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We theoretically investigate acoustic metasurfaces consisting of either a single pillar or a line of 

identical pillars on a thin plate, and we report on the dependence on the geometrical parameters of 

both the monopolar compressional and dipolar bending modes. We show that for specific dimensions 

of the resonators, a bending and a compressional modes may be simultaneously excited. We study 

their interaction with an anti-symmetric Lamb wave, whether or not they occur at the same frequency, 

with particular consideration for the amplitude and phase of waves emitted by the pillars at resonance. 

Especially, the analysis of both the amplitude and the phase of the wave at the common resonant 

frequency downstream a line of pillars, demonstrates that the reemitted waves allow for the 

transmission with phase shift of . 

 

I. Introduction 

Locally resonant sonic materials are artificially structured composites designed to exhibit negative 

effective mass density and/or elastic constants at some frequencies.
1
 They are based onto the insertion 

into a background (3D) or on a free surface (2D) of local resonators having lateral sizes much smaller 

than the wavelength of the elastic wave so that homogenization theories apply. Unusual responses are 

then observed: the material expands upon compression when the compressibility gets negative and 

moves to the left when pushed toward the right if the mass density is negative. Although the 

periodicity is not a requirement, these resonators are generally regularly arranged and therefore Bragg 

scattering may occur when the acoustic wavelength is of the order of the spacing between the 

inclusions. Beside this expected property, flat bands related to the normal modes of the resonators 

occur in the band structure at much lower frequencies as compared to the Bragg band gap. This 

property was first recognized in the seminal work of Liu et al.
2
 and further exploited by Li and Chan

3
 

who demonstrated the double negativity in a phononic crystal made of rubber spheres arranged in a fcc 
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lattice in water. In both systems, the negative compressibility resulted from a monopolar resonance of 

the rubber spheres, whereas a dipolar resonance yielded to the negative mass density. Very recently, 

negative density in a liquid foam
4
 and negative acoustic refractive index in Mie resonators made of 

random suspension of soft silicone rubber micro-beads
5,6

 have been demonstrated. Both effective mass 

density and effective bulk modulus become negative when the resonators are in simultaneous dipolar 

and monopolar motions, out of phase with respect to the waves propagating in the background. If 

moreover the geometrical parameters of the crystal (diameter of the spheres, filling ratio…) are chosen 

in such a way that the mass density and the compressibility are both negative in the same frequency 

band, the elastic waves become propagative and the transmission coefficient through the entire 

structure goes to unity. However all these unique properties are achievable only because the speed of 

sound in the soft rubber or in the bubbly liquid is of a few tens of m.s
-1

, lower by orders of magnitude 

than the speed of sound in the epoxy matrix
2,7

 or in the water background.
3
 Actually, the smaller is the 

contrast in sound speeds, the smaller is the wavelength in the embedding matrix at resonance and the 

phononic crystal can no longer be viewed as an effective medium. Very few materials exhibit such low 

elastic parameters and seeking for resonators made of a material commonly used in nano or micro-

fabrication, whose lateral dimensions are much smaller than the wavelength, and that allow controlling 

the propagation of elastic waves in solids, is therefore of primary importance for designing new 

acoustical metamaterials.  

Actually, these properties can be found in some phononic crystals that may exhibit local resonances at 

frequencies below the Bragg band gap, giving rise to one or several forbidden bands in a frequency 

range where the wavelength is much larger than the period. This has been demonstrated both 

numerically and experimentally, with 1D stripes periodically engraved on the surface of a lithium 

niobate substrate
8
 and more recently with 2D phononic crystals made of a periodical array of 

cylindrical pillars deposited on a thin and homogeneous slab.
9-18

 This last structure deserves special 

attention. Indeed, a pillar exhibits both compressional (monopolar) and bending (dipolar) resonances 

that may lead to negative dynamic effective modulus and mass density respectively.
3
 Moreover, the 

resonant frequencies can be easily tuned through a proper choice of the height and/or the diameter of 

the pillar. Finally, since the compressional resonant frequency (monopolar) and the bending resonant 

frequency (dipolar) are mainly sensitive to the height and to the diameter respectively, they can be 

tuned almost independently from each other. This allows, in turn, easy probing of the conditions for 

either the effective mass density negativity or the effective modulus negativity to appear. 

