R. Lozano, M. Naghavi, and K. Foreman, Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010, The Lancet, vol.380, issue.9859, pp.2095-2128, 2010.
DOI : 10.1016/S0140-6736(12)61728-0

URL : https://hal.archives-ouvertes.fr/hal-00827612

G. W. Reed, J. E. Rossi, and C. P. Cannon, Acute myocardial infarction, The Lancet, vol.389, issue.10065, pp.140-673630677, 2016.
DOI : 10.1016/S0140-6736(16)30677-8

K. Albouaini, M. Egred, A. Rao, A. Alahmar, and D. J. Wright, Cardiac resynchronisation therapy: Evidence based benefits and patient selection, European Journal of Internal Medicine, vol.19, issue.3, pp.165-172, 2008.
DOI : 10.1016/j.ejim.2007.09.012

J. J. Mcmurray, M. Packer, A. S. Desai, J. Gong, M. P. Lefkowitz et al., Angiotensin???Neprilysin Inhibition versus Enalapril in Heart Failure, New England Journal of Medicine, vol.371, issue.11, pp.371-993, 2014.
DOI : 10.1056/NEJMoa1409077

J. Silvestre and P. Menasché, The Evolution of the Stem Cell Theory for Heart Failure, EBioMedicine, vol.2, issue.12, pp.1871-1879, 2015.
DOI : 10.1016/j.ebiom.2015.11.010

J. Dow, B. Z. Simkhovich, L. Kedes, and R. A. Kloner, Washout of transplanted cells from the heart: A potential new hurdle for cell transplantation therapy, Cardiovascular Research, vol.67, issue.2, pp.67-301, 2005.
DOI : 10.1016/j.cardiores.2005.04.011

H. Zhang, P. Song, Y. Tang, X. Ling-zhang, S. Hua-zhao et al., Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: Heart status and cell distribution, The Journal of Thoracic and Cardiovascular Surgery, vol.134, issue.5, 2007.
DOI : 10.1016/j.jtcvs.2007.07.019

W. Hudson, M. C. Collins, D. Defreitas, Y. S. Sun, B. Muller-borer et al., Beating and Arrested Intramyocardial Injections Are Associated with Significant Mechanical Loss: Implications for Cardiac Cell Transplantation, Journal of Surgical Research, vol.142, issue.2, pp.142-263, 2007.
DOI : 10.1016/j.jss.2007.03.021

F. N. Smets, Y. Chen, L. Wang, and H. E. Soriano, Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes, Molecular Genetics and Metabolism, vol.75, issue.4, pp.75-344, 2002.
DOI : 10.1016/S1096-7192(02)00004-5

P. V. Kochupura, E. U. Azeloglu, D. J. Kelly, S. V. Doronin, S. F. Badylak et al., Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function, Circulation, vol.112, 2005.

W. Zimmermann, I. Melnychenko, G. Wasmeier, M. Didié, H. Naito et al., Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nature Medicine, vol.107, issue.4, pp.452-458, 2006.
DOI : 10.1016/S0735-1097(03)00092-5

K. L. Christman, H. H. Fok, R. E. Sievers, Q. Fang, and R. J. Lee, Fibrin Glue Alone and Skeletal Myoblasts in a Fibrin Scaffold Preserve Cardiac Function after Myocardial Infarction, Tissue Engineering, vol.10, issue.3-4, pp.10-403, 2004.
DOI : 10.1089/107632704323061762

T. Kofidis, J. L. De-bruin, G. Hoyt, Y. Ho, M. Tanaka et al., Myocardial Restoration With Embryonic Stem Cell Bioartificial Tissue Transplantation, The Journal of Heart and Lung Transplantation, vol.24, issue.6, pp.737-744, 2005.
DOI : 10.1016/j.healun.2004.03.023

Y. Miyahara, N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction, Nature Medicine, vol.262, issue.4, pp.12-459, 2006.
DOI : 10.1016/S0142-9612(03)00110-8

A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, vol.29, issue.13, pp.2073-2081, 2008.
DOI : 10.1016/j.biomaterials.2008.01.004

M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi et al., Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering, Progress in Polymer Science, vol.32, issue.8-9, pp.32-1123, 2007.
DOI : 10.1016/j.progpolymsci.2007.06.002

M. Kitsara, M. Chatzichristidi, D. Niakoula, D. Goustouridis, K. Beltsios et al., Argitis, I. Raptis, Layer-by-layer UV micromachining methodology of epoxy resist embedded microchannels, Microelectron. Eng, pp.83-1298, 2006.

M. Kitsara, C. E. Nwankire, L. Walsh, G. Hughes, M. Somers et al., Spin coating of hydrophilic polymeric films for enhanced centrifugal flow control by serial siphoning, Microfluidics and Nanofluidics, vol.38, issue.4, pp.16-691, 2014.
DOI : 10.1002/1099-0518(20000901)38:17<3028::AID-POLA30>3.0.CO;2-B

P. X. Ma, Scaffolds for tissue fabrication, Materials Today, vol.7, issue.5, pp.30-40, 2004.
DOI : 10.1016/S1369-7021(04)00233-0

M. Kitsara and J. Ducrée, Integration of functional materials and surface modification for polymeric microfluidic systems, Journal of Micromechanics and Microengineering, vol.23, issue.3, 2013.
DOI : 10.1088/0960-1317/23/3/033001

