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We revisit the rotation dynamics of a rigid satellite with either a liquid core or a global sub-surface ocean. In both problems, the flow of the fluid component is assumed inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré-Hough model which provides exact equations of motion. We introduce an approximation when the ellipticity of the cavity is low. This simplification allows to model both types of satellite in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian formalism closely related to Poincaré's "forme nouvelle des équations de la mécanique". In the case of a satellite with a global ocean, we obtain a seven-degree of freedom system. Six of them account for the motion of the two rigid components, and the last one is associated with the fluid layer. We apply our model to Titan for which the origin of the obliquity is still a debated question. We show that the observed value is compatible with Titan slightly departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.

Introduction

The spin pole of Titan, Saturn's largest moon, is lying close to the plane defined by its orbit pole and the Laplace pole [START_REF] Stiles | Determining Titan's Spin State from Cassini RADAR Images[END_REF][START_REF] Stiles | Erratum: "Determining Titan's Spin State from Cassini Radar Images[END_REF]. This observation, made by the RADAR instrument of the Cassini mission, suggests that Titan is in (or very close to) a Cassini state [START_REF] Colombo | Cassini's second and third laws[END_REF][START_REF] Peale | Generalized Cassini's Laws[END_REF]. For a rigid body, the equilibrium obliquity is a function of its moments of inertia. Those of Titan have been deduced from its Stokes coefficients J 2 = (33.599 ± 0.332) × 10 -6 and C 22 = (10.121 ± 0.029) × 10 -6 and from the hydrostatic equilibrium hypothesis implying a mean moment of inertia I/(mR 2 ) = 0.3431 (Iess et al., 2012, SOL1a), where m and R are the mass and radius of Titan, respectively. The assumed hydrostatic equilibrium is suggested by the ratio J 2 /C 22 ≈ 10/3 which is precisely the expected value for a hydrostatic body (e.g., [START_REF] Rappaport | Doppler Measurements of the Quadrupole Moments of Titan[END_REF]. Assuming these values, if Titan were rigid and in a Cassini equilibrium state, its obliquity would be 0.113 deg [START_REF] Bills | Rotational dynamics and internal structure of Titan[END_REF], i.e. about one third of the radiometric value 0.32 deg [START_REF] Stiles | Determining Titan's Spin State from Cassini RADAR Images[END_REF][START_REF] Stiles | Erratum: "Determining Titan's Spin State from Cassini Radar Images[END_REF][START_REF] Meriggiola | The rotational dynamics of Titan from Cassini RADAR images[END_REF]. To match the observations, the frequency of the free libration in latitude must be reduced by a factor 0.526 [START_REF] Bills | Rotational dynamics and internal structure of Titan[END_REF]. In particular, this would be the case if I/(mR 2 ) were increased to 0.45 (ibid.), a value exceeding 2/5 obtained for a homogeneous body, as if the mass of the satellite was concentrated toward the surface. This result leads to think that the observed obliquity is that of a thin shell partially decoupled from the interior by, e.g., a global ocean (ibid.).

The idea that the ice-covered satellites of the outer planets hold a global underneath ocean has already been proposed based on models of their internal structures (e.g., [START_REF] Lewis | Satellites of the Outer Planets: Their Physical and Chemical Nature[END_REF]. Even the dwarf planet Pluto is suspected to harbour a subsurface ocean [START_REF] Nimmo | Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto[END_REF]. In the case of Titan, the presence of the ocean is also revealed by laboratory experiments on the behaviour of water-ammonia compounds at high pressure and low temperature [START_REF] Grasset | The Liquidus of H2O-NH3 up to 1.5 GPa: Implications for the Presence of a Liquid Shell in Titan's Interior[END_REF], by the detection of electromagnetic waves in its atmosphere [START_REF] Béghin | Analytic theory of Titan's Schumann resonance: Constraints on ionospheric conductivity and buried water ocean[END_REF] and by the high value of its Love number k 2 [START_REF] Iess | The Tides of Titan[END_REF].

A dynamical problem closely related to the present one is that of a hollow satellite with a liquid core as described by the Poincaré-Hough model [START_REF] Poincaré | Sur la précession des corps déformables[END_REF][START_REF] Hough | The oscillations of a rotating ellipsoidal shell containing fluid[END_REF]. For this specific problem, [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF] developed a new Lagrangian formalism, based on the properties of the Lie group acting on the configuration space, which allows to derive the equations of motion in a very simple and elegant manner. Such a system is characterised by four degrees of freedom, three of them being associated with the rotation of the rigid mantle and the last one being due to the motion of the liquid core (e.g., [START_REF] Henrard | The rotation of Io with a liquid core[END_REF]. Applying this model to Jupiter's satellite Io, [START_REF] Henrard | The rotation of Io with a liquid core[END_REF] observed that the frequency of the additional degree of freedom is close to the orbital frequency and should thus multiply the possibility of resonances. For Titan, we shall expect the same conclusion due to the presence of the ocean, but unfortunately, Poincaré's model relies on the concept of a fluid simple motion which cannot be rigorously transposed to the case of a satellite with a global subsurface ocean.

In the case of Titan, the effect of an ocean on the rotation dynamics has been studied numerically using Euler's rotation equations taking into account the gravitational interaction of Saturn on each layer, the pressure torques at the two fluid-solid boundaries, and the gravitational coupling between the interior and the shell [START_REF] Baland | Titan's obliquity as evidence of a subsurface ocean?[END_REF][START_REF] Baland | Titan's internal structure inferred from its gravity field, shape, and rotation state[END_REF][START_REF] Noyelles | New clues on the interior of Titan from its rotation state[END_REF]. The elastic deformation of the solid layers and the atmospheric pressure have also been included in a modelling of the libration in longitude [START_REF] Richard | Librational response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and atmospheric couplings[END_REF] and in a modelling of the Chandler polar motion [START_REF] Coyette | Modeling the polar motion of Titan[END_REF]. Despite several arguments in favour of an ocean, this model does not easily explain the tilt of Titan's spin-axis. Indeed, under the hydrostatic equilibrium hypothesis, [START_REF] Baland | Titan's obliquity as evidence of a subsurface ocean?[END_REF] and [START_REF] Noyelles | New clues on the interior of Titan from its rotation state[END_REF] found that the obliquity of the Cassini state remains bounded below 0.15 deg, i.e. about one half of the observed value. There thus seemed to be a need for a significant resonant amplification to bring the system out of the Cassini equilibrium [START_REF] Baland | Titan's obliquity as evidence of a subsurface ocean?[END_REF][START_REF] Noyelles | New clues on the interior of Titan from its rotation state[END_REF]. However these studies do not invoke the same mode as the origin of the resonant amplification. In addition, this solution does not agree with extended observations of the spin-axis orientation [START_REF] Meriggiola | A new rotational model of Titan from Cassini SAR data[END_REF]. The model has then been amended to allow the Cassini state obliquity to reach the observed 0.32 deg, but this has only been made possible after releasing the hydrostatic shape assumption leaving the ratio J 2 /C 22 ≈ 10/3 unexplained [START_REF] Baland | Titan's internal structure inferred from its gravity field, shape, and rotation state[END_REF].