Given their potential to serve as local resonators in an all-solid elastic metamaterial,
19-21

 we have 

investigated in this work their dynamic properties. We have successively considered a single pillar and 

a line of identical pillars on a thin plate. In both cases, the resonators as well as the plate were made of 

silicon. We first have numerically investigated the normal modes and their dependence on the 

geometry and dimensions. We then have studied numerically their interaction with an antisymmetric 

Lamb wave propagating in the plate when the frequency is tuned to a resonant frequency of the pillar. 
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We more specifically point to how both the amplitude and the phase of the wave are affected by the 

scattering on the pillar, or on the line of pillars, when the frequency is tuned on either a compressional 

or a bending eigenmode. We show in particular that for either of both modes, the pillars behave as 

secondary sources that reemit in the plate a wave 180° out-of-phase with the incident wave. For 

specific dimensions of the pillars, both compressional and bending resonances arise at the same 

frequency giving rise to peculiar behavior. We describe and analyze these behaviors with special 

attention paid to the phase of the reemitted waves. We investigate the conditions in which a more or 

less pronounced minimum of the transmission through the line of pillars, results from the 

superposition of both incident and reemitted waves.  

 

II. Normal modes of a single pillar and of a line of pillars on a slab 

The goal of this section is to provide in a comprehensive way a numerical study of the vibrationnal 

states of a single pillar, or a line of identical pillars, erected on a membrane of thickness t. We have 

considered the effect of the usual geometrical parameters, namely the height h, the diameter d of the 

pillar, and the thickness t of the membrane. It will be shown below that, in the quest for resonators 

with lateral dimensions much smaller than the wavelength, dealing with pillars featuring an inverted 

conical shape may be advantageous. We therefore have also considered this case, the half top angle 

being denoted . All calculations have been performed with the help of a finite element method 

(Comsol Multiphysics
®
). It should be noted here that this structure differs from a beam clamped in a 

wall since the displacements field on the foot is not null (see below). As a consequence an analytical 

derivation of the vibrationnal states of the pillar on the plate is very challenging. In the numerical 

model depicted Fig. 1, we have considered a pillar in the middle of a circular membrane surrounded by 

a Perfect Matched Layer (PML) to avoid any reflection from the boundary of the plate. The method 

we used to compute the resonances is: an oscillating force is applied normally to the surface of the 

plate, along a line [AB] parallel to the crystallographic direction <100> of silicon (x-axis in the 

following) and the resulting displacements are monitored against the frequency on five different points 

on top of the pillar. We have only investigated the propagation of the antisymmetric Lamb mode A0 

which features a large out-of-plane component uz. This may constitute an advantage in the view of the 

forthcoming experimental verification of the main results described in this article. Moreover, we have 

only considered uz since no conversion is observed after the interaction of the incident wave with the 

structure,
22,23

 i.e. the ratio 
x

z

u
u is conserved.  
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Figure 1. Model used for FEM calculations. A vertical harmonic force is applied along 

[AB]. PML is set in the ring surrounding the plate.  

 

We first have computed uz against the frequency for an isolated cylindrical pillar (=0°) with the 

parameters h=245 µm, d=50 µm, and t=145 µm. Each resonance manifests itself by a more or less 

sharp peak which can be unambiguously ascribed to an eigenmode with the help of the associated 

displacements (Fig. 2a). Actually, the normal displacements associated to a compressional mode are 

uniform on the top of the pillar and their amplitude does not depend on the point 1 to 5 (noted 

hereafter as P1-5) where the measurement is made. On the other hand, a bending mode along y-axis is 

characterized by out-of-phase displacements in P4 and P5 and no displacement along the line joining P1 

and P3 which is a node (Fig. 2b). Therefore, any non-zero displacement measured in P1, P2 or P3 can be 

unambiguously ascribed to a compressional mode. The sum and the difference of the normal 

displacements measured in points 4 and 5 necessarily relate to the compressional and to the bending 

modes respectively. We show in Fig. 2a both the quantities    54 zz uu   and    54 zz uu   against 

frequency as black line and red line respectively from which two bending modes (referred hereafter as 

B1 and B2 respectively) at 1.1 and 4.7 MHz and one compressional mode (referred as C1) at 7 MHz 

can be identified within the explored frequency range [0-10 MHz]. This is further confirmed by the 

displacement fields computed at a moment when the amplitudes are maximum, displayed in Fig. 2b. 