C. H. Lee, Y. C. Lim, D. F. Farson, H. M. Powell, and J. J. Lannutti, Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations, Annals of Biomedical Engineering, vol.10, issue.12, pp.39-3031, 2011.
DOI : 10.1021/bm801307y

G. Wu and S. Hsu, Review: Polymeric-Based 3D Printing for Tissue Engineering, Journal of Medical and Biological Engineering, vol.24, issue.3, pp.285-292, 2015.
DOI : 10.1016/S0142-9612(02)00562-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs40846-015-0038-3.pdf

J. J. Song and H. C. Ott, Organ engineering based on decellularized matrix scaffolds, Trends in Molecular Medicine, vol.17, issue.8, pp.424-432, 2011.
DOI : 10.1016/j.molmed.2011.03.005

R. L. Dahlin, F. K. Kasper, and A. G. Mikos, Polymeric Nanofibers in Tissue Engineering, Tissue Engineering Part B: Reviews, vol.17, issue.5, pp.349-364, 2011.
DOI : 10.1089/ten.teb.2011.0238

T. Lu, Y. Li, and T. Chen, Techniques for fabrication and construction of threedimensional scaffolds for tissue engineering, Int. J. Nanomed, vol.8, issue.337, 2013.

M. Boffito, S. Sartori, and G. Ciardelli, Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies, Polymer International, vol.7, issue.1, pp.2-11, 2014.
DOI : 10.1016/j.biomaterials.2012.05.032

L. Persano, A. Camposeo, C. Tekmen, and D. Pisignano, Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review, Macromolecular Materials and Engineering, vol.10, issue.188, pp.298-504, 2013.
DOI : 10.1021/nl9040719

S. Khorshidi, A. Solouk, H. Mirzadeh, S. Mazinani, J. M. Lagaron et al., A review of key challenges of electrospun scaffolds for tissue-engineering applications, Journal of Tissue Engineering and Regenerative Medicine, vol.8, issue.9, pp.715-738, 2016.
DOI : 10.1016/j.actbio.2012.01.003

Y. Tang, L. Liu, J. Li, L. Yu, L. Wang et al., Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers, Nanoscale, vol.50, issue.314, pp.14530-14540, 2016.
DOI : 10.1016/j.biomaterials.2015.01.037

Y. Tang, L. Liu, J. Li, L. Yu, F. P. Severino et al., Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, J. Mater. Chem. B, vol.22, issue.19, pp.3305-3312, 2016.
DOI : 10.1016/S0142-9612(00)00350-1

N. J. Kaiser and K. L. Coulombe, Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration, Biomed. Mater, vol.10, issue.34003, 2015.

A. K. Capulli, L. A. Macqueen, S. P. Sheehy, and K. K. Parker, Fibrous scaffolds for building hearts and heart parts, Advanced Drug Delivery Reviews, vol.96, pp.96-83, 2016.
DOI : 10.1016/j.addr.2015.11.020

URL : https://doi.org/10.1016/j.addr.2015.11.020

G. Macchiarelli, O. Ohtani, S. A. Nottola, T. Stallone, A. Camboni et al., A micro-anatomical model of the distribution of myocardial endomysial collagen, Histol. Histopathol, pp.17-699, 2002.

G. C. Engelmayr, M. Cheng, C. J. Bettinger, J. T. Borenstein, R. Langer et al., Accordion-like honeycombs for tissue engineering of cardiac anisotropy, Nature Materials, vol.20, issue.12, pp.1003-1010, 2008.
DOI : 10.1163/156856208784089643

H. N. Kim, A. Jiao, N. S. Hwang, M. S. Kim, D. H. Kang et al., Nanotopography-guided tissue engineering and regenerative medicine, Advanced Drug Delivery Reviews, vol.65, issue.4, pp.65-536, 2013.
DOI : 10.1016/j.addr.2012.07.014

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444877/pdf

Y. Li, G. Huang, X. Zhang, L. Wang, Y. Du et al., Engineering cell alignment in vitro, Biotechnology Advances, vol.32, issue.2, pp.32-347, 2014.
DOI : 10.1016/j.biotechadv.2013.11.007

Q. Chen, A. Bismarck, U. Hansen, S. Junaid, M. Q. Tran et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue, Biomaterials, vol.29, issue.1, pp.47-57, 2008.
DOI : 10.1016/j.biomaterials.2007.09.010

A. J. Engler, C. Carag-krieger, C. P. Johnson, M. Raab, H. Tang et al., Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating, Journal of Cell Science, vol.121, issue.22, pp.3794-3802, 2008.
DOI : 10.1242/jcs.029678

URL : http://jcs.biologists.org/content/joces/121/22/3794.full.pdf

R. R. Chaturvedi, T. Herron, R. Simmons, D. Shore, P. Kumar et al., Passive Stiffness of Myocardium From Congenital Heart Disease and Implications for Diastole, Circulation, vol.121, issue.8, pp.979-988, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.850677

W. C. Nelson and C. Kim, Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review, Journal of Adhesion Science and Technology, vol.ahead-of-print, issue.ahead-of-print, pp.1-25, 2012.
DOI : 10.1163/156856111X599562

D. M. Pedrotty, Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation, AJP: Heart and Circulatory Physiology, vol.288, issue.4, pp.1620-1626, 2004.
DOI : 10.1152/ajpheart.00610.2003

]. D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering, Journal of Biomedical Materials Research Part A, vol.67, issue.3, pp.99-376, 2011.
DOI : 10.1002/jbm.a.10083

