
HAL Id: hal-01628950
https://hal.sorbonne-universite.fr/hal-01628950v1

Submitted on 3 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variability Management and Assessment for User
Interface Design

Jabier F Martinez, Jean-Sébastien Sottet, Alfonso García Frey, Tewfik Ziadi,
Tegawendé F. Bissyandé, Jean Vanderdonckt, Jacques Klein, Yves Le Traon

To cite this version:
Jabier F Martinez, Jean-Sébastien Sottet, Alfonso García Frey, Tewfik Ziadi, Tegawendé F. Bissyandé,
et al.. Variability Management and Assessment for User Interface Design. Human Centered Software
Product Lines, 89 (9), Springer, pp.81-106, 2017, Human–Computer Interaction Series, �10.1007/978-
3-319-60947-8_3�. �hal-01628950�

https://hal.sorbonne-universite.fr/hal-01628950v1
https://hal.archives-ouvertes.fr

Chapter 3
Variability Management and Assessment
for User Interface Design

Jabier Martinez, Jean-Sébastien Sottet, Alfonso García Frey, Tewfik Ziadi,
Tegawendé Bissyandé, Jean Vanderdonckt, Jacques Klein, and Yves Le Traon

Abstract User Interface (UI) design remains an open, wicked, complex and multi-
faceted problem, owing to the ever increasing variability of design options resulting
from multiple contexts of use, i.e., various end-users, heterogeneous devices and
computing platforms, as well as their varying environments. Designing multiple
UIs for multiple contexts of use inevitably requires an ever growing amount of
time and resources that not all organizations are able to afford. Moreover, UI
design choices stand on end-users’ needs elicitation, which are recognized to be
difficult to evaluate precisely upfront and which require iterative design cycles.
All this complex variability should be managed efficiently to maintain time and
resources to an acceptable level. To address these challenges, this article proposes
a variability management approach integrated into a UI rapid prototyping process,
which involves the combination of Model-Driven Engineering, Software Product
Lines and Interactive Genetic Algorithms.

J. Martinez (�) • T. Ziadi
Sorbonne University, UPMC Univ Paris 06, CNRS, Paris, France
e-mail: jabier.martinez@lip6.fr; tewfik.ziadi@lip6.fr

J.-S. Sottet
Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux,
Esch/Alzette, Luxembourg
e-mail: jean-sebastien.sottet@list.lu

A.G. Frey
Yotako S.A., 9 Avenue des Hauts-Fourneaux, Esch/Alzette, Luxembourg
e-mail: alfonso@yotako.io

T. Bissyandé • J. Klein • Y. Le Traon
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
Luxembourg City, Luxembourg
e-mail: tegawende.bissyande@uni.lu; jacques.klein@uni.lu; yves.letraon@uni.lu

J. Vanderdonckt
Louvain School of Management, Université catholique de Louvain, Place des Doyens, 1, 1348,
Louvain-la-Neuve, Belgique
e-mail: jean.vanderdonckt@uclouvain.be

81

mailto:jabier.martinez@lip6.fr
mailto:tewfik.ziadi@lip6.fr
mailto:jean-sebastien.sottet@list.lu
mailto:alfonso@yotako.io
mailto:tegawende.bissyande@uni.lu
mailto:jacques.klein@uni.lu
mailto:yves.letraon@uni.lu
mailto:jean.vanderdonckt@uclouvain.be

82 J. Martinez et al.

3.1 Introduction

The development life cycle of User Interfaces (UIs) often requires producing several
versions of the same UI intended for different targets. This development may
span from different versions targeting different contexts of use to a single version
exhibiting a multi-layer UI [39] offering different levels of sophistication depending
on the end-user’s expertise. Interaction design is understood as a complex and
multi-faceted problem [8] that is always open [45] (new end-user requirements
may appear while designing), iterative (there is no optimal solution at first glance),
and intrinsically incomplete (not all end-user requirements are elicited from the
beginning). When designing interaction, variability is manifold depending on the
context of use [10]: variability of end-users, of their devices, computing platforms,
and of environments in which they are working. Moreover, end-user requirements
are difficult to evaluate precisely upfront in UI design processes. Therefore, the
main UI design processes, such as User-Centred Design [15], implement an iterative
design cycle in which a UI variant is produced, tested on end-users, and their
feedback is integrated into design artifacts (e.g., part of the UI, requirements, etc.).
Since these processes are mostly based on trial and error, some parts of the UI
have to be re-developed many times to fulfill all the different user requirements.
When different UIs are produced for various contexts of use, their respective
usability to be achieved is also varying, thus posing the problem of multi-target
usability evaluation [1]. Moreover, these UI design processes involve multiple
stakeholders playing different roles (e.g., software developers, UI/User eXperience
designers, business analysts, end-users) that demand a great amount of time to reach
consensus. UI variability has thus a significant impact on the design, development,
and maintenance costs of the UI, thus redistributing the total cost of ownership of a
UI depending on these parameters.

To overcome variability issues in software engineering, researchers have suc-
cessfully relied on the paradigm of Software Product Lines (SPLs) [12]. The SPL
paradigm allows to manage variability by producing a family of related product
configurations (thus leading to product variants) for a given domain. Indeed, the
SPL paradigm proposes the identification of common and variable sets of features,
to foster software reuse in the configuration of new products [34].

Model-Driven Engineering (MDE) has already been used to effectively support
the UI design process [40]. According to [5, 13], SPL and MDE are complementary
and can be combined in a unified process that aggregates the advantages of both
methods without suffering too much from their respective shortcomings.

A MDE-SPL approach could produce rapidly many variants of the same UI.
However, some of these variants could not satisfy their respective level of usability:
a same UI deployed on different computing platforms could have different levels of
usability [1]. Testing a very large collection of similar variants could be exhausting
for the end-users and may lead to inappropriate results. As such, an innovative way
to evaluate only a relevant portion of the variant needs to be defined. This solution
could provide a reasonably good (but not necessarily optimal) variant that satisfy
the end-user requirements elicited for a set of contexts of use.

3 Model Transformation Configuration for User Interface Design 83

This article proposes an approach to manage UI variability jointly based on
MDE and SPL. Our approach relies on model transformations that support the
expression of the variability. This approach enables the separation of concerns
of the different stakeholders when expressing the UI variability and their design
choices (UI configurations). A Multiple Feature Model approach is considered in
which each feature model represents a particular concern allowing, if needed, each
stakeholder to work independently. A partial and staged configuration process [14]
is proposed in which a partial UI configuration is produced that can be refined
by all stakeholders including the end-user feedback. Once the UI is produced, an
innovative mean for evaluating the variants with end-users allowing to select the best
products is presented. These concepts will be exemplified with a concrete example
of UI variability.

The chapter is structured as follows: First, in Sect. 3.2, we introduce the related
work on the three domains: feature modelling and configuration, user interface
variability and variant testing. Next, we introduce our UI-SPL approach (Sect. 3.3)
that help in deriving many products from initial design models and variability
models. Then, in Sect. 3.4, we explain the assessment of the produced UI variants
using a genetic approach. Before concluding the chapter, we illustrate (Sect. 3.5) and
evaluate (Sect. 3.6) our approach based on a case study: evaluating the UI variants
of a contact list.