It should be stressed that models developed thus far discard the rotation of the ocean relative to the inertial frame. This is a valid assumption to reproduce librations in longitude (e.g., [START_REF] Richard | Modèle de satellite à trois couches élastiques : application à la libration en longitude de Titan et Mimas[END_REF], but not anymore for precession motion. By consequence, the associated dynamical system only has 6 degrees of freedom equally shared by the rigid interior and the shell [START_REF] Noyelles | New clues on the interior of Titan from its rotation state[END_REF]). Yet, a comparison of this problem with that of a satellite with a liquid core strongly suggests that a three layered body must have 7 degrees of freedom, one of which being brought by the ocean. Here, we aim at building a new dynamical model accounting for the rotation of the liquid layer as done by [START_REF] Mathews | Forced nutations of the earth: Influence of inner core dynamics. I -Theory. II -Numerical results and comparisons. III -Very long interferometry data analysis[END_REF] for the Earth. More recently, the latter model has been adapted to the study of the Moon [START_REF] Dumberry | The forced precession of the Moon's inner core[END_REF] 1 and of Mercury [START_REF] Peale | Consequences of a solid inner core on Mercury's spin configuration[END_REF].

Here we reconsider the problem with a Hamiltonian approach. In that scope, we first extend the Lagrangian formalism described in [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF] to a noncanonical Hamiltonian formalism allowing to study relative equilibria in a very efficient manner as in [START_REF] Maddocks | On the Stability of Relative Equilibria[END_REF][START_REF] Beck | Relative Equilibria of a Rigid Satellite in a Circular Keplerian Orbit[END_REF]. The method has proven its efficiency in the context of a rigid satellite in circular orbit [START_REF] Beck | Relative Equilibria of a Rigid Satellite in a Circular Keplerian Orbit[END_REF], in the analysis of the two rigid body problem [START_REF] Maciejewski | Reduction, Relative Equilibria and Potential in the Two Rigid Bodies Problem[END_REF], and in several studies of the attitude of a satellite with a gyrostat (e.g., [START_REF] Hall | Hamiltonian mechanics and relative equilibria of orbiting gyrostats[END_REF]Wang and Xu, 2012, and references therein). The approach is described in Sect. 2 and illustrated in the case of a rigid satellite in Sect. 3. We revisit the problem of a moon with a fluid core with this approach and we propose a simplification straightforwardly transposable to a three layered body in Sect. 4. The rotation dynamics of a satellite with a subsurface ocean is presented in Sect. 5. In the subsequent section 6, we test our model and our simplification on Io, a satellite with a liquid core, verifying that the derived eigenfrequencies are in very good agreement with those obtained in previous studies of the same problem made by [START_REF] Noyelles | The rotation of Io predicted by the Poincaré-Hough model[END_REF][START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF]. In this section, we also analyse the case of Titan showing that the additional degree of freedom makes the system highly sensitive to the internal structure and that the observed obliquity can be easily reproduced. Finally, we discuss our model and conclude in Sect. 7. The notation used in this paper is explained in Tab. 1.

Non-canonical Hamiltonian formalism

Equations of motion

General case

Let a dynamical system with n degrees of freedom described by a Lagrangian L. We denote by Q the configuration space and each point q ∈ Q is represented by a set of m ≥ n coordinates (q 1 , • • • , q m ). The number of coordinates is purposely allowed to be greater than the actual dimension of the manifold Q. As in [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF], we assume that there exists a transitive Lie group G acting on Q. The transitivity of G means that for all q, q ∈ Q, there exists an element g of the group G such that q = gq. In particular, given an initial condition q 0 , there exists g t ∈ G such that the configuration q(t) at time t reads q(t) = g t q 0 . In this work, G will be the rotation group SO(3), the translation group T (3), or some combinations of both.

Let g be the Lie algebra of G. By definition, there exists X ∈ g such that the generalised velocity reads q = X(q). Since the action of G on Q is transitive, the dimension of g is equal to the number n of degrees of freedom. Let B = (X 1 , • • • , X n ) be a basis of g and (X ij ) 1≤i≤n,1≤j≤m be the n × m functions of q defined as

X i = m j=1 X ij ∂ ∂q j . (1) 
We denote by η

= (η 1 , • • • , η n ) ∈ R n the coordinates of X in B such that q = n i=1 η i X i (q) . (2) 
Because the term "generalised velocity" is already attributed to q, hereafter we call η the Lie velocity of the system. Given two configurations q and q infinitely closed to each other, we also define the n-tuple δξ = (δξ

1 , • • • , δξ n ) such that δq := q -q = n i=1 X i (q)δξ i . (3) 
Poincaré considers the Lagrangian as a function of (η, q) and writes its infinitesimal variation as

δL = n i=1 ∂L ∂η i δη i + X i (L)δξ i . (4) 
The resulting equations of motion are [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF] d dt

∂L ∂η i = j,k c k ij η j ∂L ∂η k + X i (L), (5) 
where c k ij , defined as

[X i , X j ] := X i X j -X j X i = n k=1 c k ij X k , (6) 
are the structure constants of g with respect to the chosen basis B.

To get the Hamiltonian equations equivalent to Eq. ( 5), we introduce a momentum π associated with the Lie velocity η, and defined as

π := ∂L ∂η . (7) 
Following the same nomenclature as for η, we call this momentum π the Lie momentum of the system. The Hamiltonian H is constructed by means of a Legendre transformation as

H(π, q) := π • η -L(η, q). (8) 
Using Eqs. ( 4) and ( 7), the infinitesimal variation of H (Eq. 8) reads

δH = n i=1 η i δπ i -X i (L)δξ i . (9) 
But since H is a function of π and q, we also have, as in Eq. ( 4),

δH = n i=1 ∂H ∂π i δπ i + X i (H)δξ i . ( 10 
)
The identification of Eqs. ( 9) and ( 10) gives

η i = ∂H ∂π i and X i (H) = -X i (L). (11) 
Using these identifications, the expression of q (Eq. 2), and Poincaré's equation (5) where ∂L/∂η i is replaced by π i (Eq. 7), we get the non-canonical equations of motion associated with H, viz.,

qi = n j=1 ∂H ∂π j X j (q i ) and πi = j,k c k ij ∂H ∂π j π k -X i (H). ( 12 
)
Let us denote the state vector by y = (π, q) ∈ R n+m . The equations of motion (12) written in matrix form read ẏ = -B(y)∇ y H.

