIOURAL MEMORY, Nature Reviews Neuroscience, vol.3, issue.3, pp.175-190, 2002.
DOI : 10.1038/nrn753

D. L. Benson, P. J. Isackson, C. M. Gall, and E. G. Jones, Contrasting patterns in the localization of glutamic acid decarboxylase and Ca2+ /calmodulin protein kinase gene expression in the rat centrat nervous system, Neuroscience, vol.46, issue.4, pp.825-849, 1992.
DOI : 10.1016/0306-4522(92)90188-8

E. G. Jones, G. W. Huntley, and D. L. Benson, Alpha calcium/ calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression, J. Neurosci, vol.14, pp.611-629, 1994.

D. Koninck, P. Schulman, and H. , Sensitivity of CaM Kinase II to the Frequency of Ca2+ Oscillations, Science, vol.279, issue.5348, pp.227-230, 1998.
DOI : 10.1126/science.279.5348.227

M. Lemieux, S. Labrecque, C. Tardif, E. ´. Labrie-dion, E. ´. Lebel et al., Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses, The Journal of Cell Biology, vol.19, issue.6, pp.1055-1073, 2012.
DOI : 10.1126/science.1068539

P. M. Lledo, G. O. Hjelmstad, S. Mukherji, T. R. Soderling, R. C. Malenka et al., Calcium/calmodulin-dependent kinase II and longterm potentiation enhance synaptic transmission by the same mechanism, Proc. Natl. Acad. Sci. USA 92, pp.11175-11179, 1995.
DOI : 10.1073/pnas.92.24.11175

URL : http://www.pnas.org/content/92/24/11175.full.pdf

C. E. Flores, I. Nikonenko, P. Mendez, J. Fritschy, S. K. Tyagarajan et al., Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation, Proc. Natl. Acad. Sci. USA, pp.65-72, 2015.
DOI : 10.1083/jcb.200805132

URL : http://www.pnas.org/content/112/1/E65.full.pdf

R. S. Saliba, K. Kretschmannova, M. , and S. J. , receptors regulates receptor insertion and tonic current, The EMBO Journal, vol.127, issue.13, pp.2937-2951, 2012.
DOI : 10.1016/j.neuroscience.2004.05.056

URL : http://emboj.embopress.org/content/embojnl/31/13/2937.full.pdf

J. M. Fritschy and H. Mohler, GABAA-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits, The Journal of Comparative Neurology, vol.127, issue.1, pp.154-194, 1995.
DOI : 10.1111/j.1460-9568.1990.tb00434.x

M. Farrant and Z. Nusser, Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors, Nature Reviews Neuroscience, vol.18, issue.3, pp.215-229, 2005.
DOI : 10.1006/frne.1999.0188

A. Deshpande, M. Bergami, A. Ghanem, K. Conzelmann, A. Lepier et al., Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb, Proc. Natl. Acad. Sci. USA, pp.1152-1161, 2013.
DOI : 10.1093/cercor/bhn158

S. Nagayama, R. Homma, and F. Imamura, Neuronal organization of olfactory bulb circuits, Frontiers in Neural Circuits, vol.10, issue.3791, p.98, 2014.
DOI : 10.1038/nrn2666

R. R. Waclaw, L. A. Ehrman, A. Pierani, and K. Campbell, Developmental Origin of the Neuronal Subtypes That Comprise the Amygdalar Fear Circuit in the Mouse, Journal of Neuroscience, vol.30, issue.20, pp.6944-6953, 2010.
DOI : 10.1523/JNEUROSCI.5772-09.2010

URL : https://hal.archives-ouvertes.fr/hal-00519860

T. Mantamadiotis, T. Lemberger, S. C. Bleckmann, H. Kern, O. Kretz et al., Disruption of CREB function in brain leads to neurodegeneration, Nature Genetics, vol.31, issue.1, pp.47-54, 2002.
DOI : 10.1038/ng882

S. Scotto-lomassese, A. Nissant, T. Mota, M. Ery, B. A. Oostra et al., Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb, Journal of Neuroscience, vol.31, issue.6, pp.2205-2215, 2011.
DOI : 10.1523/JNEUROSCI.5514-10.2011

S. Key, . Table, R. Or, . Source, and . Identifier, Antibodies Mouse monoclonal anti-CaMKIIa ThermoFisher Scientific Cat# MA1-048; RRID: AB_325403 Rabbit polyclonal anti-c-Fos Santa Cruz Biotechnology Cat# sc-52; RRID: AB_2106783 Rabbit polyclonal anti-GFP ThermoFisher Scientific Cat# A-11122; RRID: AB_221569 Chicken polyclonal anti-GFP Av es GFP-1020; RRID: AB_10000240 Rabbit monoclonal anti-NeuN Cell Signaling Cat# 12943, p.2630395

C. For, . And, and . Sharing, Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact

E. Model, . Subject, and . Adult, CC-GFP) mice were used to study the expression of CaMKIIa in adult-born neurons These mice were obtained by crossing NestinCreERT2 mice [13] with CAG-CAT-EGFP mice [52] They received daily injections of tamoxifen (180 mg/kg, Sigma Aldrich) for 5 days to induce the expression of GFP by stem cells and their progeny. Tamoxifen was diluted in sunflower seed oil (Sigma Aldrich) and 10% anhydrous ethanol Postnatal day 5 (P5) CD1 mice (Charles River) were used to compare the morphological characteristics of early-born GCs. The experiments were performed in accordance with Canadian Guide for the Care and Use of Laboratory Animals guidelines and were approved by the Animal Protection Committee of Universit e Laval. The mice were kept in groups of 4-5 on a 12-h light/dark cycle in a temperature-controlled facility (22 C), with food and water ad libitum, except for the mice in go/no-go odor discrimination and long-term associative memory groups, which were partially water-and food-deprived, respectively. Animals that underwent behavioral procedures were individually housed and kept on a reverse light-dark cycle for 7-10 days before beginning the experiments. Animals were randomly assigned to the various experimental groups. To genetically label CaMKIIa + cells, the CamkCre4html) mouse transgenes were backcrossed to C57BL All mice were individually housed in ventilated cages under specific pathogen-free conditions at 22 C and a 12, p.53