3.2 Related Work

3.2.1 Feature Modelling

Feature models (FM) [34] are popular SPL assets that describe both variability
and commonalities of a system. They express, through some defined operators, the
decomposition of a product related features. The feature diagram notation used
in this article is explained in Fig. 3.1. The E-Shop FM consists of a mandatory
feature “catalogue”, two possible payment methods from which one or both could be
selected, an exclusive alternative of security levels and an optional search feature.
FM constraints can be defined. In this case “credit card” implies a high level of
security.

Features composing a FM depict different parts of a system without any clear
separation of concerns. The absence of feature types makes these models popular
as there are no limits for the expression of design artifacts. But at the same time,
[9] have demonstrated that depicting information in a single FM leads to feature
redundancies due to the tree structure. As a result, separation of variability concerns
into multiple FMs seems to be crucial for understanding [28] and manipulating [2]
the many different faces of variability. Each of these FM focuses on a viewpoint on
variability which makes easier to handle variability for each stakeholder. An early
example of this approach is MiniAba [38], which models UI adaptation based on

84 J. Martinez et al.

E-Shop

Catalogue Payment Security

Bank transfer Credit card

Credit Card implies High

High Standard

Mandatory

Optional

Alternative

Or

Search

Fig. 3.1 Feature model from an E-shop (Source: Wikimedia commons)

a FM: the complete UI configuration is represented by a FM tree, whose branches
and/or leaves may be edited or removed in order to produce an instantiated FM.
This FM then gives rise to a project configuration that will automatically generate a
corresponding adapted UI. The big win is that, when one changes any feature in the
FM, it is automatically reflected in the generated UI after re-compiling.

3.2.2 SPL Configuration

The configuration process is an important task of SPL management: producing
a particular product variant based on a selection of features to fit the end-users’
requirements. In this context, a configuration is hereby defined as a specific
combination of FM features satisfying all the FM constraints. When designers and
developers configure a system according to requirements, the enforcement of FM
constraints can limit them in their design choices [48]. Moreover, the separation
of the variability in multiple FMs is also a source of complexity due to many
dependencies across FMs. The fusion of all FMs into one for configuration purposes
seems to solve this issue but results in a large FM that mixes different facets:
this may lead to invalid configurations and thus invalid or inefficient products.
Some solutions exist to overcome these problems. The work by [35] proposes
an implementation of a configuration composition system defining a step-by-
step configuration [14] using partial configurations [7]. Thus, some portion of
a FM can be configured independently, without considering all the constraints
(coming from other configurations) at configuration time. Then, constraints amongst
configurations may be solved by implementing consistency transformations [2].

3 Model Transformation Configuration for User Interface Design 85

3.2.3 Model-Driven User Interfaces Variability

Model-Driven UI calls for specific models and abstraction. These models address
the flow of UIs, which could range from a mono-path flow to multi-path workflow
[19], the domain elements manipulated during the interaction, the models of
expected UI quality, the layout, the graphical rendering, etc. In addition, each model
corresponds to a standard level of abstraction as identified in the CAMELEON
Reference Framework (CRF) [10]. The CRF aims at providing a unified view
on modelling and adaptation of UIs. In the CRF, each level of abstraction is a
potential source of variability. Modifying any model fragment at any specific level
of abstraction induces a specific adaptation of the UI.

For instance, the task model, considered in CRF as the topmost model, depicts
the interaction between the user and the features offered by the software in a way
that is computing-independent. Adding or removing a task results in modifying the
software features. Considering this, we can assume that there is a direct link between
classical feature modelling and task modelling such as presented in [33]. In this
work, a task model is derived from an initial FM. However the authors did not go
any further in describing the variability related to interaction and UI (e.g., graphical
components, behavior).

In [18], the authors present an integrated vision of functional and interaction
concerns into a single FM. This approach is certainly going a step further by
representing variability at the different abstraction levels of the CRF. However,
this approach has several drawbacks. On the one hand, this approach derives
functional variability only from the task model, limiting the functional variability
of the software. On the other hand, all the UI variations are mixed into a single
all encompassing FM which blurs the various aspects for comprehension and
configuration [28].

Finally, Martinez et al. [29] presented a preliminary experience on the usage of
multiple FMs for web systems. This work showed the feasibility of using multiple
FMs and the possibility to define a process around it. It implements FMs for a web
system, interaction scenario, a user model (user impairments), and device. However,
this approach does not consider the peculiarities of UI design models and their
variability.

A few works in SPL for UI have been published. A large part is dedicated to
the main variability depiction (using FMs) but they do not directly address the
configuration management. Configuration is a particular issue when considering
end-user related requirements which may be fuzzily defined.

3.2.4 Testing Many Variants

Selecting optimal SPL product variants based on some criteria has been studied in
SPL Engineering (SPLE). To achieve this, it is a common practice to enhance the

86 J. Martinez et al.

variability model by what is referred to as quality attributes [6, 11, 23, 25]. Assessing
the quality of produced variants requires to deal with a potential large set of similar
UI to be evaluated and with subjectivity (i.e., considering users feedback could also
encompass some aesthetic aspects).

Genetic algorithms have been used for guiding the analysis of configuration
space [17, 36]. A key operator for evolutionary genetic algorithms is the fitness
function representing the requirements to adapt to. In other words, it forms the
basis for selection and it defines what improvement means [16]. In our case, the
fitness function is based on user feedback which is a manual process in opposition
to automatically calculated fitness functions (e.g., the sum of the cost of the
features). Because we deal with these user assessments as part of the search in
the configuration space, we leverage Interactive Genetic Algorithms (IGA) where
humans are responsible to interactively set the fitness [16, 47].

3.3 UI-SPL Approach

Model-driven UI design is a multi-stakeholder process [21, 22] where each model
– representing a particular sub-domain of UI engineering – is manipulated by
specific stakeholders. For instance, the choice of graphical widgets to be used
(e.g. radio button, drop-down list, etc.) is done by a graphical designer, sometimes
in collaboration with the usability expert and/or the client. Our model-driven UI
design approach [40] relies on a revised version of the CRF framework (Fig. 3.2).
It consists of two base meta-models, the Domain meta-model -representing the
domain elements manipulated by the application as provided by classical domain
analyst- and the Interaction Flow Model (IFM) [31]. From these models we derive
the Concrete User Interface model (CUI) which depicts the application “pages”
and their content (i.e., widgets) as well as the navigation between pages. The CUI
meta-model aims at being independent of the final implementation of any graphical
element. Finally, the obtained CUI model is transformed into an Implementation
Specific Model (ISM) that takes into account platform details (here platform refers
to UI tool-kits such as HTML/jQuery, Android GUI, etc.). Finally, a Model-to-Text
(M2T) transformation generates the code according to the ISM. This separation
allows for separate evolution of CUI metamodel and implementation specific
metamodel and code generation.