The so-called Poisson matrix B(y) is

B(y) = C X -X T 0 (14)
where (•) T means the transpose of a vector or of a matrix. X is an n × m matrix and C an n × n matrix whose elements are

[X] ij = X ij and [C] ij = - k c k ij π k . (15)

Translation group

The simplest illustration of the above formalism is the case where G is the translation group. In that case, η is the usual velocity vector v and π is the standard linear momentum, commonly denoted p. The vector fields of the tangent configuration space are X i = ∂ ∂q i . The associated structure constants c k ij are all nil. The Poisson matrix is then

B(y) = 0 1 -1 0 (16)
and we retrieve the canonical equations of motion ṗi = -

∂H ∂q i , qi = ∂H ∂p i . ( 17 
)
2.1.3 Group SO(3) in the body-fixed frame

The group SO(3) naturally appears in studies of the rotation motion of solid bodies. For this problem, two choices can be made: vectors are expressed either in the body-fixed frame or in the "laboratory" frame. Here, we consider the first option where vectors are written in the body-fixed frame. The Lie velocity is the rotation vector designated by ω and the orientation of the body is parametrised by the coordinates in the body-fixed frame of the laboratory base vectors, i.e., q = (i, j, k). For any function f (i, j, k), we have

d dt f (i, j, k) = -(ω × i) • ∂f ∂i -(ω × j) • ∂f ∂j -(ω × k) • ∂f ∂k = -ω • i × ∂f ∂i + j × ∂f ∂j + k × ∂f ∂k . (18) 
Thus, the vector field X

= (X 1 , X 2 , X 3 ) is X = -i × ∂ ∂i -j × ∂ ∂j -k × ∂ ∂k , (19) 
with structure constants c k ij =ijk where ijk = 1 when (i, j, k) is a cyclic permutation of (1, 2, 3), -1 when (i, j, k) is a cyclic permutation of (3, 2, 1), 0 otherwise. Hence, the Poisson matrix reads

B = -     π î  k î 0 0 0  0 0 0 k 0 0 0     (20)
where for any vector v, we have defined

v =   0 -v z v y v z 0 -v x -v y v x 0   . ( 21 
)
The corresponding equations of motion are

dπ dt = π × ∂H ∂π + i × ∂H ∂i + j × ∂H ∂j + k × ∂H ∂k , ( 22 
) di dt = i × ∂H ∂π , (23) 
dj dt = j × ∂H ∂π , (24) 
dk dt = k × ∂H ∂π (25) 
with ∂H/∂π = ω.

Group SO(3) in the laboratory frame

Here we again consider the rotation motion of a solid body but now vector coordinates are written in the laboratory frame. The latter is the frame with respect to which the motion of the spinning body is described. Note that it does not have to be inertial. The generalised coordinates are the base vectors of the rotated frame q = (I, J, K) and the Lie momentum associated with the rotation vector is denoted Π. Applying the same method as above, we get

X = I × ∂ ∂I + J × ∂ ∂J + K × ∂ ∂K . (26) 
For this basis, the structure constants are c k ij = ijk and thus, the Poisson matrix is

B =     Π Î Ĵ K Î 0 0 0 Ĵ 0 0 0 K 0 0 0     . (27)
The associated equations of motion are

dΠ dt = ∂H ∂Π × Π + ∂H ∂I × I + ∂H ∂J × J + ∂H ∂K × K, (28) 
dI dt = ∂H ∂Π × I, (29) 
dJ dt = ∂H ∂Π × J, (30) 
dK dt = ∂H ∂Π × K (31)
where ∂H/∂Π still is the rotation vector, although expressed in the laboratory frame.

Linearisation and driven solution

For the sake of completeness, we here recall the general method leading to the linearisation of the equations of motion in the non-canonical Hamiltonian formalism [START_REF] Maddocks | On the Stability of Relative Equilibria[END_REF][START_REF] Beck | Relative Equilibria of a Rigid Satellite in a Circular Keplerian Orbit[END_REF]. We also present the criterion of nonlinear stability as described in ibid.

Let a non-autonomous Hamiltonian H(y, t) associated with an n degrees of freedom system expressed as a function of non-canonical variables y ∈ R p with p ≥ 2n. We assume that H(y, t) can be split as follows

H(y, t) = H 0 (y) + H 1 (y, t), (32) 
where H 0 (y) is the autonomous part of H(y, t) and H 1 (y, t) a small perturbation.

Let us skip the perturbation H 1 for a moment. The equations of motion associated with H 0 (y) are of the form ẏ = -B(y)∇ y H 0 (y).

(33

)
The system has n degrees of freedom, its phase space Σ is thus a manifold of dimension 2n. Since y ∈ R p , there exists s = p -2n Casimir functions C i (y) and

s constants c i , 1 ≤ i ≤ s, such that Σ = {y ∈ R p : C 1 (y) = c 1 , . . . , C s (y) = c s }. ( 34 
)
We recall that Casimir functions are constants of the motion for any Hamiltonian because their gradients constitute a basis of the kernel of the Poisson matrix:

ker B(y) = span {∇ y C 1 (y), . . . , ∇ y C s (y)} , (35) 
and thus Ċi (y) = (∇ y H 0 ) T B(y)∇ y C i = 0 (36) for all Hamiltonian H 0 .

Let y e be an equilibrium, i.e., a fixed point of H 0 . According to Eq. ( 33), ẏe = 0 implies ∇ y H 0 (y e ) ∈ ker B(y e ). Thus, there exists s coefficients (µ i ) 1≤i≤s such that

∇ y H 0 (y e ) = s i=1 µ i ∇ y C i (y e ). ( 37 
)
Let

F (y) = H 0 (y) - s i=1 µ i C i (y). ( 38 
)
By construction, F satisfies ∇ y F (y e ) = 0. Coefficients µ i can be seen as Lagrange multipliers and functions C i (y) as constraints since we search for an extremum of H 0 (y) under the conditions C i (y) = c i . The p + s equations ∇ y F (y e ) = 0 and C i (y e ) = c i allow to determine y e and the coefficients µ i .

