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Abstract

Using equations proposed by J. Suzuki we compute numerically the first three integrals of motion for 
N = 1 supersymmetric CFT. Our computation agrees with the results of ODE-CFT correspondence which 
was explained in a more general context by S. Lukyanov.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The present paper contains some preliminary results for a larger project which consists in 
computing the one-point functions for the supersymmetric sine-Gordon model (ssG) generalising 
the results of [1,2] obtained for the sine-Gordon case (sG). This problem is interesting because 
the integrable description of the space of local operators for the ssG model should be derived 
from that of the inhomogeneous 19-vertex Fateev–Zamolodchikov model while for the sG case 
it was related to the inhomogeneous 6-vertex model. There is an interesting difference between 
the two cases: for the 6-vertex case the local observables are created by two fermions while for 
the 19-vertex case one has to introduce additional Kac–Moody current [3].

The ssG model is a simplest example of integrable model with supersymmetry. The study 
of ssG model goes back to works [4,5]. The supersymmetry is one of the building blocks of 
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modern theoretical physics, which motivated the authors of these papers to try finding solvable 
two-dimensional examples of supersymmetric models.

The first indispensable step consists in finding the corresponding description in the conformal 
case like in the paper [6]. The generalisation is already not quite trivial. For example, in the com-
putations of the ground state eigenvalues of the local integrals of motion the paper [6] follows 
the procedure proposed in [7], namely it uses the NLIE (non-linear integral equations) equations 
on a half-infinite interval. This allows to develop an analytical procedure for the computation of 
the eigenvalues in question. Then the procedure is generalised in order to compute the expec-
tation values on a cylinder of the CFT operators in the fermionic basis. Unfortunately, similar 
procedure for the super CFT case is unknown to us, and we are forced to proceed with numerical 
computations based on equations which for the 19-vertex model were proposed by J. Suzuki [8]. 
It should be said that Suzuki equations have been used already for ssG model and its conformal 
limit in [9].

In the present paper we shall apply the Suzuki equations to the ssG model. In the high temper-
ature limit we compute numerically the eigenvalues of the first three local integrals of motion. We 
interpolate the results getting exact general formulae. This way of proceeding may look strange 
having in mind that the formulae in question can be alternatively obtained by the ODE-CFT cor-
respondence [10,11] following Lukyanov [12] as will be explained. However, one should have in 
mind that we are doing a preliminary work, intending in future to proceed with similar methods 
to the one-point functions for which not much is known.

The paper is organised as follows. In the second section we give a very brief account of the 
ssG model viewed as a perturbed CFT. In the third section we give some exposition of the Suzuki 
equations. This consideration is not original, basically we repeat in appropriate for our goals lan-
guage the results of the works [8,9]. We simplify our consideration comparing to these papers 
considering the ground state only. The forth section contains numerical results and their interpo-
lation. Finally, in the last section we explain how the eigenvalues are obtained from ODE-CFT 
correspondence following [12].

2. Supersymmetric sine-Gordon model

We begin with a very brief description of the supersymmetric sine-Gordon (ssG) field theory, 
an interested reader can find all necessary details in [13]. In the framework of Perturbed CFT 
(PCFT) the ssG is considered as a perturbation of the c = 3/2 CFT (one boson+one Majorana 

fermion) by the relevant operator � = −μψ̄ψ cos
(

βϕ√
2

)
:

A =
∫ ( 1

16π
∂zϕ∂z̄ϕ + 1

2π

(
ψ∂z̄ψ + ψ̄∂zψ̄

) − 2μψ̄ψ cos

(
βϕ√

2

))
d2z . (2.1)

The dimensional coupling constant μ is of dimension is [mass]1−β2
. The scaling dimension of 

this operator �pert = 1
2 (1 + β2) is greater than 1

2 , so the UV regularisation is needed. The OPE

�(z, z̄)�(0) = 1

(zz̄)1+β2 + C · 1

(zz̄)1−β2 cos
(√

2βϕ
)

+ · · · , (2.2)

shows that the UV regularisation is simple: the first non-trivial contribution comes with inte-
grable singularity. The model is shown to be integrable, actually this is the simplest example 
of perturbations of parafermionic models whose integrals of motion are obtained in [14]. The 
factorisable S-matrix is known, it coincides with the S-matrix for the spin-1 integrable magnetic 
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[15], in the context of relativistic field theory it was discussed in [16]. The S-matrix is compatible 
with the N = 1 supersymmetry.

