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The composition and function of gut microbiota play a role in obesity and metabolic disease, yet the mechanisms
have not been fully described. As new discoveries and advances in the field have occurred, the relevance of gut
microbiota in clinical care has become more substantial. There is promising potential for manipulation of the gut
microbiota as treatment of obesity and associated health complications, both as a standalone therapy and as part

of interventions such as weight loss. In this review we have compiled knowledge and concepts that are important
in the consideration of gut microbiota for clinical care.

1. Introduction

Even though there have been notable scientific advances in the
study of gut microbiota and obesity, a causal relationship between the
two remains undefined [1]. Although promising mechanistic links have
been uncovered in rodents, the myriad factors underlying human obe-
sity and related-metabolic dysfunction (including genetics/epigenetics
and lifestyle) make it difficult to demonstrate an independent role for
gut dysbiosis. Studies have measured composition, functional potential,
metabolomics, and ecologic dynamics of the gut microbiota, but we still
do not know their relative contribution to complex disease pathophy-
siology and their concrete applicability to clinical care.

We, here summarize key discoveries made thus far that could have
relevance in the management of obesity and its co-morbidities (Fig. 1).

2. Cross-talk between microbiota and host in metabolic disorders

Composition and function of the microbiota differ between healthy
lean and obese subjects [2]. Gut microbiota is modified in obesity per se
and related-comorbidities, including type 2 diabetes (T2D) [3-7], non-
alcoholic steatohepatitis [8], and cardiovascular diseases [9]. The me-
chanisms believed to link the gut microbiota with obesity, at least in
animals, include energy extraction capacity from food, influence on the
integrity of the gut barrier, modulation of chronic inflammation and the
immune system, and production of specific metabolites that, besides
having a local effect on the gut-associated immune system and in-
testinal barrier, also signal to other tissues and organs including the
brain, liver and adipose tissue.

* Corresponding authors.

2.1. Factors influencing gut microbiota and metabolic diseases

Metabolic diseases stem from a combination of factors, including
host intrinsic characteristics, lifestyle and environment, genetic/epi-
genetic factors and gut microbiota composition and function. Diet has
been widely studied in connection with the gut microbiota in obesity.
For example, microbiota enterotypes, which have been used to group
people according to their dominant phyla, are associated with long-
term dietary habits [10]. Fermented foods and fiber consumption are
associated with a healthier and more diverse microbiota [11]. As shall
be described below, people living in more industrialized environments
tend to have lower microbial diversity than people living in a more
traditional manner.

Exchange of microbiota between individuals is another factor that
shapes the microbial ecosystem. Adults consuming Western or re-
stricted diets had distinct gut microbiota compositions, and lower
richness was found in Western diet consumers. The microbes from these
individuals were transplanted onto mice. Upon co-housing and enabling
the transfer of gut microbiota (i.e. mice are coprophagic) recipients of
the Western diet microbiota acquired traits of the restricted diet [12].
Similar results were seen in Ridaura et al. [13], showing the phenotypic
transmissibility of some microbiota properties from humans to mice.

Pharmacology has an important effect on gut microbiota composi-
tion. Antibiotic treatment leads to profound and long-lasting mod-
ifications in the gut ecosystem [14]. Metformin, a key antidiabetic
agent, has been identified as a confounder of microbiota observations in
diabetes studies. These studies have suggested that the effect of met-
formin on the host may be partially induced through the gut microbiota
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Fig. 1. Potential of gut microbiota in clinical care. Several aspects of gut microbiota composition and function have been implicated in metabolic diseases. Taking into consideration
intrinsic patient characteristics, health status and environmental factors, manipulation of the gut microbiota could eventually be used in a wide array of treatments for metabolic disease,
such as calorie restriction, bariatric surgery, prebiotic/probiotic intake and fecal microbiota transplantation. These treatments have shown changes in gut microbiota, which have been in
turn associated with positive health outcomes, although causation remains to be demonstrated in humans. CR = calorie restriction, BS = bariatric surgery, Akk = Akkermansia muci-

niphila.