Once y e and coefficients µ i are known, the linearisation of the equations of motion (Eq. 33) are given by δ ẏ = A(y e )δy (39)

I K ω Rigid satellite I K ω ω c
liquid core mantle Satellite with a liquid core

I s K s I c K c ω o ω c ω s interior ocean shell
Satellite with a subsurface ocean Fig. 1 Rigid satellites are characterised by their basis vectors (I, J, K) and their rotation vector ω with respect to the laboratory frame. The same vectors are used for satellites with a liquid core, but the angular speed ω c of the core with respect to the mantle is also specified. In the case of a satellite with a global ocean, all vectors are expressed in the laboratory frame. These are the basis vectors of the shell (Is, Js, Ks) and of the interior (Ic, Jc, Kc), and the rotation vectors ωc, ωo, ωs associated with the central region, the ocean and the shell, respectively.

with δy = yy e and [START_REF] Maddocks | On the Stability of Relative Equilibria[END_REF])

A(y e ) = -B(y e )∇ 2 y F (y e ). ( 40 
)
In a last step, the perturbation H 1 (y, t) is taken into account and the equations of motion become

δ ẏ -A(y e )δy = z(t), (41) 
with

z(t) = -B(y e )∇ y H 1 (y e , t). (42) 
Equation ( 41) is then solved using standard techniques.

The relative equilibria y = y e is said to be nonlinearly stable if the quadratic form (or Lyapunov function) N (y) = y T Ny, defined on the phase space Σ by its Hessian (below), is a strictly convex function [START_REF] Beck | Relative Equilibria of a Rigid Satellite in a Circular Keplerian Orbit[END_REF]. The Hessian of N (y) is given by (see ibid.)

N := ∇ 2 N = Q(y e )∇ 2 F (y e )Q(y e ), (43) 
where Q(y) is the orthogonal projection matrix onto the range of A(y),

Q(y) = 1 -K(y)(K T (y)K(y)) -1 K T (y), (44) 
and where K(y) is a p × s matrix given by Lie momentum associated with

K(y) = ∇C 1 (y) • • • ∇C s (y) . ( 45 
)
ω c I i , J i , K i basis vectors of F i expressed in F lab R i = [I i , J i , K i ]
rotation matrix of the layer i relative to 3 Rigid satellite Let a rigid satellite whose rotation is close to the synchronous state, i.e., whose mean rotation rate is equal to the orbital mean motion. The goal of this section is to compute the frequencies associated with the free modes of rotation, to evaluate the forced obliquity driven by the orbital precession, and eventually to check the nonlinear stability of the system in the vicinity of the equilibrium. The analysis is performed using the non-canonical Hamiltonian formalism described in Sect. 2. It turns out to be convenient to describe the problem in a laboratory frame rotating at constant angular speed Ω with respect to the inertial frame. Ω will then be chosen equal to the mean orbital motion. We denote by ω the rotation vector of the satellite with respect to the laboratory frame F lab and by (I, J, K) its principal axes of inertia such that the matrix of inertia reads

F lab y i = (Π i , I i , J i , K i )
i , β i , γ i (C i -B i )/A i , (C i -A i )/B i , (B i -A i )/C i ,
I = R diag(A, B, C)R T , (46) 
where R = [I, J, K] is the rotation matrix of the satellite with respect to the laboratory frame and where (.) T denotes the transpose operator. Note that the matrix of inertia can also be written in a equivalent form facilitating the computation of the gradient of the forthcoming Hamiltonian

I = AII T + BJJ T + CKK T . ( 47 
)
The Lie velocity of the system is thus ω while (I, J, K) are the generalised coordinates. We also denote by (i, j, k) the basis vectors associated with the laboratory frame. The radius vector connecting the planet and the satellite barycenter is assumed to be a known function of time and is denoted either by r(t) or simply by r. G and M p are the gravitational constant and the mass of the planet, respectively. With these notations, the (non-autonomous) Lagrangian L rs (ω, I, J, K, t) governing the rotation of the rigid satellite is

L rs (ω, I, J, K, t) = (ω + Ω) T I(ω + Ω) 2 - 3GM p 2 r T Ir r 5 . ( 48 
)
The Lie momentum Π associated with ω reads

Π = ∂L rs ∂ω = I(ω + Ω). (49) 
We recognise the spin angular momentum of the satellite with respect to the inertial frame and expressed in the laboratory frame. The Hamiltonian H rs (Π, I, J, K, t) resulting from the Legendre transformation applied to L rs (ω, I, J, K, t) reads

H rs (Π, I, J, K, t) = Π T I -1 Π 2 -Ω T Π + 3GM p 2 r T Ir r 5 (50) 
with

I -1 = II T A + JJ T B + KK T C . (51) 
The Poisson matrix B rs (y) associated with y = (Π, I, J, K) is the one given in Eq. ( 27). The gradient of the Hamiltonian reads

∂H rs ∂Π = I -1 Π -Ω = ω, (52) 
∂H rs ∂I = (I • Π) A Π + 3 GM p r 5 A(r • I)r, (53) 
∂H rs ∂J = (J • Π) B Π + 3 GM p r 5 B(r • J)r, (54) 
∂H rs ∂K = (K • Π) C Π + 3 GM p r 5 C(r • K)r, (55) 
and thus the equations of motion are

Π = Π × Ω -3 GM p r 5 (Ir) × r, (56) 
İ = ω × I, (57) 
J = ω × J, (58) K = ω × K. ( 59 
)
Equations of motion (Eqs. 56-59) are those of the full Hamiltonian. Because r(t) is a function of time, the set of equations (56-59) has no fixed point. To proceed, we set Ω = Ωk with Ω equal to the mean orbital motion such that, in the laboratory frame (i, j, k),

S(t) := GM p rr T r 5 = S 0 + S 1 (t) (60) 
where S 0 is a constant matrix and S 1 (t) a small perturbation. Furthermore, the initial angle of the rotation is chosen such that S 0 is diagonal with components (σ 0 xx , σ 0 yy , σ 0 zz ). Similarly, we denote by σ 1 uv , where u, v ∈ {x, y, z}, the elements of S 1 (t). The gravitational potential energy U (y, t) is then split into U 0 (y) + U 1 (y, t) with

U 0 (y) = 3 2 AI T S 0 I + BJ T S 0 J + CK T S 0 K , (61) 
U 1 (y, t) = 3 2 AI T S 1 (t)I + BJ T S 1 (t)J + CK T S 1 (t)K . ( 62 
)
As a result, the Hamiltonian H rs (y, t) also get split into H 0 rs (y) + H 1 rs (y, t) with

H 0 rs (y) = Π T I -1 Π 2 -Ω T Π + U 0 (y), (63) 
H 1 rs (y, t) = U 1 (y, t). (64) 
In the case of a Keplerian orbit with eccentricity e and inclination i with respect to the reference frame,