We propose a multiple feature models (multi-FM) approach (see Sect. 3.3.1) to
describe the various facets of UI variability (e.g., UI layout, graphical elements,
etc.). In a second phase, (see Sect. 3.4) we introduce our specific view on config-
uration on this multi-FM and its implementation in our model-driven UI design
approach (see Sect. 3.3.2).

Fig. 3.2 Model-driven UI
design process

3 Model Transformation Configuration for User Interface Design 87

Fig. 3.3 Variability models (FM) coverage on our UI modeling framework

3.3.1 Multi-FM Approach

Classical FM approaches combine different functional features [33]. In the specific
context of UI design, we propose to rely on a similar approach for managing
variability of each UI design concern. UI variability is thus decomposed into FMs
(Fig. 3.3). Each of these FMs is related either to a model, a meta-model, a mapping
or a transformation depending on the nature of the information it conveys.

– Models: Three FMs in Fig. 3.3 manage variations at the model level (IFM,
Domain and CUI). The FM responsible for the Domain configuration can be
used to express alternatives of a same concept, e.g., using or not the address,
age or photo of a given class “Person”. The IFM variability can express for
instance the possible navigation alternatives to be activated or not. For instance
on a shopping website, shortcuts providing quickly access to a given product can
be configured. The CUI FM represents alternative representations of a widget: a
panel (i.e., portion of UI displayed on a screen) can become a full window (i.e.,
displayed has full-screen) on mobile phones.

– Mappings: The variability of the mapping between IFM and Domain can be
managed by a mapping FM. Interaction flow elements (UI states) can involve
different concepts of the domain model.

– Transformations: Variability can be expressed also at the level of transforma-
tions. The variability that a transformation could convey (i.e., multiple output
alternatives) can be expressed with FMs. The transformations impacted are (1)
between IFM, Domain and CUI, (2) between CUI and ISM. The variability of
(1) expresses the possible UI design choices: how an IFM state selection can be
represented: a simple list, an indexed list, a tile list, etc. The variability in (2)
depends on the target ISM and configures the final representation to be provided
to end-users. For instance, a CUI simple list can be represented using, as output
of the transformation, the following HTML markup alternatives: “<select>” or
“”.

By scoping the FM to a specific concern, our approach allows to focus only on
the variations related to the underlying concern. In our approach, the different FMs
enrich the existing UI design process accompanying, step-by-step, the design of
models and their variability.

88 J. Martinez et al.

3.3.2 Implementation: Model Transformation

Before starting the whole transformation process (up to the first executable pro-
totype), the various FMs that describe the possible configurations of the product
line have to be aggregated. More details about this step is available in [43]. As a
result, only one large FM is built allowing to produce, through model to model and
model to text transformations the variants to be assessed. To aggregate the many
FM, we can use the insert operator of Familiar [3] using the following expression
see Listing 3.1.

Listing 3.1 Familiar insertion operator for building complete partial configuration

fml > i n s e r t MappingIFMDomain i n t o C UI Tr a ns f o r m a t ion . CUILis t w i th mand

The implementation of our approach relies on an existing system that derives a
UI from IFM and domain models using successive model transformations [41]. This
initial system was not taking into account the configuration of the variability. The
difference is that it uses the FM as a transformation configuration and generate a
UI for each possible configurations depicted in the aggregate FM. We have built a
small algorithm that produce a configuration model for each valid combination of
the FM. Then this configuration model (conforms to a configuration metamodel)
is used as an additional input model for the transformation. Nevertheless, we keep
our tool initial behavior if no FM is specified: a default transformation is executed
if it has no configuration (in ATL syntax: i.getConfiguration.oclIsUndefined()).
The “getConfiguration” helper uses the explicit link between the input models
(IFM/Domain) and the current configuration to be generated.

Listing 3.2 Excerpt of the default transformation used if no configuration is defined

r u l e s e l e c t i o n L i s t V i e w D e f a u l t e x t e n d s w i d g e t E v e n t s {
from

i : SC ! S e l e c t i o n S t a t e (i . g e t C o n f i g u r a t i o n . o c l I s U n d e f i n e d ())
to

o : CUI ! L i s tView (
name <� i . name ,
i d <� i . name . r e g e x R e p l a c e A l l (’ ’ ,’’) ,
w i d g e t s <� i . domainElements�> s e l e c t (e | e . Type = # Image)�> c o l l e c t (e |

,! t h i s M o d u l e . image (e))
)

}

We reused the rest of the transformation chain up to the application generation:
CUI to ISM and ISM to Code. For each type of ISM (i.e., interaction State) a set of
rules are produced corresponding to the possible variants. Each particular attribute
of the widget (i.e., indexed and filtered) is also dependent on the configuration
thus introducing additional conditional expressions (ListFilters and ListDividers
conditions in Listing 3.3).

Listing 3.3 Excerpt of selection to tile list in CUI transformation including configuration helpers

h e lp e r c o n t e x t OclAny def : h a s C o n f i g (c o n f i g : S t r i n g) : Boolean =
i f (s e l f . g e t C o n f i g u r a t i o n . o c l I s U n d e f i n e d ())

3 Model Transformation Configuration for User Interface Design 89

then
f a l s e

e l s e
s e l f . g e t C o n f i g u r a t i o n . WidgetName= c o n f i g

e n d i f ;
. . .
r u l e s e l e c t i o n T i l e L i s t e x t e n d s w i d g e t E v e n t s {
from

i : SC ! S e l e c t i o n S t a t e (i . h a s C o n f i g (’TileList’))
u s i n g {

c on f : C o n f i g u r a t i o n ! C o n f i g u r a t i o n = i . g e t C o n f i g u r a t i o n ;
}
to

o : CUI ! T i l e L i s t (
name <� i . name ,
i d <� i . name . r e g e x R e p l a c e A l l (’ ’ ,’’) ,
i c o n s <� i . domainElements�> s e l e c t (e | e . Type = # Image)�> c o l l e c t (e | t h i s M o d u l e

,! . image (e)) ,
L i s t f i l t e r s <� i f (c on f . f i l t e r e d) then f i l t e r e l s e OclUndef ined endi f ,
l i s t D i v i d e r <� i f (c o n f . i n d e x e d) then d i v i d e r e l s e OclUndef ined e n d i f
) ,
f i l t e r : CUI ! F i l t e r (
f i l t e r R e v e a l e d L i s t <� f a l s e) ,
d i v i d e r : CUI ! D i v i d e r (
a u t o d i v i d e r <� t r u e)

}

3.4 Evaluation of Configuration: Rapid Prototyping

End-user requirements are crucial in user centered design. They are often not
formally defined: most of the time they are expressed as remarks on a portion of
the produced or prototyped UI. Thus, in order to capture end-user requirements,
UI designers have to propose various product versions (prototypes) to end-users. A
common practice is to use rapid prototyping. Rapid prototyping is a user-centered
iterative process where end-users give feedback on each produced prototype. Proto-
types are usually mock-ups of UI drawn with dedicated tools (e.g., see balsamiq).1

In order to show to the users an interaction experience closest to reality we should
rely on higher fidelity and on living prototypes (i.e., the user should be able to
interact with it). As a result, MDE provides us with semi-automatic generation
capabilities. It allows a quick production of prototypes and many assessments in
a limited amount of time. End-users will thus elicit the way they prefer interacting
with the system, the best widgets and representations for their tasks. In fact, through
these iterations they elicit the product configuration that best fits their needs.