The formula for the action (2.1) may contradict the reader’s intuition because the supersym-

metric classical action contains the additional term �1 = −πμ2

β2 cos
(√

2βϕ
)

which we have 
seen already in the OPE (2.2). In the frame work of the PCFT this term, as it is written, cannot 
be added to the action for dimensional reasons, at least it needs a new dimensional coupling con-
stant. In the classical limit β → 0 the situation becomes more complicated. That is why, when 
proceeding in the opposite direction, i.e. quantising the classical model by more traditional meth-
ods of QFT, one should indeed begin with the supersymmetric action which includes �1 and take 
care of preserving the supersymmetry. This was done in [17], the result is exactly as expected 
from our dimensional considerations: the dimensional coupling constants for the two terms of 
the interaction are renormalised differently, the term with �1 containing vanishing power of the 
cutoff.

Like in the sine-Gordon case it is often convenient to rewrite the action as

A=
∫ [( 1

16π
∂zϕ∂z̄ϕ + 1

2π

(
ψ∂z̄ψ + ψ̄∂zψ̄

) − μψ̄ψe
−i

β√
2
ϕ
)

− μψ̄ψe
i

β√
2
ϕ
]
d2z , (2.3)

considering the model as perturbation of a supersymmetric CFT with the Virasoro central charge 
equal to c = 3

2

(
1 − 2(β − β−1)2

)
, by the relevant operator (the last term) with scaling dimension 

� = β2.
The mass of the fundamental particles is exactly related to the dimensional coupling constant 

by a formula of Al. Zamolodchikov’s type

M = 4(1 − β2)

πβ2

(
π

2
μγ

(1 − β2

2

)) 1
1−β2

, (2.4)

where γ (x) = 
(x)/
(1 − x).

3. Suzuki equations

In this section we shall use more appropriate parameters for the lattice case:

ν = 1
2 (1 − β2) q = eπiν .

Consider an inhomogeneous XXZ chain of spin 1 of even length L with twist qκ . In order to 
avoid multiple change of variables we shall work from the very beginning with the rapidity-like 
ones. The relation to usual multiplicative variables λ [3] is λ = eπiνθ . We shall consider two 
transfer-matrices corresponding to auxiliary spaces of spins 1/2 and 1. Corresponding ground 
state eigenvalues will be denoted respectively by T1(θ), T2(θ).

The Baxter equations take the form

T1(θ)Q(θ) = a(θ)Q(θ + πi) + d(θ)Q(θ − πi) , (3.1)

where a(θ) and d(θ) are trigonometric polynomials:

a(θ) =
L∏

sinhν(θ − τj − πi), d(θ) =
L∏

sinhν(θ − τj + πi) .
j=1 j=1
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T1(θ) is a trigonometric polynomial of the same form and the same degree, finally

Q(θ) = eνκθ
m∏

j=1

sinhν(θ − σj ) , (3.2)

σj being the Bethe roots. We shall be interested in the case of real τj and κ which implies

a(θ) = d(θ̄)

We are interested in the ground state for which m = L. For large L and sufficiently small κ the 
Bethe roots are close to the two-strings: σ2j−1 � ηj −πi/2, σ2j � ηj +πi/2 for certain real ηj .