σ 0 xx = GM p a 3 X -3,0 0 (e) + X -3,2 2 (e) 2 cos 4 i 2 + X -3,0 0 (e) 2 sin 4 i 2 , (65) 
σ 0 yy = GM p a 3 X -3,0 0 (e) -X -3,2 2 (e) 2 cos 4 i 2 + X -3,0 0 (e) 2 sin 4 i 2 , (66) 
σ 0 zz = GM p a 3 X -3,0 0 (e) 2 sin 2 i, (67) 
where X n,m k (e) are Hansen coefficients [START_REF] Hansen | Entwickelung des Products einer Potenz des Radius Vectors mit dem Sinus oder Cosinus eines vielfachen der wahren Anomalie in Reihen[END_REF] defined as Fourier coefficients of the series r a

n e imv = ∞ k=-∞ X n,m k (e)e ikM (68) 
with a, v, M being the semimajor axis, the true anomaly and the mean anomaly, respectively. Besides, in this study a single element of the matrix S 1 (t) plays a role in the tilting of the Cassini state, this is the term in σ 1 xz (t) = σ 1 zx (t) corresponding to the first harmonic of the orbital precession in inclination whose expression is

σ 1 xz (t) = GM p a 3 X -3,0 0 (e) 2 cos i + X -3,2 2 (e) 2 cos 2 i 2 sin i sin(Ωt -Φ) ( 69 
)
where Φ is the longitude of the ascending node. The expression of the Hansen coefficients involved in S 0 and S 1 (t) are

X -3,0 0 (e) = (1 -e 2 ) -3/2 , ( 70 
)
X -3,2 2 (e) = 1 - 5 2 e 2 + 13 16 e 4 - 35 288 e 6 + O(e 8 ). ( 71 
)
Following the steps recalled in the previous section 2.2, we now skip the perturbation S 1 (t) for a while and only retain the autonomous part of the Hamiltonian H 0 rs (y). The gradient of the Hamiltonian H 0 rs (y) reads

∂H 0 rs ∂Π = I -1 Π -Ω = ω, ( 72 
)
∂H 0 rs ∂I = (I • Π) A Π + 3AS 0 I, (73) 
∂H 0 rs ∂J = (J • Π) B Π + 3BS 0 J, (74) 
∂H 0 rs ∂K = (K • Π) C Π + 3CS 0 K. ( 75 
)
Only Π (Eq. 56) is affected by the averaging process. Its new equation of motion reads

Π = Π × Ω + 3A(S 0 I) × I + 3B(S 0 J) × J + 3C(S 0 K) × K. (76) 

Linearisation

To perform the linearisation of Eqs. (76, 57-59), we note that the phase space Σ rs of the system is a manifold of dimension 6 (associated with the 3 degrees of freedom of the group SO(3)) defined as

Σ rs = {y ∈ R 12 : C 1 rs (y) = C 2 rs (y) = C 3 rs (y) = 1/2, C 4 rs (y) = C 5 rs (y) = C 6 rs (y) = 0}, ( 77 
)
where the Casimir functions are

C 1 rs (y) = 1 2 I • I, C 2 rs (y) = 1 2 J • J, C 3 rs (y) = 1 2 K • K, C 4 rs (y) = J • K, C 5 rs (y) = K • I, C 6 rs (y) = I • J. (78) 
Indeed, it can be checked that ker B rs (y) = span

           0 I 0 0     ,     0 0 J 0     ,     0 0 0 K     ,     0 0 K J     ,     0 K 0 I     ,     0 J I 0            . ( 79 
)
Let F rs (y) = H 0 rs (y)i µ i C i rs (y). The condition ∇ y F rs (y e ) = 0 leads to

I -1 Π e -Ω = ω e = 0, (80) 
(I e • Π e ) A Π e + 3AS 0 I e -µ 1 I e -µ 5 K e -µ 6 J e = 0, (81) 
(J e • Π e ) B Π e + 3BS 0 J e -µ 2 J e -µ 4 K e -µ 6 I e = 0, (82) 
(K e • Π e ) C Π e + 3CS 0 K e -µ 3 K e -µ 4 J e -µ 5 I e = 0, (83) 
whose a solution is

ω e = 0, Π e = CΩk, I e = i, J e = j, K e = k, µ 1 = 3Aσ 0 xx , µ 2 = 3Bσ 0 yy , µ 3 = 3Cσ 0 zz + CΩ 2 , µ 4 = µ 5 = µ 6 = 0. ( 84 
)
The other solutions are equivalent to this one but with a permutation of the moments of inertia A, B, C. The matrix A rs (y e ) of the linearised system is given by Eq. ( 40). To simplify the result, we perform the change of variables δy = Pδy * with δy * = δΠ z , δI y , δΠ x , δΠ y , δI z , δJ z , δI x , δJ y , δK z ,

δI y + δJ x , δI z + δK x , δJ z + δK y T . (85) 
The first two components of δy * are associated with the libration in longitude, the next four components describe the wobble and the libration in latitude, and finally, the last six coordinates being in the kernel of B rs (y e ) remain identically equal to zero. Let A * rs (y e ) be the matrix of the linear system in the new variables δy * , i.e., A * rs = P -1 A rs P, and let A 1 rs and A 2 rs be the respective 2 × 2 and 4 × 4 matrices such that

A * rs (y e ) =   A 1 rs 0 • 0 A 2 rs • 0 0 0   (86)
where the dots • represent arbitrary matrices not influencing the motion. We have

A 1 rs = 0 -3(B -A)(σ 0 xx -σ 0 yy ) 1/C 0 , (87) 
and

A 2 rs =       0 Ω 0 3(C -B)(σ 0 zz -σ 0 yy ) -Ω 0 3(C -A)(σ 0 xx -σ 0 zz ) 0 0 - 1 B 0 - C -B B Ω 1 A 0 C -A A Ω 0       . ( 88 
)
Hence, the frequency of libration in longitude ω rs,u , which is the eigenvalue of A 1 rs , reads ω rs,u = 3γ (κ 1 -κ 2 ), ( 89)

and the frequencies associated with the wobble ω rs,w and the libration in latitude ω rs,v , the eigenvalues of A 2 rs , are given by

ω rs,w = p -p 2 -4q 2 1/2 , ω rs,v = p + p 2 -4q 2 1/2 (90) with p = (1 + αβ) Ω 2 + 3 (βκ 1 + ακ 2 ) , (91) 
q = αβ Ω 4 + 3 (κ 1 + κ 2 ) Ω 2 + 9κ 1 κ 2 , ( 92 
)
κ 1 = σ 0 xx -σ 0 zz , (93) 
κ 2 = σ 0 yy -σ 0 zz , (94) 
and

α = C -B A , β = C -A B , γ = B -A C . ( 95 
)
Here we retrieve the well-known eigenfrequencies of a rigid satellite close to the synchronous equilibrium state (e.g., [START_REF] Rambaux | Rotational motion of Phobos[END_REF]. Let us nevertheless stress that Eqs. ( 89) and ( 90) are associated with the motion of the three vectors (I, J, K) in the rotating frame. By consequence, if we denote by ωrs,v ≈ 3βΩ/2 the frequency of libration in latitude associated with the motion of the sole vector K with respect to the inertial frame (as it is commonly defined for an axisymmetric body), we have ω rs,v = ωrs,v + Ω.