In previous work [40, 42], we have tested the global usability of particular
generated UI prototypes. We have also proposed a version that evaluate only a
portion of the UIs produced by an SPL [43]. Configuration reconciliation can be
a time consuming task, which may delay the product elicitation. Indeed the time
for configuring and aligning all the partial configurations together can be a very
consuming task even if we relax some FM constraints (i.e., getting an end-user
feedback on generated UI after a one or two minutes configuration).

1http://balsamiq.com

http://balsamiq.com

90 J. Martinez et al.

Here we will try to evaluate the different UIs obtained by an SPL. The approach
we have selected is an interactive genetic algorithm (IGA). It aims at reducing
drastically the number of UI configurations to evaluate as well as the number of
person necessary for this test. The idea is to converge quickly to good/acceptable
UIs with a small number of algorithm iterations: limiting the effect of user fatigue.
At each iteration the IGA will take into account a user ranking (e.g., like/dislike) of
the proposed UI and propose, a mutated configuration for the next step. This will
allow to test potentially many configurations whilst keeping only the convenient
ones.

The approach we have followed here is decomposed in two steps. The first
step consists in generating the set of UIs according to the possible configurations
depicted in the FM. For the sake of performance (i.e., rapid evaluation between
each IGA iteration) and because of interoperability issues we choose to produce
first the set of evaluable UIs. Nevertheless the MDE-SPL generation mechanism
could have been directly driven by the IGA produced configurations. The second
step is iterative and consists in the evaluation of the produced UI variant and then
production of next UIs to be evaluated thanks to the IGA.

3.4.1 Step 1: Deriving All Relevant Configurations

The idea is to generate all the possible configurations and then apply the UI
generation process for each of them, as depicted in Sect. 3.3.2. Some constraints
can also be added to existing ones [4]. They allow to remove product variants which
are, predictably, not relevant for the task at hand. For instance, tile lists are not
necessarily relevant without photos or images.

3.4.2 Step 2: Variant Assessment

We followed the recommendations of Nielsen regarding the minimal number of
end users to involve in iterative user tests [30]. As such, we decided to run user
tests with 5 participants in order to collect their feedback. For each iteration of the
genetic algorithm, 10 UI configurations are suggested to testing (i.e., 2 per end-
user). According to the predictions of the Poisson model [30], involving 5 users
gives rise to an expected probability of reporting 85% of the usability problems
for a simple UI. Given that usability problems impact their assessments, having at
least 5 users should enable us to gracefully evolve to a reasonable good UIs at a
reasonable cost regarding the number of involved end-users. The IGA is taking this
user evaluation to propose, to all users, for the second round of evaluation a mutation
of the best variants. A mutant is a new configuration that slightly different from the
previous one, by e.g., changing one feature (add/remove).

The details of the implemented IGA is shown in Algorithm 1. First, the
population is randomly initialized at line 1. After this, the evolution starts at line

3 Model Transformation Configuration for User Interface Design 91

Algorithm 1 Interactive genetic algorithm for data set creation in the contact list
case study

input: Genetic representation of a configuration = 20 bits, Population = 10 configurations,
Users = 5
output: Data set of user assessments

1: population initializePopulation()
2: while stopConditionNotSatisfied() do
3: foreach confi 2 population do
4: confi:assignedUser assignUser(users,confi)
5: end foreach
6: foreach confi 2 population, in parallel do
7: confi:fitness getUserFeedback(confi)
8: registerDataInstance(confi)
9: end foreach

10: parents parentSelection(population)
11: offspring crossover(parents)
12: offspring repair(offspring)
13: offspring mutate(offspring)
14: offspring repair(offspring)
15: population survivorSelection(offspring)
16: end while

2 until the stop condition is satisfied. In our case we used the termination condition
when reaching a fixed number of generations in order to avoid user fatigue and time
consumption. We can also limit the number of generations (iteration of the IGA):
it limits the number of evaluations (against user-fatigue), but also stop before the
evaluation curve is reverted (i.e., when producing mutant the quality of UI could
regress because of user fatigue).

From line 3 to 5, each member of the population is assigned to one user for
assessment. In our experimental settings, each of the 5 users is assigned to 2
members to cover the whole population. The user feedback for all the population
is obtained from line 6 to 9. Once the fitness of the whole population is set, we can
proceed to the parent selection for the next generation. The parent selection operator
is based on a fitness proportionate selection (line 10). At line 11, the crossover
operator is based on the half uniform crossover scheme [46]. The crossover, as well
as the mutation operators of the GA, can end up with invalid configurations because
of FM constraints. Existing works have solved this by penalizing the fitness function
or trying to recover the configuration to a valid state. In our case, at line 12 and 14
we repair the offspring if hard constraints are violated. The mutation operator used
at line 13 is uniform with p D 0:1. This mutation factor is meant to prevent a loss
of motivation from users (i.e., user fatigue) by reducing the likelihood that they
will keep assessing very similar UI configurations from the population, while thus
enabling us to explore new regions of the configuration space. Finally, at line 15,
the survivor selection operator is based on a complete replacement of the previous
generation with the new generation.

92 J. Martinez et al.

3.5 Case Study

Contact Lists are widely used Human-Computer Interaction (HCI) applications to
obtain personal information such as telephone numbers or email addresses. We can
find them on mobile phones for personal use, communication systems for elderly
people, corporate intranets or web sites. Despite of sharing the same objective, the
final UI implementations are very diverse. We focus in this case study in building
contact lists with corporate information.

User involvement is one of the key principles of the user-centered design
method [15]. The literature includes a number of early works leveraging SPL
techniques to deal with the management of HCI-specific variability using SPL-based
approaches [32, 33]. In this case study dealing with UIs, we focus on early binding
variability [26] where design alternatives are chosen at design-time. Therefore, this
scenario does not focus on customization options which are performed by end-
users themselves within the UI, nor to self-adaptive systems which corresponds
to run-time binding of variability. The ISATINE framework [27] structures the
adaptation life cycle into seven stages: goal specification (when the end-user defines
her goals for adaptation), adaptation initiative (who is taking the responsibility
to trigger the adaptation), adaptation specification (what could be performed to
ensure an adequate adaptation), adaptation application (performed by the system
itself), adaptation transition (how to convey the transition between the stage before
adaptation and after), adaptation interpretation (how to interpret the results of
the adaptation), and adaptation evaluation (how to evaluate the results of the
adaptation with respect to the initial goals). If these seven stages are considered, the
adaptation specification and application are particularly ensured by our approach.
The transition should be ensured by other techniques.

3.5.1 The Contact List Example

Figure 3.4 presents the FM defining the variability of the Contact List application
domain. The FM was created by HCI experts from the Luxembourg Institute of
Science and Technology (LIST) with whom we collaborated in this case study. This
FM encodes knowledge about the interface design defining a configuration space of
1365 valid configurations. UI design choices, even for this apparently simple case,
give raise to voluminous configuration spaces.