The transfer-matrix T2(θ) is obtained by the fusion relation:

T2(θ) = T1(θ − πi/2)T1(θ + πi/2) − f (θ) , (3.3)

here and later

f (θ) = a(θ − πi/2)d(θ + πi/2) .

According to the investigation done by Suzuki [8] the zeros of T1(θ) lie approximately on the 
lines Im(θ) = ±3πi/2, and zeros of T2(θ) lie approximately on the lines Im(θ) = ±πi, Im(θ) =
±2πi.

Let us introduce the auxiliary functions

y(θ) = T2(θ)

f (θ)
, Y (θ) = 1 + y(θ) . (3.4)

The function log(T2(θ)) grows for Re(θ) → ±∞ slowly (as ±2Lθ ). This allows to derive from 
(3.3) the first important relation:

logT1(θ) = (L ∗ log(f Y ))(θ) , (3.5)

where we introduced the kernel which will be often used:

L(θ) = 1

2π cosh θ
,

and ∗ means the usual convolution product.
We have

T2(θ) = λ1(θ) + λ2(θ) + λ3(θ) ,

where

λ1(θ) = a(θ + πi/2)a(θ − πi/2)
Q(θ + 3πi/2)

Q(θ − πi/2)

λ2(θ) = a(θ + πi/2)d(θ − πi/2)
Q(θ − 3πi/2)Q(θ + 3πi/2)

Q(θ − πi/2)Q(θ + πi/2)

λ3(θ) = d(θ + πi/2)d(θ − πi/2)
Q(θ − 3πi/2)

Q(θ + πi/2)
.

The second auxiliary function is defined by

b(θ) = λ1(θ + πi/2) + λ2(θ + πi/2)

λ3(θ + πi/2)
, B(θ) = 1 + b(θ) . (3.6)
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Using the Baxter equation we derive

b(θ) = T1(θ)
Q(θ + 2πi)

Q(θ − πi)

a(θ + πi)

d(θ)d(θ + πi)
. (3.7)

On the other hand it is obvious from the definition that

T2(θ + πi/2) = B(θ)d(θ + πi)d(θ)
Q(θ − πi)

Q(θ + πi)
. (3.8)

Multiplying the latter equation by the conjugated one for real θ one easily derives the second 
important equation

logy(θ) = (L ∗ log(BB))(θ) . (3.9)

Now comes the main of Suzuki’s tricks. Consider a function G(θ) which is regular in the strip 
0 < Im(θ) < π , and which decrease sufficiently fast at ±∞. Then having in mind the structure 
of zeros of T2(θ) described above we have

∞∫
−∞

(
G(θ − θ ′) logT2(θ

′ + πi/2) − G(θ − θ ′ + πi) logT2(θ
′ − πi/2)

)
dθ ′ = 0 . (3.10)

Using (3.8) we rewrite this as follows
∞∫

−∞

(
G(θ − θ ′) + G(θ − θ ′ + πi)

)
log

Q(θ ′ + πi)

Q(θ ′ − πi)
dθ ′

=
∞∫

−∞

(
G(θ − θ ′) log(d(θ ′)d(θ ′ + πi)) − G(θ − θ ′ + πi) log(a(θ ′)a(θ ′ − πi))

)
dθ ′

+
∞∫

−∞

(
G(θ − θ ′) log(B(θ ′)) − G(θ − θ ′ + πi) log(B(θ ′))

)
dθ ′ .

The goal now is to rewrite the left hand side in terms of the auxiliary function y(θ), b(θ). From 
(3.7) and (3.5) one derives

logb(θ) = log

(
Q(θ + 2πi)

Q(θ − πi)

)
+ log

(
a(θ + πi − i0)

d(θ)d(θ + πi)

)

+
∞∫

−∞
L(θ − θ ′) log

(
f (θ ′)Y (θ ′)

)
dθ ′ .