All these three resonant frequencies remain relatively unaffected when considering a line of identical 

pillars separated by 200 µm from each other. Actually, B1 and B2 still occur on the same frequencies 

as previously, although with altered relative amplitudes (green line in Fig. 2a), whereas C1 now 

appears at a slightly higher frequency (blue line in Fig. 2a) because of a weak coupling through the 

plate. For each of these modes, the peak width at half maximum is the same for a single pillar and for 

a line of pillars. 
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Figure 2. (a) Resonance frequencies of a single pillar (black and red lines) or a line of 

pillars (green and blue lines). The dimensions are (in µm) h=245, d=50, t=145, =0°. (b) 

Cartography of the displacement fields at resonance. The red (blue) color corresponds to 

a positive (negative) displacement with a zero represented with the white color. The 

deformations have been magnified for better observation. 

 

Being due to mechanical resonances, the frequencies and amplitudes of these modes are, though to 

varying degrees, dependent on the geometrical parameters of the pillar (Figs. 3a-d). We have 

calculated the resonance frequencies against the diameter, for different values of the height (Fig. 3a) 

and the thickness of the supporting plate (Fig. 3b). We have also considered the influences of  for a 

cone-shaped pillar (Fig. 3c) and of the distance between pillars when they are arranged in a line 

(Fig. 3d). One method to obtain the resonance frequencies consists in calculating the rate of elastic 

energy localized in the pillar through the quantity   

2 2 2

2 2 2

x y z

pillar

x y z

unitcell

u u u dV

u u u dV


 


 




 

The curves in Fig. 3 were derived from eigenfrequency simulations. We considered a single pillar 

erected in the center of a 1000µm×1000µm plate. Periodic conditions were applied to the four sides of 

the plate, so that the plate is large enough to reproduce the case of an isolated pillar. The results are in 

in excellent agreement with the resonant frequencies derived from the frequency domain simulations 

shown in Fig.2. 

Several striking features come out from this study. First, one should notice that regardless the mode, 

compression or bending, the eigen frequency decreases for increasing height (Fig. 3a). Then, one can 

tune almost independently the bending and the compression resonances through a proper choice of the 

geometrical parameters.  Actually, both the bending modes strongly depend on the diameter d but are 

less sensitive to the height of the pillar or to the thickness of the plate, in contrast to the compressional 

mode C1 that can be slightly tuned through the value of h but keeps almost the same frequency upon a 

change in d or t (Fig. 3a,b). It should be noted that this eigenmode calculation allows also for 

outputing a torsional mode that could potentially be excited in the frequency range we have explored. 

However, as a rotating vibration around the pillar axis such a mode is characterized by in-plane 

components ux and uy, and the absence of out-of-plane component uz. Exciting this mode requires 

therefore exerting a torque parrallel to the plate, which is difficult to achieve within a non contact 

experimental scheme. Moreover, the displacements associated with this eigenmode being 

centrosymmetrical, the coupling with a Lamb wave, either symmetric or antisymmetric, is forbidden. 
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Figure 3. Variations of the three eigenmodes of a pillar on a plate (simulations) against 

the diameter d and (a) height h (t=145µm, , (b) thickness of the plate t (h=246µm, 

, (c) half top angle   for conical shaped pillar (h=256µm, tm, and (d) lattice 

constant a when the pillars are regularly spaced in a line (h=256µm, tm, . 
 

We have not considered it in this work.We have also investigated how the conicity may influence the 

eigenmodes. The results for the half top angles =2° and =6° are displayed in Fig. 3c.  

The comparison with the ideal case of a cylindrical pillar (=0°) demonstrates how sensitive to this 

parameter the eigen frequencies are. For the three modes, the conicity makes modes shifting to lower 

frequencies which, in the context of acoustical metamaterials where the notion of homogenization is 

essential, is a significant advantage over the perfect cylinder shape.  

However, the most salient feature in Fig. 3a-d is the crossing of modes C1 and B2 occurring when 

µm100d . For this particular geometry, both the monopolar mode C1 and the dipolar mode B1 

coexist, giving rise to a complex motion of the resonator at ~6.5 MHz. Much of the importance of 

investigating both the amplitude and the phase of the displacements around this working point 

(labelled Wp in Fig. 3a-d) relates to the double-negative behavior with respect to an elastic wave 

propagating therein, this class of heterostructures could potentially exhibit.  

 

III. Relative phase between the motions of the pillar and the slab 

A. Single pillar with separated modes 

First we have considered a single pillar with geometric parameters d =50μm, t =145μm, h =245μm, 

and =0°, for which C1 and B2 arise at distinct frequencies (
12 CB   ). The variations in phase on both 

sides of MHz6.4
2B  and MHz7

1C  , computed at P4 (green curve) and P5 (blue curve), are 

displayed in Fig. 4a, and Fig. 4b respectively. The reference is chosen on the central axis, at the foot of 
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the pillar. Below 
2B , a phase difference of 

2
   (respectively

2
 ) is observed for P4 

(respectively P5), corresponding for both points to a motion in quadrature between the top and the 

bottom of the pillar and therefore to an out-of-phase motion between P4 and P5.   