The ContactList variability is decomposed into three main features: List
depicting the possible choices to be made in terms of widgets for representing
the list, Master Detail Interface which states the global layout of the
application and Details Grid which sets the layout for the detailed information
of a person. The ListType variability defines the different alternatives of List
widgets: DropDownList is a select box showing only one item when inactive,
ListView is a classic navigation list and TileList is a list of thumbnails
represented as tiles. The Indexed optional feature separates and ranks the list

3 Model Transformation Configuration for User Interface Design 93

Mandatory
Optional
Or
Alternative

Legend:

List

ListType

List_Item
Name

Ratio

Position

Vertical_Grid

Details_Grid

DropDownList ⇒ ¬ Indexed

DropDownList ⇒ ¬ Photo

DropDownList ⇒ ¬ Filter

Filter ⇒ Name

Photo_Left_Grid

Photo_Right_Grid

Photo_Bottom_Left

Photo_Bottom_Right

ContactList

Photo

Big_Master_Area

Master_Left

Master_Right

Master_Detail_Interface

Master_Up

Master_Down

Big_Detail_Area

Equal_Area

DropDownList

ListView

TileList

Indexed

Filter

Fig. 3.4 Contact list feature model

items by the first letter of the name. The Filter optional feature adds a search
functionality implemented through a text box that automatically filters the list
items according to the text introduced by the user. The ListItem consists of
the Name of the person or the Photo, or both. Four cross-tree constraints are
shown in the feature diagram which are related to these features. Concretely, the
DropDownList feature excludes Indexed, Photo and Filter features. Also,
the Filter feature requires the Name in the ListItem feature.

94 J. Martinez et al.

The Master Detail Interface is an optional feature that split the screen
in two parts: the master and the detail. The master contains the list while the
details interface, after a selection in the master, shows the corresponding contact
information. There is variability concerning the Ratio of the screen split and
the Position of the master interface. Finally, the Details Grid feature
represents different alternatives to organize the contact information on the screen
(e.g., telephone number, address etc.) as for example including all information in
one column or determine the position of the textual information with respect to the
photo.

The SPL has been implemented using the Variability-aware Model-Driven UI
design framework [44] based on AME (Adaptive Modeling Environment) [20]
which is able to derive, through source code generation, any configuration of the
presented FM. The target framework for the derived products is the JQueryMobile
web framework.2

Screenshots demonstrate the diversity of UIs that can be obtained (they have been
anonymized to avoid displaying personal information): Figs. 3.5 and 3.6 present UI
variants from which we enumerate their corresponding features. Figure 3.5 shows an
example that includes ListView with only the Name (see left side of the figure).
The list view is neither Indexed nor has a Filter feature. It has Master
Detail Interface with Equal Area and Master Left given that the
screen is split in two identical parts with the list (master) at the left and the details
grid at the right. The details are displayed with Photo Right Grid.

Figure 3.6a, b show how the TileList is realized (see right side of the figure)
and Fig. 3.6c how the DropDownList is displayed (see left side of the figure).
Figure 3.6d shows a UI variant whose configuration does not have a master detail.
It only displays on the screen either master or detail (note the presence of the back
button at the top left of the screenshot for coming back to the master). In the case
of master detail, the ratio indicates whether we have a big master interface with a
small details interface (e.g., Fig. 3.6c) or vice-versa. Alternatively, we can have the
split into two equal parts (Figs. 3.5 and 3.6a).

Fig. 3.5 Configuration and screenshot of its associated contact list UI variant

2JQueryMobile web framework: https://jquerymobile.com

https://jquerymobile.com

3 Model Transformation Configuration for User Interface Design 95

Fig. 3.6 Screenshots of derived variants from the contact list SPL and enumeration of their
associated features. (a) Tile List, Photo, Master Detail (with Equal Area and Master Right) and
Details Grid with Photo Bottom Right. (b) Tile List, Photo, Master Detail (with Big Master Area,
Master Right). (c) DropDownList, Name, Master Detail (with Big Master Area, Master Left). (d)
Master Detail Feature (The list variability is not illustrated in this figure) and Details Grid with
Photo Bottom Right

The Position variability is related to a horizontal or vertical split of the screen
and whether the master is in one side or the other (in Fig. 3.6b the master and detail
have been swapped). If the Master Detail Interface feature is not selected
in a configuration, the window split will be replaced during the navigation: one
first window for selecting the person to be displayed and the other one for seeing
the details. Finally, the Details Grid feature represents different alternatives to
organize the contact information on the screen. For instance, in Fig. 3.6a the grid is
four columns and two rows whereas in Fig. 3.6d it is two columns and four rows.

3.5.2 Defining Configurations Chromosome

One important decision to implement the genetic algorithm is how to represent the
individuals (the configurations in our case). We consider a binary array. Figure 3.7
shows an example of the chromosome of an individual that conforms to the Contact
List SPL. The phenotype consists of the non-abstract features of the FM. Concretely,
the leaves of the FM and the Master Detail Interface feature (see Fig. 3.4)
are coded on a binary string of 20 bits. The features are the fixed indexes of the array

96 J. Martinez et al.

Fig. 3.7 Example
chromosome of an individual
of the contact list SPL

D
r
o
p
D
o
w
n
L
i
s
t

L
i
s
t
V
i
e
w

T
i
l
e
L
i
s
t

I
n
d
e
x
e
d

F
i
l
t
e
r

N
a
m
e

P
h
o
t
o

M
a
s
t
e
r
D
e
t
a
i
l
I
n
t
e
r
f
a
c
e

B
i
g
M
a
s
t
e
r
A
r
e
a

E
q
u
a
l
A
r
e
a

B
i
g
D
e
t
a
i
l
A
r
e
a

M
a
s
t
e
r
L
e
f
t

M
a
s
t
e
r
R
i
g
h
t

M
a
s
t
e
r
U
p

M
a
s
t
e
r
D
o
w
n

V
e
r
t
i
c
a
l
G
r
i
d

P
h
o
t
o
L
e
f
t
G
r
i
d

P
h
o
t
o
R
i
g
h
t
G
r
i
d

P
h
o
t
o
B
o
t
t
o
m
L
e
f
t

P
h
o
t
o
B
o
t
t
o
m
R
i
g
h
t

0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0

where the value 1 means that the feature is activated and 0 that it is not. Representing
a FM configuration chromosome as an array of bits is a common practice in the
use of genetic algorithms in SPLE [17, 24]. As presented before, the details of the
implemented IGA are shown in Algorithm 1.

3.6 Case Study: Experimentation

The objectives in this case study is to investigate whether:

1. The variant assessment selects better configurations than a randomized algorithm
for a given number of iterations. To that end:

– We quantitatively evaluated the improvement of the user scores through the
IGA compared to random selection within the configuration space.

– We study the diversity of the population along the generations to show the
convergence of the IGA towards relevant UI designs.