N. Tandon, C. Cannizzaro, P. P. , -. G. Chao, R. Maidhof et al., Electrical stimulation systems for cardiac tissue engineering, Nature Protocols, vol.109, issue.2, pp.155-173, 2009.
DOI : 10.1016/0012-1606(85)90442-7

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775058/pdf

T. Dvir, B. P. Timko, M. D. Brigham, S. R. Naik, S. S. Karajanagi et al., Nanowired three-dimensional cardiac patches, Nature Nanotechnology, vol.108, issue.11, pp.720-725, 2011.
DOI : 10.1073/pnas.1104619108

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208725/pdf

E. Mooney, J. N. Mackle, D. J. Blond, E. O-'cearbhaill, G. Shaw et al., The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs, Biomaterials, vol.33, issue.26, pp.6132-6139, 2012.
DOI : 10.1016/j.biomaterials.2012.05.032

K. Hanee, N. Lila, S. Benadda, F. Legrand, A. Carpentier et al., Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells, Heart International, vol.7, issue.2, 2012.
DOI : 10.4081/hi.2012.e14

M. Generali, P. E. Dijkman, and S. P. Hoerstrup, Bioresorbable scaffolds for cardiovascular tissue engineering, EMJ Interv. Cardiol, vol.1, pp.91-99, 2014.

N. Bursac, M. Papadaki, J. A. White, S. R. Eisenberg, G. Vunjak-novakovic et al., Cultivation in Rotating Bioreactors Promotes Maintenance of Cardiac Myocyte Electrophysiology and Molecular Properties, Tissue Engineering, vol.9, issue.6, pp.1243-1253, 2003.
DOI : 10.1089/10763270360728152

M. Radisic, A. Marsano, R. Maidhof, Y. Wang, and G. , Cardiac tissue engineering using perfusion bioreactor systems, Nature Protocols, vol.41, issue.4, pp.719-738, 2008.
DOI : 10.1161/CIRCULATIONAHA.106.657379

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763607/pdf

M. Tehranirokh, A. Z. Kouzani, P. S. Francis, and J. R. Kanwar, Microfluidic devices for cell cultivation and proliferation, Biomicrofluidics, vol.7, issue.5, p.51502, 2013.
DOI : 10.1161/01.ATV.0000175840.90510.a8

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4826935

S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, and Z. Ma, An introduction to electrospinning and nanofibers, World Sci, 2005.
DOI : 10.1142/5894

Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, vol.63, issue.15, pp.63-2223, 2003.
DOI : 10.1016/S0266-3538(03)00178-7

N. Bhattarai, Z. Li, J. Gunn, M. Leung, A. Cooper et al., Natural-Synthetic Polyblend Nanofibers for Biomedical Applications, Advanced Materials, vol.3, issue.27, pp.2792-2797, 2009.
DOI : 10.1038/nsb0296-133

J. Xie, S. M. Willerth, X. Li, M. R. Macewan, A. Rader et al., The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages, Biomaterials, vol.30, issue.3, pp.354-362, 2008.
DOI : 10.1016/j.biomaterials.2008.09.046

B. Oh and C. H. Lee, Nanofiber for cardiovascular tissue engineering, Expert Opinion on Drug Delivery, vol.7, issue.11, pp.1565-1582, 2013.
DOI : 10.1016/j.biomaterials.2008.09.046

G. Zhao, X. Zhang, T. J. Lu, and F. Xu, Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering, Advanced Functional Materials, vol.24, issue.36, pp.25-5726, 2015.
DOI : 10.1088/0957-4484/23/38/385102

S. A. Sell, M. J. Mcclure, K. Garg, P. S. Wolfe, and G. L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Advanced Drug Delivery Reviews, vol.61, issue.12, pp.61-1007, 2009.
DOI : 10.1016/j.addr.2009.07.012

J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Electrospinning of Collagen Nanofibers, Biomacromolecules, vol.3, issue.2, pp.232-238, 2002.
DOI : 10.1021/bm015533u

S. Z. Yow, C. H. Quek, E. K. Yim, C. T. Lim, and K. W. Leong, Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells, Biomaterials, vol.30, issue.6, pp.1133-1142, 2009.
DOI : 10.1016/j.biomaterials.2008.11.003

Z. Kassiri and R. Khokha, Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors, Thrombosis and Haemostasis, vol.93, pp.212-219, 2005.
DOI : 10.1160/TH04-08-0522

URL : https://www.schattauer.de/index.php?id=5236&mid=4003

S. D. Zimmerman, W. J. Karlon, J. W. Holmes, J. H. Omens, and J. W. , Structural and mechanical factors influencing infarct scar collagen organization, Am. J. Physiol. Heart Circ. Physiol, pp.278-194, 2000.

M. Kitsara, P. Joanne, S. E. Boitard, I. B. Dhiab, B. Poinard et al., Fabrication of cardiac patch by using electrospun collagen fibers, Microelectronic Engineering, vol.144, pp.144-190, 2015.
DOI : 10.1016/j.mee.2015.02.034

URL : https://hal.archives-ouvertes.fr/hal-01130222

P. Joanne, M. Kitsara, S. E. Boitard, H. Naemetalla, V. Vanneaux et al., Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy, Biomaterials, vol.80, pp.157-168, 2016.
DOI : 10.1016/j.biomaterials.2015.11.035

URL : https://hal.archives-ouvertes.fr/hal-01250352

A. Sahni and C. W. Francis, Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation, Blood, vol.96, pp.3772-3778, 2000.