[15-17]. It is not excluded, however, that microbial composition may
modify the pharmacology of drug compounds frequently used in me-
tabolic disease leading in some circumstances to differential clinical
effect as it was shown for example for digoxin, a well-known antiar-
rhythmic agent [18].

2.2. The gut microbiota influences host intestinal barrier and immune
response

There is an association between gut dysbiosis and disruption of the
intestinal barrier's integrity, specifically mucus production and layer
thickness, tight junctions, insulin sensitivity, and inflammation.
Disruption of the intestinal architecture may lead to leaking of gut-
derived compounds that would otherwise stay in the gut lumen. Cani
et al. termed the detection of lipopolysaccharide (LPS) in circulation
‘metabolic endotoxemia,” and found it to be associated with chronic
inflammation and disruption of metabolic homeostasis, particularly
insulin sensitivity, in mice. LPS acts by activating Toll-like receptor 4
(TLR4) and inducing an inflammatory cascade. LPS from certain bac-
terial groups is more inflammatory than others, and it may be trans-
located in chylomicrons or by leaking through a permeable gut. High
fat diets are associated with endotoxemia [19,20].

There is a complex interplay between microbiota, intestinal epi-
thelium and the gastrointestinal immune system, with many metabo-
lites and microbial components having a direct influence on the host's
immunity. The production of metabolites from nutrients or modifica-
tion of host-produced metabolites has a direct effect on immune cells
and on both the integrity and permeability of the intestinal epithelium.
The enteric immune system is constantly assessing and responding to
the gut microbiota. A healthy gut ecosystem is needed in the develop-
ment of immune tolerance, for example by promoting regulatory T cell
(Tyeg) differentiation and expansion [21], and prevention of auto-
immune disease or chronic inflammation.

The most studied metabolites in connection with microbiota and
host are short chain fatty acids (SCFA). They are synthesized from fiber
metabolism by certain bacterial groups. SCFA act on the host in dif-
ferent ways. They serve as a source of energy for colonocytes, they have
a critical influence on glucose homeostasis by inducing gluconeogenesis
on colonocytes, as histone deacetylase (HDAC) inhibitors they impact
epigenetic modifications, and they influence incretin secretion, speci-
fically glucagon-like peptide 1 (GLP-1), through activation of G protein-
coupled receptors GPR41 and GPR43 [22,23]. SCFA are elevated in
obesity [24,25], where it is believed microbiota is more efficient at
extracting energy from otherwise indigestible fibers, although this has
not been fully demonstrated. Acetate may also have a role in central

signaling of hunger and satiety [26,27]. SCFA have an anti-in-
flammatory effect through different pathways via both innate and
adaptive immunity; they may inhibit pro-inflammatory cytokine pro-
duction and promote T, expansion. They also maintain the integrity of
the intestinal epithelial barrier [21]. Since differences were found in
immune cells of the jejunum layer in severe obesity [28], it would be of
major importance to examine the interaction between obesity-related
immune dysfunction, the intestinal tract and gut microbiota. One ex-
ample pertains to lymphocyte subtypes known to be modified in obese
condition [29]. Mucosal-associated invariant T (MAIT) cells are innate-
like T cells that recognize bacterial ligands. They are present in blood
and enriched in mucosal and inflamed tissues [30]. We showed a de-
pletion of circulating MAIT cells in obese and diabetic subjects [108].
MAIT cells in metabolic disorders have an exacerbated pro-in-
flammatory phenotype (increased IL-17). Furthermore, MAIT cell acti-
vation is directly influenced by metabolites synthesized from vitamin
B2 and B9 by gut bacteria [30].