2. The best UIs are configurations that usability experts confirm as relevant UI
designs. We qualitatively discuss the findings with a usability expert and we
checked if the top ranked configurations are close to configurations elicited by
usability experts.

We conducted two independent experiments in two organizations: LIST and
SnT. Figure 3.8 presents the results of the IGA for the two organizations. On the
horizontal axis we have the different generations and the vertical axis is the mean of
the scores of the user assessments for this generation. We show the score mean along
the six generations including the standard deviations. An ascendant progression
means that for each new generation, globally, the UI variants are being better
appreciated by the pool of users. In Fig. 3.8a we observe a quick ascension until
generation four while in Fig. 3.8a we observe the ascendant progression starting at
generation two.

Despite that we do not have the explanation for the descending effect in LIST
case for generations five and six, we consider that it is caused by the experience

3 Model Transformation Configuration for User Interface Design 97

S
co

re
 m

ea
n

S
co

re
 m

ea
n

7

6

5

4

3

2

1
1 2 3 4 5 6

Generation number

(a)
7

6

5

4

3

2

1
1 2 3 4 5 6

Generation number

(b)

Fig. 3.8 Results of the genetic algorithm evolution in the two organizations. (a) LIST. (b) SnT

that the users had in UI design. The score mean improved quickly from generation
one to four by filtering really inappropriate variants, and then decreased a little bit
because of their capacity to criticize the proposed variants. They may not evaluate
the variant itself but its capability to be different from what they already evaluated.
Furthermore, some of these critics were related to non-variability related issues.
Other possible explanation could be user fatigue.

In order to observe whether the IGA tends to converge, Fig. 3.9 shows the
progression of the generations in the two dimensional space of mean score and
diversity. We calculated the genotype diversity along the different generations (g1
to g6) as the average of the Hamming distance of all pair of configurations in the

98 J. Martinez et al.

S
co

re
 m

ea
n

S
co

re
 m

ea
n

7

7

Generation

Generation

6

g4 g3
5 g5

g6
g2

4

g1
3

6

g6
5

g5
g4

4 g3
g2 g1

3

2

2

1
4 4.5 5 5.5 6 6.5 7 7.5

Diversity: Average of 2-wise configuration hamming distance

(a)

1
4 4.5 5 5.5 6 6.5 7 7.5

Diversity: Average of 2-wise configuration hamming distance

(b)

Fig. 3.9 Generations progress in terms of mean score and diversity. (a) LIST. (b) SnT

generation. The diversity decreases if we approach to the left side of the horizontal
axis. For example, we can observe how the diversity is not increasing more than
its value at g1 which is the randomly created population. For LIST, as shown in
Fig. 3.9a, g4 has both the lowest diversity and the maximum mean score. In the case
of SnT, as shown in Fig. 3.9b, the last generation (g6) has both the lowest diversity
and the maximum mean score. In the LIST case, the user pool was able to reach
better variants for them earlier.

3 Model Transformation Configuration for User Interface Design 99

UI Quality Improvement. Regarding the first hypothesis, we evaluate if our
process based on evolutionary techniques selects better variants than a randomized
algorithm for a given number of iterations. We repeated the experiments with the
same participants using random selection. In this approach, for each generation,
10 configurations were automatically selected from the viable space which is the
same size of the population that we used for the IGA. Basically, for the random
selection, we used the same operator as the one used for seeding in the IGA. Despite
that we still call each group of 10 random configurations a generation, no genetic
information was propagated from one generation to the next. Figure 3.10 shows the
results of the genetic algorithm and the random selection in order to compare them.
The most important observation is that random selection failed to obtain a global
score mean greater than 5 in any of the generations while the genetic algorithm did
achieve it. We can see how the genetic algorithm outperforms the random selection
approach except in the first two generations where the effect of evolution is still
trying to find relevant regions of the configuration space.

Table 3.1 presents the representative improvements obtained in the two inde-
pendent experiments by comparing the global score mean. The global score mean
is the mean of the assessment scores in all the generations. The genetic algorithm
approach has a global score mean which is around 0.5 points better (i.e., 0.45 in
LIST and 0.55 points in SnT).

The proposed genetic algorithm produced better results over the generations
than the random approach. The algorithm tends to converge to a solution in this
search of better UI configurations. To prove this, we computed the diversity of the
members of each generation. If the diversity has a tendency to decrease, it is a sign
of convergence. Figure 3.11 shows the graph of the results at organization LIST and
SnT for both the genetic algorithm and the random process. We can see how the
random approaches in both organizations do not decrease the diversity while, for
these 6 generations, we observe how the genetic algorithm performs better than the
random approach to reduce the diversity. The random approach failed to decrease
the diversity to values lower than 5 while this was achieved by the genetic algorithm
approach. As result, we can conclude that, compared to the random approach,
we both increase the global mean score and we reduce the diversity along the
generations. These two aspects allow the genetic algorithm to try to converge to
optimal or sub-optimal solutions which means to relevant UI designs.

Usability Expert Analysis. In order to confirm our second hypothesis we required
a usability expert with nine years of experience to assess that the better variants
found by our approach satisfy usability criteria. This expert is independent in
order to provide an impartial assessment. He does not belong to the team that
developed the considered project, nor participated during the variant assessment. We
summarize the expert qualitative evaluations on the three relevant variants shown in
Fig. 3.12:

– The first variant, shown in Fig. 3.12a, is the simplest list with no master detail.
It addresses several usability criteria [37] such as low workload, explicit control,

100 J. Martinez et al.

7

6

5

4

3

3 4 5 6

Genetic algorithm
Random

Genetic algorithm
Random

Generation number

(a)

(b)

Generation number

2

S
co

re
 m

ea
n

S
co

re
 m

ea
n

2
1

7

6

5

4

3

2

1

1

3 4 5 621

Fig. 3.10 Comparing variant selection based on genetic algorithm and random. (a) LIST. (b) SnT

Table 3.1 Global score
mean evaluation

GA Random

LIST 4:65 4:20

SnT 4:40 3:95

3 Model Transformation Configuration for User Interface Design 101

8

7.5

7

6.5

5.5

5

4.5

4
1 2 3

Generation number

Generation number

A
ve

ra
ge

 o
f 2

-w
is

e
co

nf
ig

ur
at

io
n

ha
m

m
in

g
di

st
an

ce
A

ve
ra

ge
 o

f 2
-w

is
e

co
nf

ig
ur

at
io

n
ha

m
m

in
g

di
st

an
ce

4 5 6

6

8
LIST Random
SnT Random

LIST Genetic algorithm
SnT Genetic algorithm

(a)

(b)

7.5

7

6.5

5.5

5

4.5

4
1 2 3 4 5 6

6

Fig. 3.11 Genotype population diversity. (a) Genetic algorithm. (b) Random

homogeneity/consistency or compatibility with traditional contact applications.
The search bar and the simplicity of the UI allows the end user to go directly to
what he/she is looking for. However, as drawback, it is not possible to browse
through the contacts’ photos or to do a visual research if the name of the person
is unknown.