M. C. Mcmanus, E. D. Boland, D. G. Simpson, C. P. Barnes, and G. L. Bowlin, Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model, Journal of Biomedical Materials Research Part A, vol.38, issue.3, pp.299-309, 2007.
DOI : 10.1161/01.ATV.16.12.1544

H. Homayoni, S. Abdolkarim, H. Ravandi, and M. Valizadeh, Electrospinning of chitosan nanofibers: Processing optimization, Carbohydrate Polymers, vol.77, issue.3, pp.656-661, 2009.
DOI : 10.1016/j.carbpol.2009.02.008

A. Hussain, G. Collins, D. Yip, and C. H. Cho, Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds, Biotechnology and Bioengineering, vol.26, issue.26, pp.637-647, 2013.
DOI : 10.1016/j.biomaterials.2005.01.052

U. R. Rodgers and A. S. Weiss, Cellular interactions with elastin, Pathologie Biologie, vol.53, issue.7, pp.390-398, 2005.
DOI : 10.1016/j.patbio.2004.12.022

E. D. Boland, Electrospinning collagen and elastin: preliminary vascular tissue engineering, Frontiers in Bioscience, vol.9, issue.1-3, p.1422, 2004.
DOI : 10.2741/1313

X. Zhang, C. B. Baughman, and D. L. Kaplan, In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth, Biomaterials, vol.29, issue.14, pp.2217-2227, 2008.
DOI : 10.1016/j.biomaterials.2008.01.022

P. Balasubramanian, M. P. Prabhakaran, D. Kai, and S. Ramakrishna, Human cardiomyocyte interaction with electrospun fibrinogen/gelatin nanofibers for myocardial regeneration, Journal of Biomaterials Science, Polymer Edition, vol.29, issue.14, pp.24-1660, 2013.
DOI : 10.1016/j.biomaterials.2007.12.029

S. Fleischer, A. Shapira, O. Regev, N. Nseir, E. Zussman et al., Albumin fiber scaffolds for engineering functional cardiac tissues, Biotechnology and Bioengineering, vol.26, issue.26, pp.1246-1257, 2014.
DOI : 10.1016/j.biomaterials.2005.01.052

M. Shin, O. Ishii, T. Sueda, and J. P. Vacanti, Contractile cardiac grafts using a novel nanofibrous mesh, Biomaterials, vol.25, issue.17, pp.3717-3723, 2004.
DOI : 10.1016/j.biomaterials.2003.10.055

O. Ishii, M. Shin, T. Sueda, and J. P. Vacanti, In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix???like topography, The Journal of Thoracic and Cardiovascular Surgery, vol.130, issue.5, pp.130-1358, 2005.
DOI : 10.1016/j.jtcvs.2005.05.048

M. P. Prabhakaran, J. Venugopal, D. Kai, and S. Ramakrishna, Biomimetic material strategies for cardiac tissue engineering, Materials Science and Engineering: C, vol.31, issue.3, pp.31-503, 2011.
DOI : 10.1016/j.msec.2010.12.017

S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, Electrospun nanofiber scaffolds: engineering soft tissues, Biomedical Materials, vol.3, issue.3, pp.34002-34015, 2008.
DOI : 10.1088/1748-6041/3/3/034002

J. Venugopal, Y. Z. Zhang, and S. Ramakrishna, Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering, Nanotechnology, vol.16, issue.10, pp.2138-2142, 2005.
DOI : 10.1088/0957-4484/16/10/028

S. Heydarkhan-hagvall, K. Schenke-layland, A. P. Dhanasopon, F. Rofail, H. Smith et al., Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering, Biomaterials, vol.29, issue.19, pp.2907-2914, 2008.
DOI : 10.1016/j.biomaterials.2008.03.034

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397445/pdf

D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.26, issue.7-8, pp.98-379, 2011.
DOI : 10.1016/j.biomaterials.2005.05.064

C. Srinivasa-reddy, J. R. Venugopal, S. Ramakrishna, and E. Zussman, Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering, Journal of Biomedical Materials Research Part A, vol.194, issue.10, pp.3713-3725, 2014.
DOI : 10.1002/macp.1993.021940305

C. S. Reddy, A. Arinstein, R. Avrahami, and E. Zussman, Fabrication of thermoset polymer nanofibers by co-electrospinning of uniform core-shell structures, Journal of Materials Chemistry, vol.17, issue.39, pp.7198-7201, 2009.
DOI : 10.1103/PhysRevE.76.056303

Y. Chen, D. Zeng, L. Ding, X. Li, X. Liu et al., Three-dimensional poly-(e-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murineinduced pluripotent stem cells through Wnt/b-catenin signaling, BMC Cell Biol, vol.22, p.16, 2015.