There are various other examples of microbiota metabolites and co-
metabolites that have been implicated in metabolic disease. For ex-
ample, trimethylamine (TMA) is generated from dietary choline and
carnitine by certain bacterial taxa, and converted in the liver to tri-
methylamine N-oxide (TMAO). This compound has been consistently
associated with increased risk of cardiovascular disease and mortality
in humans and found to promote atherosclerosis in mice [31-33],
though the mechanism remains unknown. Importantly, certain micro-
biomes (e.g. vegans and vegetarians) are unable to produce TMA. An-
other example is the production of branched chain amino acids (BCAA)
by microbiota. A microbiome with a higher potential to produce BCAA
has been associated with obesity [13], and insulin resistance [34]. This
is relevant because high circulating concentrations of BCAA may dis-
rupt glucose homeostasis and have been associated with T2D and
obesity [35]. These findings call for detailed studies not only of mi-
crobiota composition but also of functional potential and metabo-
lomics.

2.3. Gut microbiota diversity is decreased in metabolic diseases

A lower microbial diversity has been shown in populations where
the burden of obesity and metabolic disease is greater [36-39]. When
comparing fecal microbiota between groups from urban areas in the
United States, rural areas in Malawi, and Amerindians from the Vene-
zuelan Amazon it was found that subjects from the United States had
the least diverse microbiota and the Amerindians had the highest di-
versity [36], suggesting a link between urbanization, low fiber content
of Western diets, microbiota and metabolic diseases.



In a French group of overweight and obese adults (MICRO-Obes
study) a lower microbial diversity, quantified using metagenomic se-
quencing, was associated with higher inflammation, dyslipidemia,
adiposity and insulin resistance [41]. Individuals with higher diversity
had a healthier dietary pattern [11]. Similarly, in a Danish group of
lean and obese adults diversity was inversely associated with corpu-
lence, and individuals with lower diversity had lower abundance of
butyrate-producing bacteria such as Faecalobacterium prausnitzii.
Moreover, these subjects had a lower Akkermansia muciniphila to Ru-
minoccocus gnavus ratio potentially resulting in higher mucus degrada-
tion, and a microbial functional potential less capable of handling
oxidative stress [4]. As diversity appears to be an important phenotype,
it remains to be determined whether lower microbial diversity is a
consequence or one of the causes for the deterioration of metabolic
health in obese individuals. One possible mechanism could be that a
greater microbial diversity may lead to a complete and complex func-
tional repertoire that is able to metabolize complex carbohydrates and
other substrates more readily [22].

Analysis using 16S rRNA sequencing has yielded consistent results
with metagenomics [42,43]. In a subset from the TwinsUK cohort lower
diversity was associated with greater abdominal adiposity [42]. There
were associations between host genetic variants and adiposity-asso-
ciated OTUs, corroborating the existence of a link between host genetics
and gut microbiota. In the same cohort lower diversity was associated
with greater weight gain over 9 years of follow up [44]. Although si-
milar observations have been obtained with different methodologies,
metagenomics provides greater insight to both the composition and
functional potential of the gut microbiome. A recent meta-analysis
compared studies that had reported richness and Bacteroidetes-to-Fir-
micutes ratio using 16S rRNA sequencing [45]. There was consistent yet
narrowly lower richness in obesity. This was partly attributed to low
statistical power and large inter-individual differences in microbiota
composition. Human microbiota studies usually lack statistical power to
detect the mild effect sizes of the microbiota. Future studies should be
carefully designed and presented in a way that allows harmonization
with previous reports in an effort to find consistencies in the field.