 

Figure 4. Phases of the vibrations on top of the pillar measured at P4 (green) and P5 

(blue). The reference is the phase on the central axis, at the foot of the pillar. (a) Bending 

mode B2 and (b) compressional mode C1. 

 

The same phase difference of  still exists above 
2B  but with a phase reversal (Fig. 4a). As regards 

the compressional resonance, all the points on top vibrate in phase with the incident wave for 

frequencies either lower or larger than
1Cv . For both eigenmodes, a phase shift about  occurs when 

passing through the resonance. Since the wave in the plate can couple to the pillar and excite it on 

vibration at the frequencies of the eigenmodes, it should be expected that the pillar can in turn trigger a 

reemitted wave in the plate when vibrating at resonance. One may also expect that the amplitude of the 

reemitted wave is large enough to significantly interact with the incident wave in the plate. This can be 

checked by computing the amplitude of the displacement field around the pillar at resonance. This can 

be easily done by subtracting the incident wave with an amplitude set to unity, from the total wave. 

The result is shown in Fig. 5a and Fig. 5b when the frequency of the incident wave is tuned to 

MHz7
1C   and MHz6.4

2B   respectively.  
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Figure 5. Upper panels: amplitude distribution of the Lamb waves emitted by the pillar at 

resonance (a) C1 and (b) B2 modes. Lower panels: (c) normalized displacement 

amplitudes of emitted wave against the distance to the pillar; (d) reported quantity as a 

result of multiplying the normalized amplitude by square root of the distance to the pillar. 

The red line and the black line are for C1 and B2 respectively. 

 

In both cases, the amplitude distribution features the symmetry of the mode, monopolar for C1 and 

dipolar for B2, thereby supporting that the pillar acts as a point source reemitting antisymmetric Lamb 

waves upon excitation on either of its eigenmodes. Note that a similar behavior was found at 

MHz8.0
1B   (not shown here). The amplitude of the emitted waves against the distance to the pillar 

is displayed in Fig. 5c: the amplitude decreases as it goes away from the pillar. For either mode, 

further multiplying the normalized amplitude of the emitted waves by the square root of the distance to 

the pillar leads to a quantity close to a constant, matching the energy law of a point source and 

unambiguously establishing that the pillar behaves as an elastic source at resonance (Fig. 5d). 

As a consequence of the preceding analysis, the displacement field in the plate at resonance can be 

regarded as the sum of the incident and emitted waves and therefore, subtracting the former from the 
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total wave allows to thoroughly analyze the complex amplitude of the latter. We have computed that 

way the real and imaginary parts of the waves reemitted by a single pillar (d =50μm, t =145μm, h 

=245μm, =0°) when the frequency is in the vicinity of MHz6.4
2B   or MHz7

1C  . The 

calculation is made on a point on the normal to the wave front passing through the center of the pillar 

and being distant 500 µm from it. The amplitude is normalized to the one of the incident wave. The 

results displayed as a Nyquist plot, are shown in Fig. 6. We have also plotted in this figure the 

complex value of the emitted wave for some specific frequencies in the explored ranges. 

 

 

Figure 6. Parametric plot of the Lamb waves emitted by a single pillar for frequencies 

around the bending mode B2 (black curve) and the compressional mode C1 (red curve). 

The numbers are for specific values of the frequency (in MHz). 

 

For both resonances, the complex amplitude against frequency takes the form of an ellipse that passes 

through the origin (no emitted waves at the corresponding frequencies) and that crosses the real line at 

MHz605.4
2B   and MHz3.7

1C  . At both these frequencies, the real part of emitted waves is 

negative and hence the phase with respect to the incident wave is  for both.  However, the amplitudes 

are much smaller than the incident wave (0.21 and 0.1 for B2 and C1 respectively) and the motion at 

the measuring point is essentially that of the incident wave. 