S. Fleischer, R. Feiner, A. Shapira, J. Ji, X. Sui et al., Spring-like fibers for cardiac tissue engineering, Biomaterials, vol.34, issue.34, pp.8599-8606, 2013.
DOI : 10.1016/j.biomaterials.2013.07.054

A. G. Guex, A. Frobert, J. Valentin, G. Fortunato, D. Hegemann et al., Plasma-functionalized electrospun matrix for biograft development and cardiac function stabilization, Acta Biomaterialia, vol.10, issue.7, pp.10-2996, 2014.
DOI : 10.1016/j.actbio.2014.01.006

S. Jana, A. Lerman, and R. D. Simari, In Vitro Model of a Fibrosa Layer of a Heart Valve, ACS Applied Materials & Interfaces, vol.7, issue.36, 2015.
DOI : 10.1021/acsami.5b04805

X. Zong, H. Bien, C. Chung, L. Yin, D. Fang et al., Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials, vol.26, issue.26, pp.5330-5338, 2005.
DOI : 10.1016/j.biomaterials.2005.01.052

M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko et al., Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds, Journal of Biomedical Materials Research Part A, vol.9, issue.1/2, pp.963-973, 2006.
DOI : 10.1002/jbm.a.30487

H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, Micro and nano-scale in vitro 3D culture system for cardiac stem cells, Journal of Biomedical Materials Research Part A, vol.8, issue.1, pp.94-95, 2010.
DOI : 10.1016/j.colsurfb.2003.12.004

L. Zakharova, H. Nural-guvener, L. Feehery, S. Popovic-sljukic, and M. A. Gaballa, Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model, STEM CELLS Translational Medicine, vol.30, issue.suppl, pp.1086-1096, 2015.
DOI : 10.1093/eurheartj/ehp265

J. H. Van-berlo, O. Kanisicak, M. Maillet, R. J. Vagnozzi, J. Karch et al., c-kit+ cells minimally contribute cardiomyocytes to the heart, Nature, vol.17, issue.7500, pp.337-341, 2014.
DOI : 10.7554/eLife.00772

M. Khan, Y. Xu, S. Hua, J. Johnson, A. Belevych et al., Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (hiPSC- CMs) cultured on an aligned-nanofiber cardiac patch, PLoS ONE, vol.10, pp.1-19, 2015.

M. P. Prabhakaran, L. G. Mobarakeh, D. Kai, K. Karbalaie, M. H. Nasr-esfahani et al., Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.1, issue.9, pp.447-454, 2014.
DOI : 10.1016/j.jccr.2006.07.001

S. Mukherjee, C. Gualandi, M. L. Focarete, R. Ravichandran, J. R. Venugopal et al., Elastomeric electrospun scaffolds of poly(Llactide-co-trimethylene carbonate) for myocardial tissue engineering, J. Mater. Sci. ? Mater. Med, pp.22-1689, 2011.

R. M. Aghdam, S. Shakhesi, S. Najarian, M. M. Mohammadi, S. H. Ahmadi-tafti et al., Fabrication of a Nanofibrous Scaffold for the In Vitro Culture of Cardiac Progenitor Cells for Myocardial Regeneration, International Journal of Polymeric Materials and Polymeric Biomaterials, vol.12, issue.5, pp.63-229, 2014.
DOI : 10.1002/jbm.a.30833

M. P. Prabhakaran, A. S. Nair, D. Kai, and S. Ramakrishna, Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering, Biopolymers, vol.258, issue.7, pp.529-538, 2012.
DOI : 10.1016/S0012-1606(03)00139-8

S. Hinderer, J. Seifert, M. Votteler, N. Shen, J. Rheinlaender et al., Engineering of a bio-functionalized hybrid off-the-shelf heart valve, Biomaterials, vol.35, issue.7, pp.2130-2139, 2014.
DOI : 10.1016/j.biomaterials.2013.10.080

R. Lakshmanan, U. M. Krishnan, and S. Sethuraman, Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering, Nanomedicine, vol.10, issue.23, pp.3451-3467, 2015.
DOI : 10.1111/j.2042-7158.2011.01363.x

D. N. Rockwood, R. E. Akins, I. C. Parrag, K. A. Woodhouse, and J. F. Rabolt, Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro, Biomaterials, vol.29, issue.36, pp.4783-4791, 2008.
DOI : 10.1016/j.biomaterials.2008.08.034

J. D. Fromstein, P. W. Zandstra, C. Alperin, D. Rockwood, J. F. Rabolt et al., Seeding Bioreactor-Produced Embryonic Stem Cell-Derived Cardiomyocytes on Different Porous, Degradable, Polyurethane Scaffolds Reveals the Effect of Scaffold Architecture on Cell Morphology, Tissue Engineering Part A, vol.14, issue.3, pp.369-378, 2008.
DOI : 10.1089/tea.2006.0410

I. C. Parrag, P. W. Zandstra, and K. A. Woodhouse, Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering, Biotechnology and Bioengineering, vol.26, issue.26, pp.813-822, 2012.
DOI : 10.1016/j.biomaterials.2005.01.052

J. J. Stankus, J. Guan, K. Fujimoto, and W. R. Wagner, Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix, Biomaterials, vol.27, issue.5, pp.735-744, 2006.
DOI : 10.1016/j.biomaterials.2005.06.020

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857656/pdf

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy, Biomaterials, vol.27, pp.3631-3638, 2006.
DOI : 10.1016/j.biomaterials.2006.02.024

N. J. Amoroso, A. D-'amore, Y. Hong, C. P. Rivera, M. S. Sacks et al., Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering, Acta Biomaterialia, vol.8, issue.12, pp.4268-4277, 2012.
DOI : 10.1016/j.actbio.2012.08.002

C. M. Hobson, N. J. Amoroso, R. Amini, E. Ungchusri, Y. Hong et al., Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering, Journal of Biomedical Materials Research Part A, vol.94, issue.9, pp.3101-3106, 2015.
DOI : 10.1016/j.biomaterials.2008.01.032