2.4. Gut bacteria species and host health: the example of A. muciniphila

Akkermansia muciniphila (A. muciniphila) is one of most widely stu-
died gut bacterial species in relation to obesity and glucose homeostasis
[46]. A. muciniphila is a gram negative bacterium that can use mucin
glycans of the intestinal mucus layer as its sole source of energy. In
overweight adults we showed that A. muciniphila was associated with
insulin sensitivity, smaller adipocyte size, and in general better meta-
bolic health [47]. The mechanistic link between A. muciniphila and
human health remains unknown. There is, however, compelling evi-
dence in mice on how A. muciniphila may impact the host. Everard et al.
showed that A. muciniphila abundance was lower in obese mice, and
that increasing its intestinal abundance either with oligofructose or live
culture gavage led to decreased endotoxemia, body fat, improved in-
sulin sensitivity, and protected integrity of the gut barrier [48]. More
recently, an outer membrane protein of A. muciniphila, Amuc_1100, has
been identified. It is involved in pilus formation and stimulates the Toll-
like receptor 2 (TLR2) system thereby possibly participating in cross-
talk with the host and maintaining epithelial layer integrity. When
given to mice, this protein had similar beneficial effects on the host than
live A. muciniphila with respect to body composition, insulin sensitivity
and protection of intestinal barrier integrity [49]. However, the me-
chanisms of action of Amuc_1100 and A. muciniphila may only partially
overlap. This study also showed that A. muciniphila could be grown in
synthetic medium and that Amuc_1100 remains active after pasteur-
ization, making it an attractive therapeutic target. In fact, protocols for
its preparation and preservation for therapeutic applications have al-
ready been developed [50]. Currently Dr. Cani's group is conducting a
clinical trial of A. muciniphila supplementation in overweight and obese

adults, hypothesizing that it will health
(NCT02637115).

A. muciniphila abundance may increase through dietary changes. In
mice, diets enriched with oligofructose [48], fruit-derived polyphenols
[51,52], fish oil [53], or a fiber-free diet [54] have all led to increased
abundance in gut A. muciniphila. However, we did not find an asso-
ciation between food or nutrient intake, or diet quality and A. mucini-
phila abundance in humans [47]. The modulation of A. muciniphila
through prebiotic intake requires further investigation.

While the potential of A. muciniphila as an individual species in
clinical applications is clear, the effect of its microbial ecosystem and
intestinal environment must be considered. For example, we showed
that the best clinical status was seen in individuals with both higher
abundance of A. muciniphila and microbial diversity [47]. A. muciniphila
is a producer of acetate and propionate [55], which may be used as
sources of energy by other bacterial species. Future research should
study the impact of increasing A. muciniphila abundance on gut ecology,
functional potential, and metabolite output.

A. muciniphila combines a series of unique qualities. As a mucin
degrader it resides in close proximity to the epithelial barrier; it has
been shown to interact with human epithelial cell lines in vitro [56].
This bacterium has an attenuating and wide-ranging effect on the im-
mune system [57,58]: animal studies show that it mediates the negative
effects of interferon gamma (IFNy) on glucose homeostasis [59], has
lower capacity to stimulate interleukin 8 (IL-8) production and TLR4
response than certain pro-inflammatory species [56], and induces the
TLR2 pathway [49] which may have a protective effect on the epithelial
layer. Therefore, it may be through strengthening of the epithelial
barrier, reduction of gut permeability and endotoxemia, attenuation of
the immune system, and improvement of glucose homeostasis that A.
muciniphila impacts the host. Furthermore, as a SCFA producer an effect
on the gut-brain axis is expected.

improve metabolic

3. Approaches to modulate gut microbiota and improve metabolic
disease

3.1. Weight loss, prebiotic and probiotic interventions

Dietary interventions lead to compositional and functional mod-
ifications in the gut microbiota (reviewed in [60]) that have been
correlated with improvements in various health outcomes. The field is
currently trying to go beyond correlations and discern the role that
microbiota plays in outcomes from these interventions (Fig. 1).