 

B. Single pillar with superposed modes 

When the dimensions of the pillar are such that the resonances C1 and B2 arise at the same frequency, 

it can be anticipated that the phase relationship between P4 and P5 are modified due to the combination 

of the bending and compression motions. This is actually what is shown by the numerical simulations 

in Fig. 7a performed considering a resonator with dimensions d=100µm, h=246µm, and t=145µm. The 

phase difference between the vibrations in P4 and P5 keeps a constant value for frequencies above the 

resonance occurring at MHz9.6
21 B/C   for this geometry (see Fig. 3a,b (red diamonds), and 3c 

(black triangles)). Let us note that P4 and P5 cannot vibrate in phase because of the bending motion. 

More interesting are the amplitude and the phase of the emitted waves when the frequency is tuned to 
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21 B/C . Actually, as previously, the single pillar acts then as an elastic source that generates 

antisymmetric Lamb wave  shifted with respect to the exciting wave when the frequency is tuned to 

7.55MHz, a value close to the resonance frequency but not equal to it. A relative amplitude of 0.22 is 

then observed, essentially the same as the amplitude generated by B2, but twice as large as that 

generated by C1 when the two resonances arise separately (Fig. 7b).  

 

Figure 7. (a) Phases of the vibrations on top of the single pillar measured at P4 (green) 

and P5 (blue) when B2 and C1 arise at the same frequency. (b) Parametric plot of the 

Lamb wave emitted by the pillar around the resonance frequency.  

 

Such a behavior should clearly have an impact on the transmission through a line of identical pillars, 

which is expected to differ whether B2 and C1 occur at the same frequency or not. We handle this issue 

in the next section. 

 

C. Transmission through a line of pillars 

Unlike the single pillar that behaves as a point source reemitting circular waves at resonance (see 

Fig. 5), it can be anticipated that, thanks to Huygens-Fresnel principle, plane waves ensue from the 

excitation of identical pillars regularly spaced along an infinite line. According to this principle,
24

 the 

infinite adding of single emitted wave along x direction with repeat distance a will produce a result 

similar to one real line of pillars. In Fig. 8a are displayed the phase and the amplitude distribution of 

the wave emitted by a single pillar at C1 frequency, corresponding to Fig. 5a. In Fig. 8b, five identical 

emitting sources are added with an inter-distance a=200μm which makes the total emitted wavefront 

more flat in the middle. The central five dots stand for the positions of pillars. The same operation is 

taken for adding nine single emitting sources with results in Fig. 8c from which we can see the total 

emitted wavefront in y direction is close to a plane wave. Fig. 8d presents the emitted wave by a real 

one line of nine pillars with inter-distance being a=200μm. The sizes of squares for all sub-graphs in 

Fig. 8 are the same, as 6000 μm×6000 μm. The procedure in this figure supports the Huygens-Fresnel 

principle: one infinite line of pillars at resonant frequencies will emit plane waves. 
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Figure 8. Phase (upper panel) and amplitude (lower panel) of (a) emitted wave at the 

frequency C1; (b) adding five single emitting sources at C1 frequency, with the inter 

distance as lattice parameter a=200μm; (c) similar as in (b) but adding nine single 

emitting sources at C1 frequency; (d) emitted wave by one real line of nine pillars with 

inter distance as a=200μm  

 

The choice of the periodicity a=200μm results from a compromise. On the one hand, the periodicity 

should be larger than ~150μm to avoid possible coupling between the compressional motions of 

neighboring pillars. On the other hand, although the Huygens-Fresnel principle does not impose any 

upper limit, the periodicity should not be larger than ~300μm in order to reduce the whole size of the 

structure and avoid very heavy numerical calculations. We also have checked that a pillar isolated on 

the plate or being an element of a line, behaves the same way at resonance. We made the calculation 

for pillars with dimensions as above (d =50μm, t =145μm, h =245μm) and for the distance between 

two adjacent pillars equal to a=200μm: whatever the normal mode one considers, the resonance 

frequencies ( MHz8.0
1B  , MHz6.4

2B  , MHz2.7
1C  ) and the phase on top of the pillar remain 

almost unchanged for the pillars in the line (Fig. 2a). Moreover, for the three resonances, the 

imaginary part of the reemitted waves has a value of zero (Fig. 9) and therefore they are out-of-phase 

with respect to the incident waves. As regards their relative amplitude, it is about 0.6 for B2 and almost 

equal to 1 for both B1 and C1 and consequently the spectrum of the transmission through the line of 

pillar has a quasi-null value at both these latter frequencies, as shown in Fig. 10. Naturally, the 

amplitude of the reemitted plane waves depends on the geometry and minima at other frequencies may 

be obtained through a proper choice of the dimensions.  
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Figure 9. Nyquist plot of the Lamb waves emitted 

by a pillar in a line for frequencies around the main 

three resonances. 