H. G. Ayaz, A. Perets, H. Ayaz, K. D. Gilroy, M. Govindaraj et al., Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering, Biomaterials, vol.35, issue.30, pp.8540-8552, 2014.
DOI : 10.1016/j.biomaterials.2014.06.029

P. Chen, H. Liao, S. Hsu, R. Chen, and M. Wu, A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering, RSC Adv., vol.49, issue.9, pp.6932-6939, 2015.
DOI : 10.1016/j.polymer.2008.08.022

R. Rai, M. Tallawi, A. Grigore, and A. R. Boccaccini, Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review, Progress in Polymer Science, vol.37, issue.8, pp.1051-1078, 2012.
DOI : 10.1016/j.progpolymsci.2012.02.001

R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, Poly(Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction, Tissue Engineering Part A, vol.17, issue.9-10, pp.1363-1373, 2011.
DOI : 10.1089/ten.tea.2010.0441

M. Kharaziha, M. Nikkhah, S. R. Shin, N. Annabi, N. Masoumi et al., PGS:Gelatin nanofibrous scaffolds with tunable mechanical and??structural properties for engineering cardiac tissues, Biomaterials, vol.34, issue.27, pp.6355-6366, 2013.
DOI : 10.1016/j.biomaterials.2013.04.045

H. Kenar, G. T. Kose, M. Toner, D. L. Kaplan, and V. Hasirci, A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion, Biomaterials, vol.32, issue.23, pp.5320-5329, 2011.
DOI : 10.1016/j.biomaterials.2011.04.025

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492442/pdf

B. Xu, Y. Li, X. Fang, G. A. Thouas, W. D. Cook et al., Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes, Journal of the Mechanical Behavior of Biomedical Materials, vol.28, pp.28-354, 2013.
DOI : 10.1016/j.jmbbm.2013.06.005

M. Tallawi, D. C. Zebrowski, R. Rai, J. A. Roether, D. W. Schubert et al., Poly(Glycerol Sebacate)/Poly(Butylene Succinate-Butylene Dilinoleate) Fibrous Scaffolds for Cardiac Tissue Engineering, Tissue Engineering Part C: Methods, vol.21, issue.6, pp.585-596, 2015.
DOI : 10.1089/ten.tec.2014.0445

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442563/pdf

D. Castellano, M. Blanes, B. Marco, I. Cerrada, A. Ruiz-saurí et al., A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair, Stem Cells and Development, vol.23, issue.13, pp.1479-1490, 2014.
DOI : 10.1089/scd.2013.0578

M. Letizia-focarete, C. Gualandi, M. Scandola, M. Govoni, E. Giordano et al., Electrospun Scaffolds of a Polyhydroxyalkanoate Consisting of ??-Hydroxylpentadecanoate Repeat Units: Fabrication and In Vitro Biocompatibility Studies, Journal of Biomaterials Science, Polymer Edition, vol.69, issue.10, pp.1283-1296, 2010.
DOI : 10.1161/01.RES.69.6.1476

D. Kalfa, A. Bel, A. Chen-tournoux, A. Della-martina, P. Rochereau et al., A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model, Biomaterials, vol.31, issue.14, pp.4056-4063, 2010.
DOI : 10.1016/j.biomaterials.2010.01.135

M. Pontailler, E. Illangakoon, G. R. Williams, C. Marijon, V. Bellamy et al., Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide?, Tissue Engineering Part A, vol.21, issue.9-10, pp.1552-1564, 2015.
DOI : 10.1089/ten.tea.2014.0254

M. Sireesha, V. J. Babu, and S. Ramakrishna, Biocompatible and biodegradable elastomer/fibrinogen composite electrospun scaffolds for cardiac tissue regeneration, RSC Adv., vol.68, issue.125, pp.103308-103314, 2015.
DOI : 10.1146/annurev.biochem.68.1.687

A. Townsend-nicholson and S. N. Jayasinghe, Cell Electrospinning:?? a Unique Biotechnique for Encapsulating Living Organisms for Generating Active Biological Microthreads/Scaffolds, Biomacromolecules, vol.7, issue.12, pp.3364-3369, 2006.
DOI : 10.1021/bm060649h

E. Ehler and S. N. Jayasinghe, Cell electrospinning cardiac patches for tissue engineering the heart, The Analyst, vol.117, issue.18, pp.4449-4452, 2014.
DOI : 10.1242/jcs.01159

J. Yu, A. Lee, W. Lin, C. Lin, Y. Wu et al., Electrospun PLGA Fibers Incorporated with Functionalized Biomolecules for Cardiac Tissue Engineering, Tissue Engineering Part A, vol.20, issue.13-14, pp.1896-1907, 2014.
DOI : 10.1089/ten.tea.2013.0008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086675/pdf

C. Spadaccio, A. Rainer, M. Trombetta, M. Centola, M. Lusini et al., A G-CSF functionalized scaffold for stem cells seeding: a differentiating device for cardiac purposes, Journal of Cellular and Molecular Medicine, vol.10, issue.5, pp.15-1096, 2011.
DOI : 10.1080/14653240802419278

V. Bhaarathy, J. Venugopal, C. Gandhimathi, N. Ponpandian, D. Mangalaraj et al., Biologically improved nanofibrous scaffolds for cardiac tissue engineering, Materials Science and Engineering: C, vol.44, pp.268-277, 2014.
DOI : 10.1016/j.msec.2014.08.018