Stability

For this problem, the Lyapunov function N rs (y), as defined in Eq. ( 43), is

N rs (y) = 1 2A Π x + 1 2 (C -A)Ω(I z -K x ) 2 + 1 2B Π y + 1 2 (C -B)Ω(J z -K y ) 2 + 1 2C Π 2 z + 1 2 n 1 (I y -J x ) 2 + 1 2 n 2 (I z -K x ) 2 + 1 2 n 3 (J z -K y ) 2 (96) 
with

n 1 = 3 4 (B -A)(κ 1 -κ 2 ), n 2 = 1 8 (C -A)(Ω 2 + 3κ 1 ), n 3 = 1 8 (C -B)(Ω 2 + 3κ 2 ).
(97) We recall that the system is nonlinearly stable if N rs (y) is a strictly convex function. Coefficients A, B, and C are positive, as required. The nonlinear stability is then achieved when n 1 , n 2 , and n 3 are all positive. Given that κ 1 > κ 2 > 0 at low inclination i, the criterion implies C > B > A, which is the well-known stability condition for this classical equilibrium where the longest axis points towards the parent planet (e.g. [START_REF] Beck | Relative Equilibria of a Rigid Satellite in a Circular Keplerian Orbit[END_REF].

Driven solution

Here we look for the forced solution when the time-dependent perturbation H 1 rs (t) is taken into account. In the variables δy * (Eq. 85), and with the notation of Eq. ( 41), the perturbation δz * rs (t) is given by

δz * rs (t) = -P -1 B rs (y e )∇ y H 1 rs (y e , t). ( 98 
)
To match the notation of the matrix A * rs , let δy 1 and δy 2 be the first 2 and the next 4 components of δy * , idem for δz * rs (t), such that the linear problem with perturbation reads

δ ẏk -A k rs δy k = δz k rs (t), k = 1, 2. ( 99 
)
By definition,

δy 1 = (δΠ z , δI y ) T , δy 2 = (δΠ x , δΠ y , δI z , δJ z ) T , (100) 
and Eq. ( 98) implies

δz 1 rs (t) = 3(B -A)σ 1 xy (t) 0 , δz 2 rs (t) =     3(C -B)σ 1 yz (t) -3(C -A)σ 1 xz (t) 0 0     . (101)
Note that the term σ 1 yz (t) is present in the perturbation δz 2 rs (t) but its effect on the orientation of the spin axis is very weak. For instance, according to the ephemeris of Titan in TASS1.6 [START_REF] Vienne | TASS1.6: Ephemerides of the major Saturnian satellites[END_REF], the amplitude associated with the angle (Ωt -Φ) in σ 1 yz (t) is about 500 times lower than that in σ 1 xz (t). In the numerical applications (Sect. 6), σ 1 yz (t) is simply discarded.

4 Satellite with a liquid core

In this section we consider a satellite with a rigid mantle/crust layer surrounding a liquid core. In a first step, we analyse the problem using the Poincaré-Hough model which is valid for all eccentricities of the ellipsoidal cavity containing the fluid core [START_REF] Poincaré | Sur la précession des corps déformables[END_REF][START_REF] Hough | The oscillations of a rotating ellipsoidal shell containing fluid[END_REF]. In a second one, we truncate the problem at the first order with respect to the equatorial and polar flattening of the cavity.

The same simplification will be used again in Sect. 5 where the case of a satellite with a subsurface ocean is treated. Here, the two models of the same problem are used to estimate the error made by the approximation.

Poincaré-Hough model

As in the previous model, A, B, C designate the principal moments of inertia of the whole satellite. Those of the liquid core are denote by A c , B c , C c . We assume that the axes of the core/mantle ellipsoidal boundary are aligned to those of the satellite surface. Hence, the principal axes (I c , J c , K c ) of the core are aligned to those of the mantle denoted (I m , J m , K m ) which are also aligned to those of the whole satellite (I, J, K). The vector ω still represents the rotation vector of (I, J, K) with respect to the laboratory frame expressed in the laboratory frame. We add the rotation vector ω c associated with the simple motion of the liquid core with respect to the mantle and expressed in the mantle-fixed frame [START_REF] Poincaré | Sur la précession des corps déformables[END_REF]. As in the rigid case, the laboratory frame rotates with respect to the inertial frame at the speed Ω. Let I, I c and I be the inertia matrices defined as

I = R diag(A, B, C)R T , (102) 
I c = diag(A c , B c , C c ), (103) 
I = diag(A , B , C )R T , (104) 
where R = [I, J, K] is the rotation matrix of the mantle relative to the laboratory frame. Furthermore, we have defined

A = A c 1 -α 2 c , B = B c 1 -β 2 c , C = C c 1 -γ 2 c , (105) 
with

α c = C c -B c A c , β c = C c -A c B c , γ c = B c -A c C c . ( 106 
)
For this problem, the Lie velocity is η = (ω, ω c ) and the generalised coordinates are limited to q = (I, J, K). Coordinates associated with the simple motion of the liquid core do not appear in the equations of motion because the fluid is assumed to be incompressible and its volume is set by the mantle, thus the kinetic and the potential energies only depends on η and q. The kinetic energy T fc (η, q) of rotation of the satellite is [START_REF] Poincaré | Sur la précession des corps déformables[END_REF][START_REF] Hough | The oscillations of a rotating ellipsoidal shell containing fluid[END_REF])

T fc (η, q) = (ω + Ω) T I(ω + Ω) 2 + ω T c I c ω c 2 + ω T c I (ω + Ω), (107) 
The potential energy is the same as in the rigid satellite case (see sect. 3). Thus, the Lagrangian L fc (η, q) reads

L fc (η, q) = (ω + Ω) T I(ω + Ω) 2 + ω T c I c ω c 2 + ω T c I (ω + Ω) - 3GM p 2 r T Ir r 5 . ( 108 
)
The Lie momenta associated with ω and ω c are respectively

Π = ∂L fc ∂ω = I(ω + Ω) + I T ω c , (109) 
Π c = ∂L fc ∂ω c = I c ω c + I (ω + Ω), (110) 
with the inverse transformation,