So, our goal will be achieved if we find such G(θ) that
∞∫

−∞

(
G(θ − θ ′) + G(θ − θ ′ + πi)

)
log

Q(θ ′ + πi)

Q(θ ′ − πi)
= log

(
Q(θ + 2πi)

Q(θ − πi)

)

+ πiνκ(4G0 − 3) , (3.11)

where the last term takes account of the multiplier eνκθ in Q(θ), G0 being the average of G
over the real line. Recalling that in the formula for Q(θ) (3.2) the Bethe roots are approximately 
two-string one easily finds G(θ) by Fourier transform:
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G(θ) = 1

4π

∞∫
−∞

sinh
(

πk
2ν

(1 − 3ν)
)

sinh
(

πk
2ν

(1 − 2ν)
)

cosh
(

πk
2

)e−ikθ dk . (3.12)

Notice that G0 = 1−3ν
2(1−2ν)

.
Finally, after some computation we arrive at

logb(θ) = 2
∑
j

log
(

tanh
1

2
(θ − τj − i0)

)
− πiνκ

1 − 2ν
(3.13)

+ (L ∗ logY)(θ) + (G ∗ logB)(θ) − (G ∗ logB)(θ + πi) .

We obtain the massive relativistic model from the inhomogeneous lattice one by the usual 
prescription: set τj = (−1)j τ and consider the limit

τ → ∞ , L → ∞, 2Le−τ → 2πMR finite .

In this limit

2
∑
j

log
(

tanh
1

2
(θ − τj )

)
→ −2πMR cosh(θ) .

The idea is that in this limit we should obtain the eigenvalue of the transfer-matrix correspond-
ing to the NS ground state with the twist defined by√

2βP = νκ . (3.14)

Here 
√

2 comes from the normalisation of the topological charge consistent with (2.1). The 
normalisation of this twist is explained by the requirement that in the high temperature limit 
R → 0 the eigenvalue of the first integral of motion, I1, which is nothing but L0 − c/24 is given 
by

i1 = P 2 − 1

16
.

4. Numerical work

The function b(θ) rapidly decreases when Re(θ) → ±∞, 0 > Imθ > −π/2. Introducing the 
shift 0 < πγ < π/2 and moving the contours of integration we arrive at the system which allows 
a numerical investigation:

logb(θ − πiγ ) = −2πMR cosh(θ − πiγ ) − πi
√

2

β
P + 1

2 log 2 (4.1)

+
∞∫

−∞
L(θ − θ ′ − πiγ ) log

( 1
2Y(θ ′)

)
dθ ′

+
∞∫

−∞

[
G(θ − θ ′) logB(θ ′ − πiγ ) − G(θ − θ ′ + πi(1 − 2γ )) logB(θ ′ − πiγ )

]
dθ ′ ,

logy(θ) =
∞∫

−∞
2Re

[
L(θ − θ ′ + πiγ ) logB(θ ′ − πiγ )]dθ ′ . (4.2)
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The integrals containing logB converge at infinities very fast because the absolute value of 
the integrand is estimated as exp(−Const · e|θ |) with positive Const . The integral with log( 1

2Y)

converges much more slower because y(θ) behaves as 1 + O(e−|θ |). In the numerical computa-
tions we replace integrals by finite sums, and the above estimates mean that the number of points 
needed for the approximation of the integral containing log( 1

2Y) should be bigger than that for 
the integrals containing logB .

Our goal is to consider the high temperature limit R → 0. The previous formulae are simpli-
fied if we use the parametrisation:

R = β√
2

(
π

2
μγ

(1 − β2

2

))− 1
1−β2

e−θ0 , (4.3)

with θ0 being a dimensionless parameter. Now the driving term in the equation (4.1) becomes

−4
√

2
1 − β2

β
e−θ0 cosh(θ − iγ ) .