 

 

 
 

Figure 10. Transmission through a line of pillars 

for which C1 (red) and B2 (black) arise at 

different frequencies  

 

The question which obviously arises now is how these results are modified when both C1 and B2 occur 

at the same frequency? In fact, our numerical simulations show that, other geometrical parameters 

being equal, the diameter of the pillars inserted in a line must be slightly larger than that of the single 

pillar: in that case the common resonance frequency is MHz5.7
21 B/C  when the diameter is 

d=112μm instead of MHz7
21 B/C  and d=100μm for the isolated pillar. Concerning the phase at 

points P4 and P5 on top of the resonators, the same behavior as the one displayed in Fig. 7a for a single 

pillar is observed. Actually, the most prominent difference lays in the amplitude of the reemitted 

waves at resonance. We show in Fig. 11 the Nyquist plot of the reemitted waves for frequencies on 

both sides of 
1B (red curve) and 

21 B/C  (blue curve). As previously, the real part is negative and the 

imaginary part gets null at resonance for both, meaning that the waves are emitted with a  shift with 

respect to the incident wave. Note also the quasi-symmetry with respect to the real part axis of the 

plots in Fig. 11 and the 
4

3 phase shift at the frequencies on the minor axis of ellipse, namely 7.05 

and 8.05 MHz. However, whereas no change is observed for the amplitude of B1 (0.79 whether or not 

the pillar is isolated), the amplitude of C1/B2 gets significantly higher than both the amplitudes 

observed at resonance when the two modes arise at different frequencies: the amplitude at 
21 B/C  is 

now 1.57, to be compared with 1 at
1C and 0.59 at 

2B  for a line of pillars featuring distinct 

frequencies for modes B2 and C1. 
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Figure 11. Nyquist plot of the Lamb waves emitted by a pillar when C1 and B2 arise at 

the same frequency. 

 

The most interesting point here is that the amplitude of the reemitted wave at 
21 B/C  gets larger than 

that of the incident wave. As a consequence it can be expected that, unlike the former case, the line of 

pillars is now transparent to the incident elastic waves, at least partially. This can be further checked 

by computing the transmission coefficient against the frequency for an infinite line. The result shown 

in Fig. 12a (blue line) together with the displacements evaluated on top of the pillars (black and red 

lines) confirm that partial transmission (0.57) at MHz5.7
21 B/C  actually occurs. From Fig. 12b, the 

phase of transmitted wave at 
21 B/C is out of phase (π shift) with respect to the incident wave, 

supporting that this partial transmitted wave is induced by emitted wave. 

  

Figure 12. (a) Amplitudes normalized to the incident wave of the compressional mode C1 

(red curve) and bending mode B2 (black curve) with red and black arrows corresponding 

to the left y axis. Transmission of the antisymmetric Lamb mode through the line of 

pillars is marked as a blue curve, with a blue arrow corresponding to the right y axis. (b) 

Normalized phase of transmitted wave with respect to incident wave. 
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IV. Conclusion 

In this paper, we have thoroughly analyzed the Lamb waves scattered by a pillar or a line of pillars at 

resonance, paying particular attention to the phase. We have shown that the wave in the far field can 

be considered as the sum of the incident wave and a wave emitted by the resonator or by the line of 

resonators. The amplitude of this wave decreases as D
-1/2

 where D is the distance from the pillar. Far 

from the resonance, no phase shift is observed since the pillars simply follow the up and down motion 

of the surface and the transmission is equal to 1. At resonance or close to it, the transmission spectrum 

is different depending on whether the bending and the compression occur at the same frequency or not. 

When these two modes occur at different frequencies, the total transmitted amplitude is almost null for 

both. This must be ascribed to the interferences between incident and  shifted emitted waves, both 

having comparable amplitudes. In contrast, the amplitude of the emitted wave gets significantly 

enhanced when the geometry of the structure is such that both bending and compression mode occur at 

the same frequency. In that case, even though there is still a  phase shift between incident and emitted 

waves, transmission of a substantial part of the elastic energy becomes possible. For both the first 

order compressional and the second order bending modes, the wavelength in the plate is much larger 

than the lateral dimensions of the resonators. On the other hand, they have a marked monopolar and 

dipolar character respectively and therefore the analysis of this pillar-type metasurface in terms of 

effective compressibility (related to a monopolar mode) and/or effective mass density (related to a 

dipolar mode) is relevant.  
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