102 J. Martinez et al.

Fig. 3.12 Screenshots of relevant variants. (a) ListView, Name and no MasterDetailInterface. (b)
TileList, Name, Photo, Indexed, Filter and no MasterDetailInterface. (c) TileList, Name, Photo,
Filter, MasterDetailInterface (with Big Master Area and Master Left) and Vertical Grid

3 Model Transformation Configuration for User Interface Design 103

– The second variant, shown in Fig. 3.12b, has a better appearance (aesthetic
consideration) and has more information (i.e., photo and index). It also complies
well with Scapin and Bastien’s usability criteria [37]. Notably the adaptability
criteria is well implemented here: the application can be convenient to the
different situations of use (e.g., on large screen and small screen display,
etc.). However, it seems visually overloaded. Reducing the number of persons
displayed in the list can be an option. Another important point noticed is that the
users can just play with the UI (e.g., browse through colleague photos) and be
distracted from the prescribed task.

– The third variant, reproduced in Fig. 3.12c, is very close to the previous one,
except for the master/detail pattern. It also complies with most of the usability
criteria. The list of persons is more compact than the previous variant (Fig. 3.12b)
giving a better impression. The information is accessible directly without the
need to navigate which is a plus for large screens but not necessarily the
best solution. In the configuration with a Master Detail interface, the layout is
important, and in this variant the vertical grid fits perfectly with this layout.

The usability expert claimed that the relevant variants that have emerged from
applying the approach satisfy most of the usability criteria.

3.7 Conclusion and Perspectives

In this article, we addressed the issue related to UI variability. UI variability holds
numerous facets (e.g., graphical design, development, usability, etc.) due to the
diversity of stakeholder profiles whom may contribute to the UI development life
cycle, such as, but not limited to, end-users. Moreover, in UI design, one encounters
frequently the difficulty to align the products with fuzzily defined user requirements.
This complexity can lead to an inefficient UI design process, which has an impact
on the UI design costs.

Therefore, we proposed an approach to manage UI variability based on MDE
and SPL, integrating SPL management into our current MDE UI design process. In
order to build a viable product, the stakeholders have to confront their viewpoints
when configuring products. This is the general approach we have illustrated here,
adopted for rapid prototyping.

This article focused on the end-users as peculiar stakeholders of the design
process. Such stakeholders can intervene in some specific parts of the process
using partial FM: i.e., help in choosing some features. Nevertheless the potential
indirection between feature and the resulting UI could make things unclear. This is
why we should still rely on user assessments.

When using SPL, we can obtain many variants of the same UI, thus making
it difficult to assess for end-users. How end-users would assess more than 800
variants? Even, if they had time to evaluate it, when assessing many similar UIs the
user-fatigue will provide biased results. We could have used partial configuration to
split the problem and focus on a specific element such as in [43]. However, it will
not have provided results for the overall interaction experience.

104 J. Martinez et al.

We have experimented with an Interactive Genetic Algorithm that helps to assess
and deal with many variants produced by an SPL approach. It helps to reduce the
number of UI to be tested by end-users and to find consensus on a relevant versions
(i.e., of a good quality). First, it facilitates the exploration of the design space (as
defined in the FM) and with a rather small portion of the possible configurations.
Second, it helps to assess the variants with a group of users reducing some personal
subjectivity.

One future direction of this work would be to propose a ranking of the features
which influence user decisions the most. As such we would be able to predict the
configurations which are not relevant or the most adapted to specific interaction
situations.

Acknowledgements This work has been partially supported by the FNR CORE Project MoDEL
C12/IS/3977071. The work of Jabier Martinez is funded by the AFR grant agreement 7898764.
The work of Alfonso García Frey is partially co-funded by Yotako S.A. and the FNR Luxembourg
under the AFR grant agreement 7859308. Special thanks to Alain Vagner for his contributions.

References

1. Abrahão S, Iborra E, Vanderdonckt J. Usability evaluation of user interfaces generated with a
model-driven architecture tool. In: Maturing usability. London: Springer; 2008. p. 3–32.

2. Acher M, Collet P, Lahire P, France RB. Separation of concerns in feature modeling:
support and applications. In: Proceedings of the 11th Conference on Aspect-Oriented Software
Development. 2012.

3. Acher M, Collet P, Lahire P, France RB. Familiar: a domain-specific language for large scale
management of feature models. Sci Comput Program. 2013;78(6):657–81.

4. Barreiros J, Moreira A. Soft constraints in feature models. In: Proceedings of ICSEA 2011:
The Sixth International Conference on Software Engineering Advances. IARIA XPS Press;
2011, p. 136–141. ISBN: 978-1-61208-165-6.

5. Batory D, Azanza M, Saraiva J. The objects and arrows of computational design. In: Model
driven engineering languages and systems. Berlin: Springer; 2008. p. 1–20.

6. Benavides D, Martín-Arroyo PT, Cortés AR. Automated reasoning on feature models. In:
CAiSE. 2005. p. 491–503.

7. Benavides D, Segura S, Ruiz-Cortés A. Automated analysis of feature models 20 years later: a
literature review. Inf Syst. 2010;35(6):615–36.

8. Brummermann H, Keunecke M, Schmid K. Variability issues in the evolution of information
system ecosystems. In: Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems. 2011.

9. Bühne S, Lauenroth K, Pohl K. Why is it not sufficient to model requirements variability with
feature models. In: Workshop on Automotive Requirements Engineering (AURE04), at RE04.
2004.

10. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J. A unifying
reference framework for multi-target user interfaces. Interact Comput. 2003;15(3):289–308.

11. do Carmo Machado I, McGregor JD, de Almeida ES. Strategies for testing products in software
product lines. ACM SIGSOFT Softw Eng Notes. 2012;37(6):1–8.

12. Clements P, Northrop L. Software product lines. Boston/London: Addison-Wesley Boston;
2002.

13. Czarnecki K, Antkiewicz M, Kim CHP, Lau S, Pietroszek K. Model-driven software product
lines. In: Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM; 2005. p. 126–27.

3 Model Transformation Configuration for User Interface Design 105

14. Czarnecki K, Helsen S, Eisenecker U. Staged configuration through specialization and
multilevel configuration of feature models. Softw Process Improv Practice. 2005;10(2):
143–69.

15. DIS I. 9241-210: 2010. Ergonomics of human system interaction-part 210: human-centred
design for interactive systems. Geneva: International Standardization Organization (ISO);
2009.

16. Eiben AE, Smith JE. Introduction to evolutionary computing. Berlin/London: Springer; 2003.
17. Ensan F, Bagheri E, Gašević D. Evolutionary search-based test generation for software

product line feature models. In: Ralyté J, Franch X, Brinkkemper S, Wrycza S, editors.
Advanced information systems engineering. Lecture notes in computer science, vol. 7328.
Berlin/Heidelberg: Springer; 2012. p. 613–28.

18. Gabillon Y, Biri N, Otjacques B. Designing multi-context UIs by software product line
approach. In: ICHCI’13. 2013.

19. García JG, Vanderdonckt J, González-Calleros JM. Flowixml: a step towards designing
workflow management systems. Int J Web Eng Technol. 2008;4(2):163–82. http://dx.doi.org/
10.1504/IJWET.2008.018096

20. García Frey A, Sottet JS, Vagner A. Ame: an adaptive modelling environment as a collaborative
modelling tool. In: Proceedings of the 2014 ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. New York: ACM; 2014. p. 189–92.