3.1.1. Calorie restriction and dietary interventions

To gain a better understanding of how gut microbiota could impact
the host, one approach would be to study the traits that have been
consistently associated with better health and determine how they
change with a dietary intervention, and their relationship with clinical
outcomes. In the MICRO-Obes study, mentioned above, 49 overweight
and obese adults underwent CR for 6 weeks followed by a weight
maintenance regime for 6 additional weeks. The individuals that had
low gene richness at baseline experienced a significant increase after CR
[41]. Conversely, richness did not change for those with higher baseline
levels. This suggests that there may be a diversity ceiling in each in-
dividual that, once reached, cannot be overcome by a dietary inter-
vention alone [22]. The reversibility of microbial diversity was studied
in mice consuming high or low amounts of microbiota-associated car-
bohydrates. For the mice whose diversity was lowered due to low
consumption of the carbohydrates, it took supplementation of both the
carbohydrates and replacement of lost microbial groups to restore di-
versity [61]. This study has implications in the consequences of Wes-
tern-style diets on gut microbiota and health.

Additional findings from the MICRO-Obes study showed that A.
muciniphila actually decreased over the weight loss period in subjects
that had the highest baseline abundance, and only moderately



increased for subjects with low baseline abundance [47]. Throughout
the intervention, subjects with higher baseline A. muciniphila retained
an abundance 100-fold greater than those with low baseline levels.

Clinical outcomes and microbial compositional shifts in response to
dietary interventions are variable among individuals (i.e. as responders
and non-responders) [62]. This raises the question of whether perso-
nalized interventions are the next step in unveiling how the microbiota
influences health outcomes, and how response to interventions can be
optimized. Using metadata from 800 healthy or prediabetic individuals,
which included microbiota, lifestyle and clinical parameters, together
with machine learning, researchers recently were able to device an
algorithm that predicts a person's glycemic response to a given meal
[63]. They demonstrated in both the main and validation cohorts that
these personalized interventions led to improved postprandial glycemic
responses. Another approach has been developed by Shoaie et al.
whereby studying the complex interactions between host, diet and
microbiota composition, a dietary intervention that would in theory
increase microbial richness was designed [64]. Future research should
determine whether a beneficial outcome could be induced in non-re-
sponders through the use of personalized interventions.

While even short term dietary interventions lead to compositional
changes in the gut microbiota [65], it is becoming increasingly clear
that long term dietary habits and microbiota composition prior to a
dietary or CR intervention impact the individual's response [10,41,47].
For example, a 10-day dietary intervention induced a change in mi-
crobiota composition as early as 24-h after baseline, but not enough for
individuals to change their enterotype [10]. Associations between en-
terotypes and diet were also stronger when studying habitual diet
through FFQ than recent dietary intake through 24-h recall. Deeper
understanding of the complex interaction between dietary profiles and
gut microbiota is mandatory.

3.1.2. Bariatric surgery

Bariatric surgery (BS) is increasingly being used and an effective
treatment for T2D [66]. T2D remission occurs in an overwhelming
number of patients shortly after surgery. The reconfiguration of the gut
architecture and change in gut microbiota are believed to play a role in
metabolic ameliorations (reviewed in [60,67,68]). Studies of gut mi-
crobiota after BS in humans have had for the most part small sample
sizes. Some consistencies between human and animal studies have been
found. For example, abundance of A. muciniphila and Proteobacteria
increased after BS [69-73]. Richness has been found to increase
3 months after Roux-en-Y gastric bypass (RYGB) [73,74] but to de-
crease 6 months after bilio-intestinal bypass, as measured with 16S
rRNA sequencing [75]. Changes in F. prausnitzii abundance have been
inconsistent, with increases being reported in some instances [76,77],
and decreases in others [71,73].

The functional potential of the microbiome warrants further study
in bariatric interventions. Interestingly, the microbial functional po-
tential of 13 patients undergoing RYGB changed to a greater extent than
the abundance of individual species [73], highlighting the importance
of not only studying compositional changes but also function and even
metabolomics output. In this study, the functional potential reflected a
reaction by the gut microbiota to the changes in oxygen levels and
nutrient availability in the gut after the surgery.