T. Simón-yarza, A. Rossi, K. Heffels, F. Prósper, J. Groll et al., Polymeric Electrospun Scaffolds: Neuregulin Encapsulation and Biocompatibility Studies in a Model of Myocardial Ischemia, Tissue Engineering Part A, vol.21, issue.9-10, pp.1654-1661, 2015.
DOI : 10.1089/ten.tea.2014.0523

L. Tian, M. P. Prabhakaran, X. Ding, D. Kai, and S. Ramakrishna, Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-??-caprolactone) nanofibers for sustained release in cardiac tissue engineering, Journal of Materials Science, vol.291, issue.4, pp.47-3272, 2012.
DOI : 10.1152/ajpheart.00363.2005

R. Ravichandran, J. R. Venugopal, S. Mukherjee, S. Sundarrajan, and S. Ramakrishna, Elastomeric Core/Shell Nanofibrous Cardiac Patch as a Biomimetic Support for Infarcted Porcine Myocardium, Tissue Engineering Part A, vol.21, issue.7-8, pp.1288-1298, 2015.
DOI : 10.1089/ten.tea.2014.0265

H. Chung, J. Kim, H. Kim, H. Kyung, P. Katila et al., Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction, Journal of Controlled Release, vol.205, pp.218-230, 2015.
DOI : 10.1016/j.jconrel.2015.02.013

Y. Z. Zhang and C. T. Lim, The development of biocomposite nanofibers for tissue scaffolding applications, JOM, vol.1, issue.6, pp.45-48, 2008.
DOI : 10.1007/s11837-008-0070-7

P. Kim and J. Cho, Myocardial tissue engineering using electrospun nanofiber composites, Myocardial tissue engineering using electrospun nanofiber composites, pp.26-36, 2016.
DOI : 10.5483/BMBRep.2016.49.1.165

URL : http://ocean.kisti.re.kr/downfile/volume/ksbmb/E1MBB7/2016/v49n1/E1MBB7_2016_v49n1_26.pdf

B. Leobon, I. Garcin, P. Menasche, J. Vilquin, E. Audinat et al., Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host, Proc. Natl. Acad. Sci. USA, pp.7808-7811, 2003.
DOI : 10.1056/NEJMoa012081

URL : http://www.pnas.org/content/100/13/7808.full.pdf

S. R. Shin, S. M. Jung, M. Zalabany, K. Kim, P. Zorlutuna et al., Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators, ACS Nano, vol.7, issue.3, pp.2369-2380, 2013.
DOI : 10.1021/nn305559j

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609875/pdf

S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, The biocompatibility of carbon nanotubes, Carbon, vol.44, issue.6, pp.44-1034, 2006.
DOI : 10.1016/j.carbon.2005.10.011

S. Crowder, Y. Liang, R. Rath, and A. Park, Poly(??-caprolactone)???carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells, Nanomedicine, vol.33, issue.11, pp.1-20, 2013.
DOI : 10.1161/01.RES.87.2.118

M. Kharaziha, S. R. Shin, M. Nikkhah, S. N. Topkaya, N. Masoumi et al., Tough and flexible CNT???polymeric hybrid scaffolds for engineering cardiac constructs, Biomaterials, vol.35, issue.26, pp.7346-7354, 2014.
DOI : 10.1016/j.biomaterials.2014.05.014

S. Fleischer, M. Shevach, R. Feiner, and T. Dvir, Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues, Nanoscale, vol.13, issue.9, pp.9410-9414, 2014.
DOI : 10.1089/ten.2006.0364

R. Ravichandran, R. Sridhar, J. R. Venugopal, S. Sundarrajan, S. Mukherjee et al., Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration, Macromolecular Bioscience, vol.74, issue.4, pp.14-515, 2014.
DOI : 10.1016/S0003-4975(02)03857-2

S. Sridhar, J. R. Venugopal, R. Sridhar, and S. Ramakrishna, Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers, Colloids and Surfaces B: Biointerfaces, vol.134, pp.346-354, 2015.
DOI : 10.1016/j.colsurfb.2015.07.019

D. Jung, I. Minami, S. Patel, J. Lee, B. Jiang et al., Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells, Journal of Nanobiotechnology, vol.10, issue.1, 2012.
DOI : 10.1016/j.biomaterials.2003.10.055

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee et al., Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating, Biomaterials, vol.34, issue.4, pp.1063-1072, 2013.
DOI : 10.1016/j.biomaterials.2012.10.065

A. Borriello, V. Guarino, L. Schiavo, M. A. Alvarez-perez, and L. Ambrosio, Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle, Journal of Materials Science: Materials in Medicine, vol.45, issue.2, pp.22-1053, 2011.
DOI : 10.1007/s11517-007-0163-4

D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering, Journal of Biomedical Materials Research Part A, vol.67, issue.3, pp.99-376, 2011.
DOI : 10.1002/jbm.a.10083

M. Li, Y. Guo, Y. Wei, A. G. Macdiarmid, and P. I. Lelkes, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials, vol.27, issue.13, pp.2705-2715, 2006.
DOI : 10.1016/j.biomaterials.2005.11.037

E. G. Fernandes, V. Zucolotto, and A. A. De-queiroz, Electrospinning of Hyperbranched Poly-L-Lysine/Polyaniline Nanofibers for Application in Cardiac Tissue Engineering, Journal of Macromolecular Science, Part A, vol.266, issue.12, pp.47-1203, 2010.
DOI : 10.1111/j.1525-1594.2007.00335.x