21. García Frey A, Sottet JS, Vagner A. Towards a multi-stakehoder engineering approach with
adaptive modelling environments. In: Proceedings of the 2014 ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. New York: ACM; 2014. p. 33–8.

22. García Frey A, Sottet JS, Vagner A. A multi-viewpoint approach to support collaborative
user interface generation. In: 19th IEEE International Conference on Computer Supported
Cooperative Work in Design CSCWD. 2015.

23. Henard C, Papadakis M, Perrouin G, Klein J, Traon YL. Multi-objective test generation for
software product lines. In: SPLC. 2013. p. 62–71.

24. Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Traon YL. Bypassing the combinato-
rial explosion: using similarity to generate and prioritize t-wise test configurations for software
product lines. IEEE Trans Softw Eng. 2014;40(7):650–70.

25. Johansen MF, Haugen Ø, Fleurey F, Eldegard AG, Syversen T. Generating better partial
covering arrays by modeling weights on sub-product lines. In: MoDELS. 2012. p. 269–84.

26. Kang KC, Lee J, Donohoe P. Feature-oriented project line engineering. IEEE Softw.
2002;19(4):58–65.

27. López-Jaquero V, Vanderdonckt J, Simarro FM, González P. Towards an extended model of
user interface adaptation: the isatine framework. In: Gulliksen J, Harning MB, Palanque PA,
van der Veer GC, Wesson J, editors. Engineering Interactive Systems – EIS 2007 Joint Working
Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Mar 22–24, 2007. Selected
Papers. Lecture notes in computer science, vol. 4940. Springer; 2007. p. 374–92. http://dx.doi.
org/10.1007/978-3-540-92698-6_23

28. Mannion M, Savolainen J, Asikainen T. Viewpoint-oriented variability modeling. In: COMP-
SAC’09. 2009.

29. Martinez J, Lopez C, Ulacia E, del Hierro M. Towards a model-driven product line for web
systems. In: 5th Model-Driven Web Engineering Workshop MDWE. 2009.

30. Nielsen J, Landauer TK. A mathematical model of the finding of usability problems. In:
Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing
Systems. ACM; 1993. p. 206–13.

31. OMG. IFML – interaction flow modeling language. 2013.
32. Pleuss A, Botterweck G, Dhungana D. Integrating automated product derivation and individual

user interface design. VaMoS. 2010;10:69–76.
33. Pleuss A, Hauptmann B, Dhungana D, Botterweck G. User interface engineering for software

product lines: the dilemma between automation and usability. In: EICS. New York: ACM;
2012. p. 25–34.

http://dx.doi.org/10.1504/IJWET.2008.018096
http://dx.doi.org/10.1504/IJWET.2008.018096
http://dx.doi.org/10.1007/978-3-540-92698-6_23
http://dx.doi.org/10.1007/978-3-540-92698-6_23

106 J. Martinez et al.

34. Pohl K, Böckle G, Van Der Linden F. Software product line engineering: foundations,
principles, and techniques. Berlin: Springer; 2005.

35. Rosenmüller M, Siegmund N. Automating the configuration of multi software product lines.
In: VaMoS. 2010. p. 123–30.

36. Sayyad AS, Menzies T, Ammar H. On the value of user preferences in search-based software
engineering: a case study in software product lines. In: ICSE. 2013. p. 492–501.

37. Scapin DL, Bastien JC. Ergonomic criteria for evaluating the ergonomic quality of interactive
systems. Behav Inf Technol. 1997;16(4–5):220–31.

38. Schlee M, Vanderdonckt J. Generative programming of graphical user interfaces. In: Proceed-
ings of the Working Conference on Advanced Visual Interfaces, AVI’04. New York: ACM;
2004. p. 403–6. http://doi.acm.org/10.1145/989863.989936

39. Shneiderman B. Promoting universal usability with multi-layer interface design. In: Proceed-
ings of the 2003 Conference on Universal Usability, CUU’03. New York: ACM; 2003. p. 1–8.
http://doi.acm.org/10.1145/957205.957206

40. Sottet JS, Vagner A. Genius: generating usable user interfaces. arXiv preprint arXiv:1310.1758;
2013.

41. Sottet JS, Vagner A. Defining domain specific transformations in human-computer interfaces
development. In: 2nd Conference on Model-Driven Engineering for Software Developement.
2014.

42. Sottet JS, Calvary G, Coutaz J, Favre JM. A model-driven engineering approach for the
usability of plastic user interfaces. In: Engineering Interactive Systems. Berlin/New York:
Springer; 2008. p. 140–57.

43. Sottet JS, Vagner A, García Frey A. Model transformation configuration and variability man-
agement for user interface design. In: International Conference on Model-Driven Engineering
and Software Development. Springer International Publishing; 2015. p. 390–404.

44. Sottet JS, Vagner A, García Frey A. Variability management supporting the model-driven
design of user interfaces. In: Modelsward. 2015.

45. Sumner T, Davies S, Lemke AC, Polson PG. Iterative design of a voice dialog design
environment. In: Wixon DR, editor. Posters and Short Talks of the 1992 SIGCHI Conference
on Human Factors in Computing Systems, CHI 1992, Monterey, 3–7 May 1992. New York:
ACM; 1992. p. 31. http://doi.acm.org/10.1145/1125021.1125050.

46. Syswerda G. Uniform crossover in genetic algorithms. In: Schaffer JD, editor. Proceedings of
the 3rd International Conference on Genetic Algorithms (ICGA). Morgan Kaufmann; 1989,
p. 2–9. ISBN: 1-55860-066-3.

47. Takagi H. Interactive evolutionary computation: fusion of the capabilities of EC optimization
and human evaluation. Proc IEEE. 2001;89(9):1275–96.

48. White J, Dougherty B, Schmidt DC, Benavides D. Automated reasoning for multi-step feature
model configuration problems. In: Proceedings of the 13th International Software Product Line
Conference. 2009.

http://doi.acm.org/10.1145/989863.989936
http://doi.acm.org/10.1145/957205.957206
http://doi.acm.org/10.1145/1125021.1125050

	3 Variability Management and Assessment for User Interface Design
	3.1 Introduction
	3.2 Related Work
	3.2.1 Feature Modelling
	3.2.2 SPL Configuration
	3.2.3 Model-Driven User Interfaces Variability
	3.2.4 Testing Many Variants

	3.3 UI-SPL Approach
	3.3.1 Multi-FM Approach
	3.3.2 Implementation: Model Transformation

	3.4 Evaluation of Configuration: Rapid Prototyping
	3.4.1 Step 1: Deriving All Relevant Configurations
	3.4.2 Step 2: Variant Assessment

	3.5 Case Study
	3.5.1 The Contact List Example
	3.5.2 Defining Configurations Chromosome

	3.6 Case Study: Experimentation
	3.7 Conclusion and Perspectives
	References