Strong evidence for involvement of microbiota in clinical outcomes
long term after surgery has been shown [72]. Varying degrees of
overweight were replicated in germ free mice receiving microbiota
from obese women or women that had undergone RYGB, or vertical
banded gastroplasty. Differences in microbiota composition, function,
and metabolomic output were seen between the different groups. The
type of BS certainly has an effect on compositional modifications of the
gut microbiota because the intestinal architecture, pH, incretin and
metabolite secretion, changes in bile production [67,78], and even
post-intervention diet [79] differ across surgeries. In fact, findings in
humans generally differ across the different types of BS and follow-up

time [80-82].

Microbiota may mediate changes in the host after BS in various
ways. Secondary bile acids generated by microbes may play a role in
the beneficial effects after BS. Higher levels of both primary and sec-
ondary bile acids have been observed after RYGB in humans [80,83-85]
and in mice [86]. In humans, although not directly linked with clinical
outcomes, an early postoperative rise in total bile acids was attributed
to a surge in bacterially-derived secondary bile acids. Mouse studies
have unveiled the potential mechanisms linking secondary bile acids
and shifts in gut microbial communities to metabolic outcomes after BS,
suggesting pathways through the activation of farnesoid X receptor
(FXR) and G-protein-coupled bile acid receptor (TGR5) [40,87].

Patient characteristics prior to an intervention have an impact on
gut microbiota changes and clinical response to the surgery. In the fu-
ture one could envision a system whereby clinical background, lifestyle
and gut microbiota analysis of the patient prior to surgery are sys-
tematically analyzed and taken into account in the prediction and op-
timization of their response [60].

3.1.3. Do prebiotics and probiotics aid in weight loss interventions?

There is compelling evidence that pre and probiotics may have a
positive impact on metabolic health in animal models and in humans
(reviewed in [60,88-90]). Here we focus on human studies that have
added pre or probiotic supplementation to weight loss interventions to
determine if they synergize with the treatment and improve response.

Few weight loss studies with pro or prebiotic supplementation have
been conducted. There has been a tendency towards greater weight loss
and metabolic improvement when probiotics are taken in combination
with CR [91-93]. Among these, an RCT compared outcomes after
12 weeks of CR in overweight and obese women that were given either
a probiotic yogurt or a low-fat yogurt. Although there was no difference
in weight loss, the group taking the probiotic yogurt experienced an
improvement in blood lipid profile and glucose homeostasis [93]. Few
strains and doses have been tested and the gut microbiota has not been
characterized in most of these studies. Future studies should include
these elements, probably combining different bacterial strains.

There have also been few BS interventions measuring the impact of
probiotics supplementation post-surgery. One study found that RYGB
patients taking 2.4 billion Lactobacillus daily for 6 months after surgery
experienced lower bacterial overgrowth, greater short term weight loss,
and improved vitamin B12 status over patients not taking the probiotic
[94]. However, two other studies with different design found no added
benefit of probiotic supplementation over placebo in measured out-
comes [95,96]. Similarly to CR interventions, more studies testing
varying doses and strains of bacteria are needed to clarify whether there
is an added benefit of probiotic supplementation after BS.

3.2. Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) not only offers great po-
tential for the treatment of a wide array of diseases, but is also a good
model to study causality in the relationship between gut microbiota and
human metabolic disorders. Animal microbiota transplantation studies
have demonstrated that gut microbiota may modulate obesity and re-
lated disruptions in host metabolism such as insulin resistance
[24,97,98]. Ridaura et al. showed that higher weight gain could be
transferred through gut microbiota by fecal transplants from human
twins discordant for obesity to germ free mice [13]. When co-housed
lean and obese recipient mice received a low fat high fiber diet, mi-
crobiota from the lean mice colonized the obese recipient mice thereby
transferring the phenotype. Even though it is uncertain whether FMT
would be an effective therapy against metabolic syndrome, it is a good
proof of concept approach to study the causal relationship between
microbiota and obesity.