C. Zhang and S. Yu, Nanoparticles meet electrospinning: recent advances and future prospects, Chemical Society Reviews, vol.25, issue.196, pp.43-4423, 2014.
DOI : 10.1002/adma.201203045

R. Zhou and H. Gao, Cytotoxicity of graphene: recent advances and future perspective, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.80, issue.5, pp.452-474, 2014.
DOI : 10.1021/ja01539a017

L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, Toxicology and clinical potential of nanoparticles, Nano Today, vol.6, issue.6, pp.585-607, 2011.
DOI : 10.1016/j.nantod.2011.10.001

A. Elsaesser and C. V. Howard, Toxicology of nanoparticles, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.129-137, 2012.
DOI : 10.1016/j.addr.2011.09.001

H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Advanced Drug Delivery Reviews, vol.61, issue.12, pp.61-1033, 2009.
DOI : 10.1016/j.addr.2009.07.007

M. Shevach, B. M. Maoz, R. Feiner, A. Shapira, and T. Dvir, Nanoengineering gold particle composite fibers for cardiac tissue engineering, Journal of Materials Chemistry B, vol.84, issue.21, p.5210, 2013.
DOI : 10.1021/ac202363t

L. Jin, T. Wang, Z. Feng, M. Zhu, M. K. Leach et al., Fabrication and characterization of a novel fluffy polypyrrole fibrous scaffold designed for 3D cell culture, Journal of Materials Chemistry, vol.49, issue.35, p.18321, 2012.
DOI : 10.1002/hep.22674

Y. M. Shin, H. Park, and H. Shin, Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization, Macromolecular Research, vol.7, issue.8, pp.835-842, 2011.
DOI : 10.1016/j.actbio.2010.09.010

S. Fleischer, J. Miller, H. Hurowitz, A. Shapira, and T. Dvir, Effect of fiber diameter on the assembly of functional 3D cardiac patches, Nanotechnology, vol.26, issue.29, p.291002, 2015.
DOI : 10.1088/0957-4484/26/29/291002

M. R. Badrossamay, H. A. Mcilwee, J. A. Goss, and K. K. Parker, Nanofiber Assembly by Rotary Jet-Spinning, Nano Letters, vol.10, issue.6, pp.2257-2261, 2010.
DOI : 10.1021/nl101355x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704151/pdf

F. Chen, C. N. Lee, and S. H. Teoh, Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning, Materials Science and Engineering: C, vol.27, issue.2, pp.325-332, 2007.
DOI : 10.1016/j.msec.2006.05.004

Y. Zhu, C. Gao, X. Liu, and J. Shen, Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells, Biomacromolecules, vol.3, issue.6, pp.1312-1319, 2002.
DOI : 10.1021/bm020074y

D. Kontziampasis, K. Beltsios, E. Tegou, P. Argitis, and E. Gogolides, Optimized surface silylation of chemically amplified epoxidized photoresists for micromachining applications, Journal of Applied Polymer Science, vol.41, issue.42, pp.2189-2195, 2010.
DOI : 10.1002/app.31644

L. D. Sánchez, N. Brack, A. Postma, P. J. Pigram, and L. Meagher, Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods, Biomaterials, vol.106, pp.24-45, 2016.
DOI : 10.1016/j.biomaterials.2016.08.011

A. Bourkoula, V. Constantoudis, D. Kontziampasis, P. S. Petrou, S. E. Kakabakos et al., Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts, Journal of Physics D: Applied Physics, vol.49, issue.30, p.49, 2016.
DOI : 10.1088/0022-3727/49/30/304002

D. Kontziampasis, T. Trantidou, A. Regoutz, E. J. Humphrey, D. Carta et al., Prodromakis, Effects of Ar and O2 plasma etching on parylene C: topography versus surface chemistry and the impact on cell viability, Plasma Process. Polym, pp.13-324, 2016.

E. Gogolides, V. Constantoudis, G. Kokkoris, D. Kontziampasis, K. Tsougeni et al., Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials, Journal of Physics D: Applied Physics, vol.44, issue.17, pp.44-174021, 2011.
DOI : 10.1088/0022-3727/44/17/174021

URL : https://hal.archives-ouvertes.fr/hal-00613279

D. Kontziampasis and M. Kitsara, Polymer Surface Modification: Plasma for Applications, Encycl. Plasma Technol, vol.8765, 2016.
DOI : 10.1016/j.actbio.2012.12.031

M. Kitsara, P. Petrou, D. Kontziampasis, K. Misiakos, E. Makarona et al., Biomolecular layer thickness evaluation using White Light Reflectance Spectroscopy, Microelectronic Engineering, vol.87, issue.5-8, pp.802-805, 2010.
DOI : 10.1016/j.mee.2009.11.082

D. Kontziampasis, V. Constantoudis, and E. Gogolides, Plasma Directed Organization of Nanodots on Polymers: Effects of Polymer Type and Etching Time on Morphology and Order, Plasma Processes and Polymers, vol.73, issue.9, pp.866-872, 2012.
DOI : 10.1103/PhysRevE.73.021605

N. Vourdas, D. Kontziampasis, G. Kokkoris, V. Constantoudis, A. Goodyear et al., Plasma directed assembly and organization: bottom-up nanopatterning using top-down technology, Nanotechnology, vol.21, issue.8, 2010.
DOI : 10.1088/0957-4484/21/8/085302