ω = QΠ -Q T Π c -Ω, (111) 
ω c = Q c Π c -Q Π, (112) 
where

Q = R diag A c AA c -A 2 , B c BB c -B 2 , C c CC c -C 2 R T , (113) 
Q c = diag A AA c -A 2 , B BB c -B 2 , C CC c -C 2 , ( 114 
) Q = diag A AA c -A 2 , B BB c -B 2 , C CC c -C 2 R T . ( 115 
)
The Hamiltonian of the problem is then

H fc (y, t) = Π T QΠ 2 + Π T c Q c Π c 2 -Π T c Q Π -Ω T Π + 3GM p 2 r T Ir r 5 , (116) 
with the state vector y = (Π c , Π, I, J, K). In these variables, the Poisson matrix reads

B fc (y) =        Π c 0 0 0 0 0 Π Î Ĵ K 0 Î 0 0 0 0 Ĵ 0 0 0 0 K 0 0 0        (117) 
and the equations of motion are

Π c = ω c × Π c , (118) 
Π = Π × Ω -3 GM p r 5 (Ir) × r, (119) 
İ = ω × I, (120) 
J = ω × J, (121) 
K = ω × K. ( 122 
)
As in the rigid case (Sect. 3), we now split the Hamiltonian H fc (y, t) into its autonomous part H 0 fc (y) and a perturbation H 1 fc (y, t) using the decomposition of the gravitational potential energy U 0 (y) and U 1 (y, t), Eqs. (61-62). There are seven Casimir functions given by

C 0 fc (y) = 1 2 Π c • Π c , C 1 fc (y) = 1 2 I • I, C 2 fc (y) = 1 2 J • J, C 3 fc (y) = 1 2 K • K, C 4 fc (y) = J • K, C 5 fc (y) = K • I, C 6 fc (y) = I • J. (123) 
The equilibrium y e of H 0 fc (y) is solution of

ω c,e -µ 0 Π c,e = 0, (124 
)

ω e = 0, (125) 
A c (I e • Π e ) -A (I e • Π c,e ) AA c -A 2 Π e + 3AS 0 I e -µ 1 I e -µ 5 K e -µ 6 J e = 0, (126) 
B c (J e • Π e ) -B (J e • Π c,e ) BB c -B 2 Π e + 3BS 0 J e -µ 2 J e -µ 4 K e -µ 6 I e = 0, (127) 
C c (K e • Π e ) -C (K e • Π c,e ) CC c -C 2 Π e + 3CS 0 K e -µ 3 K e -µ 4 J e -µ 5 I e = 0. ( 128 
)
We stress that Π is written in the laboratory frame while Π c is expressed in the mantle-fixed frame. Thus, in Eq. ( 126), (

I • Π) = I x Π x + I y Π y + I z Π z whereas (I • Π c ) = Π c,x .
The same reasoning holds in Eqs. (127,128). The norm of the angular velocity ω c,e can be arbitrarily chosen. This is due to the conservation of the Casimir C 0 fc (y). Here, we assume that the fluid core has no mean angular velocity with respect to the mantle and thus ω c,e = 0. Under this hypothesis, we get ω e = 0, Π c,e = C Ωk, Π e = CΩk, I e = i, J e = j, K e = k,

µ 0 = 0, µ 1 = 3Aσ 0 xx , µ 2 = 3Bσ 0 yy , µ 3 = 3Cσ 0 zz + CΩ 2 , µ 4 = µ 5 = µ 6 = 0 . ( 129 
)
The linear system is expressed in the coordinates δy * = δΠ z , δI y , δΠ c,x , δΠ c,y , δΠ x , δΠ y , δI z , δJ z , δΠ c,z , δI x , δJ y , δK z ,

δI y + δJ x , δI z + δK x , δJ z + δK y T . ( 130 
)
Let A * fc (y e ) be the matrix of the linear system evaluated at the equilibrium point and expressed in the coordinates δy * . As in the rigid case, we define the matrices A 1 fc and A 2 fc such that

A * fc (y e ) =   A 1 fc 0 • 0 A 2 fc • 0 0 0   , (131) 
where the dots • still denote arbitrary matrices. We get

A 1 fc =   0 -3(B -A)(σ 0 xx -σ 0 yy ) C c CC c -C 2 0   , (132) 
and

A 2 fc =                     0 C B Ω 0 - C B Ω 0 - C B CΩ 2 - C A Ω 0 C A Ω 0 C A CΩ 2 0 0 0 0 Ω 0 -3(C -B)κ 2 0 0 -Ω 0 3(C -A)κ 1 0 0 1 B 0 - 1 B c 0 1 - C B c Ω - 1 A 0 1 A c 0 -1 - C A c Ω 0                     (133) with 1 A = A AA c -A 2 , 1 A c = A c AA c -A 2 , 1 A = A AA c -A 2 , 1 B = B BB c -B 2 , 1 B c = B c BB c -B 2 , 1 B = B BB c -B 2 , 1 C = C CC c -C 2 , 1 C c = C c CC c -C 2 , 1 C = C CC c -C 2 . ( 134 
)
The eigenfrequencies are

ω fc,u = CC c CC c -C 2 1/2 ω rs,u , (135) 
ω fc,v = ω rs,v + O( ), (136) 
ω fc,w = ω rs,w + O( ), ( 137)

ω fc,z = C √ A c B c Ω + O( ) (138) 
with being the mass of the core divided by the total mass of the satellite. ω rs,u , ω rs,v , and ω rs,w are the frequencies obtained in the rigid case (Eqs. 89,90). ω fc,z is the frequency of the additional degree of freedom induced by the presence of the liquid core. In the case where the fluid core represents a significant fraction of the total mass of the satellite, Eqs. (136-138) are no longer valid and eigenfrequencies should be directly computed from the matrix A 2 fc (Eq. 133). The Lyapunov function (Eq. 43) associated with this problem is

N fc (y) = 1 2A c Π x - A A c Π c,x + 1 2 (C -A c ) (I z -K x ) 2 + 1 2B c Π y - B B c Π c,y + 1 2 (C -B c ) (J z -K y ) 2 + 1 2C c Π 2 z + 1 2A c Π c,x - 1 2 A Ω(I z -K x ) 2 + 1 2B c Π c,y - 1 2 B Ω(J z -K y ) 2 + 1 2 n 1 (I y -J x ) 2 + 1 2 n 2 (I z -K x ) 2 + 1 2 n 3 (J z -K y ) 2 , (139) 
where n 1 , n 2 , and n 3 are the same as in the rigid case (see Eq. 97). Given that A c , B c , C c , A c , and B c are all positive, the nonlinear stability criterion is identical to that of a rigid satellite, namely C > B > A. In particular, there is no restriction on the moments of inertia of the core (A c , B c , C c ).