The local integrals of motion are extracted form y(θ) which is the normalised transfer-matrix 
of auxiliary spin 1 (3.4). Namely, for θ → ∞ the asymptotical formula holds:

logy(θ) �
∞∑

k=1

C2k−1i2k−1(θ0)e
−(2k−1)θ , (4.4)

similarly the asymptotics for θ → −∞ is related to ī2k−1(x). The constants Cm are given by

Cm = − β√
2(1 − β2)

√
π 


(
m
2

)



(
1

1−β2 m
)

(m − 1)! (m+1
2

)!
(
1 + β2

1−β2 m
) . (4.5)

This normalisation is chosen for the sake of the conformal limit, the appearance of this kind 
of coefficients is not surprising for a reader familiar with [7], we shall give more explanation in 
the next section.

The main advantage of the above normalisation is that in the high temperature limit we have

e−(2k−1)θ0 i2k−1(θ0) →
θ0→∞ i2k−1 ,

with i2k−1 being the local integrals of motion for the CFT case normalised as follows:

i2k−1 = P 2k + · · · .

Now we start the numerical work. Our goal is to obtain the formulae for i1, i3, i5 by inter-
polation in P and ν. This may sound as a purely academic exercise having in mind that these 
formulae can be obtained analytically as explained in the next section. However, in our further 
study we shall need to guess the formulae for the one-point functions in the integrable basis of 
supersymmetric CFT, which are unknown. That is why we want to be sure that our numerical 
methods are sufficiently precise.

The twist P cannot be too large, we restrict ourselves to P ≤ 0.2, we take β sufficiently close 
to 1. For given β we interpolate in P from the solutions to (4.1), (4.2) for θ0 = 18. Integrals 
are replace by sums with step 0.1, the shift is γ = 0.1, the limits in the integrals containing 
logB(θ − πiγ ) are [−24, 24], the limits of the integral containing log(Y (θ)/2) are [−72, 72].
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We normalise by the leading coefficient which is later compared with C2k−1. Doing that for a 
sufficient number of different β’s and assuming that due to the general structure of CFT the local 
integrals must be polynomials in

Q2 = − (1 − β2)2

β2 ,

we were able to interpolate further:

i1 = P 2 − 1

16
(4.6)

i3 = P 4 − 5

16
P 2 + 1

512
(9 + 2Q2) ,

i5 = P 6 − 35

48
P 4 + 537 + 46Q2

3072
P 2 − 475 + 190Q2 + 24Q4

49152
.

We shall not go into the details of the interpolation restricting ourselves to two examples in 
which we compare the results of the numerical computations using the equations (4.1), (4.2) with 
the analytical formulae (4.5), (4.6).

It is more direct to compare computational results with

jm = Cmim .

Here are the results for β2 = 1
2 :

P j1 comp. j3 comp. j5 comp. j1 analyt. j3 analyt. j5 analyt.

0.02 0.195092899 −0.121737971 0.385270717 0.195092904 −0.121737972 0.385270720
0.04 0.191322988 −0.118811577 0.375422434 0.191322993 −0.118811578 0.375422438
0.06 0.185039803 −0.113984520 0.359237764 0.185039807 −0.113984521 0.359237767
0.08 0.176243343 −0.107332198 0.337056416 0.176243348 −0.107332199 0.337056419
0.1 0.164933610 −0.0989601675 0.309346006 0.164933614 −0.0989601686 0.309346008
0.12 0.151110603 −0.0890041464 0.276694070 0.151110607 −0.0890041473 0.276694072
0.14 0.134774321 −0.0776300103 0.239797812 0.134774325 −0.0776300111 0.239797814
0.16 0.115924766 −0.0650337947 0.199451558 0.115924769 −0.0650337954 0.199451559
0.18 0.0945619364 −0.0514416943 0.156531934 0.0945619389 −0.0514416947 0.156531935
0.2 0.0706858328 −0.0371100629 0.111980775 0.0706858347 −0.0371100632 0.111980775

Here are the results for β2 = 3
5 :

P j1 comp. j3 comp. j5 comp. j1 analyt. j3 analyt. j5 analyt.