FMT is an effective therapy to treat enteric infections, particularly
Clostridium difficile, and perhaps also intestinal chronic inflammatory



diseases [99,100]. The prospect of using FMT for the treatment of
metabolic diseases has also been contemplated but results have not
been as definitive as in previous applications. This question has been
best explored in a study where obese men with metabolic syndrome
received either autologous or allogenic fecal microbiota from lean
healthy donors [101]. Fecal microbiota transplants were done by
duodenal tube into the small intestine. Median insulin sensitivity, as
measured by glucose disappearance rate during euglycemic hyper-
insulinemic clamps, tended to improve in the allogenic group after
6 weeks of transplantation. This effect however was variable between
individuals, with some responders and non-responders. While microbial
diversity was lower in the overweight group, it increased after allogenic
transplantation. The abundance of butyrate producing bacteria in-
creased in both fecal and small intestine microbiota samples.

These patients were further followed for a total of 3 months post
FMT to study the resilience of the microbiota. New species were found
to coexist with pre-existing ones in the recipients especially if they were
phylogenetically related [102]. In fact, strain replacement was more
marked than uptake of donor species, calling for future studies to ex-
amine microbial composition at the strain level. There were different
degrees of engraftment and resistance to donor colonization. The mi-
crobiota of one of the healthy donors stood out as having greater ability
to invade several recipients. Resilience of certain strains was detected
up to at least 3 months after transplantation, but the changes in mi-
crobiota were not associated with clinical outcomes. The lack of a more
marked effect of FMT on insulin sensitivity may be partly explained by
the selection and characterization of recipients. Insulin resistance as a
complication of metabolic disruption may manifest similarly across
patients, but some of these pathologies may be more dependent on the
gut microbiota than others.

For FMT to be used in a clinical setting in the treatment of metabolic
disorders future studies should consider: analysis of gut microbiota
composition at the strain level, background intra-individual variation of
the gut microbiota so that it is not confused with treatment-specific
changes, and immune response of the recipient [102-104]. To go be-
yond FMT, perhaps sets of strains identified as beneficial should be
tested as supplements. This would circumvent identification of com-
patible donors and the risks associated with transplantation of fecal
matter. There is also the question of resilience. Even though microbiota
composition may be transplantable, using this as a treatment would
require repeated inoculations to the patient. Studying what changes in
lifestyle factors are required in order to better maintain donor micro-
biota composition is warranted.

There has been a lack of standardization in the procedures of FMT,
which makes comparisons across studies difficult. Standardization
should include guidelines in donor selection, route of delivery, pre-
treatment preparation of recipient, and collection and processing of the
fecal sample [103]. The impact of host microbiota composition and
genetics on the effectiveness of FMT to treat obesity-associated mor-
bidities also needs to be studied.

A better understanding of what is being transferred is also needed.
As explained by Bojanova and Bordenstein, not only bacteria but also
colonocytes, metabolites, and other microorganisms such as viruses,
phages, fungi, archaea, and protists are also transferred [105]. Focus
has usually been given to bacteria but the other components are likely
also having a biologically significant impact.

4. Conclusions

We have summarized current knowledge on gut microbiota in re-
lation to obesity and clinical care. In order to broaden our under-
standing in this field and move onto established clinical applications,
which may include personalized interventions, careful consideration
should be given to study design, statistical power and method selection.
Various confounders of gut microbiota observations, such as stool
consistency and pharmacology [106] should be routinely measured.

Furthermore, elements from both host and environment that influence
gut microbiota composition and function should be studied through
data integration analytical methods. This kind of approach is being
applied in the METACARDIS study, where extensive phenotyping is
being gathered from individuals representing the different stages of
metabolic disease (NCT02059538). Finally, investigation of gut mi-
crobes in relation to metabolic disorders needs to include bacterial
differences at the strain level, as well as other members of the microbial
community, such as the enteric virome [107]. The gut microbiota is an
important player in metabolic health and even though the mechanisms
are not fully understood, further advances will be made through
methodologic harmonization, deep phenotyping, and integration of
knowledge.
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