0.02 0.267141860 −0.315491660 1.87869822 0.267141961 −0.315491728 1.87869854
0.04 0.261979700 −0.308328920 1.83430033 0.261979797 −0.308328984 1.83430063
0.06 0.253376100 −0.296514050 1.76131551 0.253376191 −0.296514109 1.76131579
0.08 0.241331061 −0.280231598 1.66124365 0.241331143 −0.280231651 1.66124390
0.1 0.225844581 −0.259739931 1.53614935 0.225844653 −0.259739975 1.53614955
0.12 0.206916661 −0.235371233 1.38862669 0.206916720 −0.235371267 1.38862685
0.14 0.184547302 −0.207531507 1.22175395 0.184547345 −0.207531531 1.22175405
0.16 0.158736503 −0.176700578 1.03903821 0.158736527 −0.176700590 1.03903826
0.18 0.129484265 −0.143432085 0.844349942 0.129484268 −0.143432087 0.844349948
0.2 0.0967905868 −0.108353490 0.641847507 0.0967905654 −0.108353481 0.641847468

It is clear from these tables that the agreement is quite good. It can be made better by choosing 
bigger θ0, using finer discretisation etc. But this is not needed for our goals since our precision 
was sufficient for a successful interpolation.



414 C. Babenko, F. Smirnov / Nuclear Physics B 924 (2017) 406–416
5. Eigenvalues of integrals from ODE-CFT correspondence

The ODE-CFT correspondence is the statement that in the conformal case the vacuum eigen-
values of the operator Q(θ) coincide with determinants of certain ordinary differential equations. 
The eigenvalues of the transfer-matrices Tj (θ) coincide with certain Stokes multipliers for the 
corresponding equation. In the case of c < 1 CFT this statement goes back to a remarkable ob-
servation due to Dorey ans Tateo [10], which was later essentially clarified and generalised by 
Bazhanov, Lukyanov, Zamolodchikov [11]. We shall not go into details of further generalisation 
of the ODE-CFT correspondence and its generalisation to the massive case, restricting ourselves 
to the case of supersymmetric CFT which is considered in the present paper. It is useful to con-
sider more general situation of a parafermion �k interacting with a free boson because there is 
certain difference between k even or odd. The c = 1 CFT corresponds to k = 1, and the c = 3/2
case, considered in this paper, corresponds to k = 2. In general case Lukyanov [12] proved that 
the operator Q(θ) is related to the following ODE:

ψ ′′(z) −
(
(z2α − E)k + l(l + 1)

z2

)
ψ(z) = 0 , (5.1)

the relation of E, α, l to parameters θ, β2, k, P is as follows

α = 1 − β2

kβ2 , E = β√
k
e

1−β2

k
(θ−θ0) , l =

√
k

β
P − 1

2
, (5.2)

and θ0 is defined by a formula analogous to (4.3). The parameter α is positive, so, we are dealing 
with a self-adjoint operator on the positive half-line. Then Q(E) is just its determinant (here and 
later we allow ourselves to use both Q(θ) and Q(E) having in mind the identification (5.2)).

The eigenvalues Q(E) and Tj (E) are entire functions of E. We are interested in their large E
asymptotics. It is known that for logQ(E) and for logTj (E) with j up to k − 1 the asymptotics 

go in two kinds of exponents: E
− 2j−1

2k(1−β2) and E
j

kβ2 , (j ≥ 1), the coefficients being proportional 
to the eigenvalues of local and non-local integrals of motion. The latter are of no interest for 
us, that is why we shall deal directly with logTk(E) which possesses an exceptional property of 

containing in its asymptotics E
− 2j−1

2k(1−β2) only. In order to explain that we have to consider (5.1)
as an equation of a complex variable.

Let z = |z|eiϕ . Since the parameter α is generally irrational we are dealing with an infinite 
covering of the plane: −∞ < ϕ < ∞.

The main property allowing to investigate the determinant and the Stokes multipliers is that 
for any solution ψ(z, E) the function

(�ψ)(z,E) = q1/2ψ(pz, q2E) ; p = eπiβ2
, q = eπi

1−β2

k ,

is also a solution.
Consider the solution χ(z, E) characterised by the following asymptotics for real z → +∞:

χ(z,E) � x− αk
2 exp

(
− xαk+1

αk + 1

)
.

Following the [11,12] and using the fusion relations it is not hard to derive for any j the relation 
between the three solutions:

(�j+1χ)(z,E) = −Tj−1(Eqj+1)χ(z,E) + Tj (Eqj )(�χ)(z,E) .
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The asymptotic behaviour at E → ∞ is investigated by WKB method, where the important role 

is played by the function 
√

(xα − E)k + l(l+1)

x2 .

One rescales x for large E so that the term l(l+1)

x2 is small. It is clear that exactly for j = k

the function Tk(Eqk) can be considered as the Stokes multiplier between growing solutions 
(�χ)(z, E) and (�k+1χ)(z, E) for two neighbouring sectors which are semi-classically sep-
arated by the cut of the square root. This implies a simple formula for the asymptotics of 
logTk(Eqk) given below.

Let us change variables rewriting (5.1) as

a2ψ ′′(x) −
(
(x2α − 1)k + a2 l(l + 1)

x2

)
ψ(x) = 0 , (5.3)

where a2 = E
− k

(1−β2) .
We prefer to write the WKB formulae in a somewhat XIX century way in order to avoid some 

total derivatives. Namely, we present the solution to (5.3) in the form

ψ(x, x0) = S(x, a)
1
2 exp

(1

a

x∫
x0

dy

S(y, a)

)
,

where S(x, a) satisfies the Riccati equation (we omit arguments)

4

a2

(
1 − FS2

)
− S′2 + 2S′′S + x−2S2 = 0 ,

with

F(x, a, b) = (x2α − 1)k + b2

x2 ,

where we introduce b = a(l + 1/2), in spite of the fact that b 
 1 it is convenient to develop into 
series in this parameter only at the final stage. The ansatz for ψ is different from usual quantum 
mechanical formulae, and it allows to avoid appearance of redundant total derivatives. Using 
Riccati equation we find for S(x, a) the power series

S(x, a, b) =
∞∑

k=0

a2kSk(x, b) . (5.4)

In particular,

1

S0(x, b)
= √

F(x, a, b) .

According to our reasoning concerning the Stokes multiplier, we have for the asymptotics

logTk(Eqk) � 1

a

∫
C

dy

S(y, a)
, (5.5)

where the contour C goes from ∞ · e+i0 to ∞ · e−i0 around the cut of 
√

F(x, a, b). Let us 
consider the contribution from S0(x, b). Recalling that b 
 1 we develop

1

S0(x, b)
=

∞∑
p=0

(
1/2

p

)
(x2α − 1)

k(1−2p)
2 b2px−2p .
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Now the difference between k odd or even becomes clear. We have to evaluate the integral∫
C

(y2α − 1)
k(1−2p)

2 y−2pdy .

By the change of variables w = y2α this integral reduces for odd k to a beta-function and for 
even k to a binomial coefficient. In spite of this computational difference the final result does not 
depend on the parity of k, after some simplification we get

∫
C

(y2α − 1)
k(1−2p)

2 y−2pdy = πikβ2

1 − β2 e− πi
2 k(2p−1)



(

k(2p−1)

2(1−β2)

)



(

1 + kβ2(2p−1)

2(1−β2)

)



(
k(2p−1)

2

) .

Plugging this into (5.5) we find the constants Cm. Higher corrections in a2 following from (5.4)
are considered similarly. For k = 2 one finds exactly the expressions (4.6).
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