The driven equations of motion of the satellite with a liquid core in the vicinity of the relative equilibrium y e are of the form

δ ẏk -A k fc δy k = δz k fc (t), k = 1, 2, (140) 
with

δy 1 = (δΠ z , δI y ) T , δy 2 = (δΠ c,x , δΠ c,y , δΠ x , δΠ y , δI z , δJ z ) T , (141) 
and

δz 1 fc (t) = 3(B -A)σ 1 xy (t) 0 , δz 2 fc (t) =         3(C -B)σ 1 yz (t) -3(C -A)σ 1 xz (t) 0 0 0 0         . ( 142 
)

Quasi-spherical approximation

In this section, we reconsider the case of a satellite with a liquid core, but we assimilate A , B and C to the moments of inertia of the core, i.e., we assume

A ≈ A c , B ≈ B c , C ≈ C c . (143) 
According to Eq. ( 105), this is equivalent to a first order approximation in α c , β c and γ c . With this simplification, the kinetic energy (Eq. 107) can be rewritten as follows 144) where

T fc (η, q) = (ω + Ω) T I m (ω + Ω) 2 + (ω c + R T (ω + Ω)) T I c (ω c + R T (ω + Ω)) 2 (
I m = I -RI c R T = R diag(A m , B m , C m )R T (145)
is the inertia tensor of the mantle written in the laboratory frame (A m = A -A c , B m = B -B c , and C m = C -C c ). According to the expression (144), the problem behaves as if the liquid core were rotating rigidly relative to the mantle at the angular velocity ω c with a matrix of inertia I c constant in the mantle-fixed frame. Indeed, ω c +R T (ω+Ω) is the rotation speed of the core with respect to the inertial frame written in the mantle-fixed frame. We here retrieve the approximation made by [START_REF] Mathews | Forced nutations of the earth: Influence of inner core dynamics. I -Theory. II -Numerical results and comparisons. III -Very long interferometry data analysis[END_REF] who neglected the small departure of the fluid velocity field from a pure solid rotation. Following the same procedure as in Sect. 4.1, the two submatrices of the linearised system written in the set of variables δy * (Eq. 130) become

A 1 fc = 0 -3(B -A)(σ 0 xx -σ 0 yy ) 1 C m 0 , (146) 
and

A 2 fc =                  0 BC c B m B c Ω 0 - C c B m Ω 0 - CC c B m Ω 2 - AC c A m A c Ω 0 - C c A m Ω 0 CC c A m Ω 2 0 0 0 0 Ω 0 -3(C -B)κ 2 0 0 -Ω 0 3(C -A)κ 1 0 0 1 B m 0 - 1 B m 0 1 - C B m Ω - 1 A m 0 1 A m 0 -1 - C A m Ω 0                 
.

(147) Although we retrieve the eigenfrequencies obtained in section 4.1 within the approximation (Eq. 143) only, the second member δz fc (t) of the driven system is exactly the same as δz fc (t) (Eq. 142).

Satellite with a subsurface ocean

Here, we consider a satellite with a rigid central part c (also called interior) and a rigid shell s separated by a global ocean o. By assumption, the shell is ellipsoidal with inner radii a o , b o , c o and outer radii a s , b s , c s . The interior, an ellipsoid of radii a c , b c , c c , might be differentiated, i.e., it can be made of a succession of N concentric ellipsoidal layers with different densities (ρ i ) 1≤i≤N and outer radii a i , b i , c i . We have thus a N = a c , b N = b c and c N = c c . The ocean and the shell are assumed to be homogeneous with respective density ρ o and ρ s . Nevertheless, the results can easily be extended to the case of a stratified rigid shell. Because the simple motion introduced by [START_REF] Poincaré | Sur la précession des corps déformables[END_REF] for a satellite with a liquid core cannot be applied in this case, we use the approximation described in Sect. 4.2. We could describe the evolution of the central region and of the ocean in the shell-fixed frame to remain close to the study made on the satellite with a liquid core, but equations are more symmetrical if all coordinates are given with respect to a same given frame which we chose to be the laboratory frame. In this frame, the configuration of the system is given by the coordinates of the principal axes of the interior and the shell, i.e., the generalised coordinates are q = (I c , J c , K c , I s , J s , K s ). The Lie velocities are the rotation vectors of the three layers with respect to the laboratory frame η = (ω o , ω c , ω s ). Within the approximation of Sect. 4.2, the kinetic energy of the satellite with a global ocean reads

T go (η, q) = (ω c + Ω) T I c (ω c + Ω) 2 + (ω s + Ω) T I s (ω s + Ω) 2 + (ω o + Ω) T I o (ω o + Ω) 2 , (148) 
with the inertia tensors

I c = R c diag(A c , B c , C c )R T c , (149) 
I s = R s diag(A s , B s , C s )R T s , (150) 
I o = R s diag(A s , B s , C s )R T s -R c diag(A c , B c , C c )R T c , (151) 
where

R c = [I c , J c , K c ], R s = [I s , J s , K s ],
and

A c = N i=1 4π 15 ρ i a i b i c i (b 2 i + c 2 i ) -a i-1 b i-1 c i-1 (b 2 i-1 + c 2 i-1 ) , (152) 
A s = 4π 15 ρ s a s b s c s (b 2 s + c 2 s ) -a o b o c o (b 2 o + c 2 o ) , (153) 
A c = 4π 15 ρ o a c b c c c (b 2 c + c 2 c ), (154) 
A s = 4π 15 ρ o a o b o c o (b 2 o + c 2 o ). ( 155 
)
In Eq. ( 152), we apply the convention a 0 = b 0 = c 0 = 0. The other quantities B, C are deduced from Eqs. (152-155) by circular permutation of a, b, c. Let us stress that the matrix of inertia of the whole satellite is simply

I = I c + I s + I o . (156) 
In addition to the gravitational potential energy U (y, t) between the planet point mass and the extended satellite, to get the Lagrangian we also need to include the self gravitational potential energy U self (q) of the satellite as it is a function of the relative orientation of the interior and the shell. This potential energy reads (Laplace, 1798)

U self (q) = u xx 2 (I c • I s ) 2 + u xy 2 (I c • J s ) 2 + u xz 2 (I c • K s ) 2 + u yx 2 (J c • I s ) 2 + u yy 2 (J c • J s ) 2 + u yz 2 (J c • K s ) 2 + u zx 2 (K c • I s ) 2 + u zy 2 (K c • J s ) 2 + u zz 2 (K c • K s ) 2 , ( 157 
)
with

u xx = 8π 15 G (ρ s f s + (ρ o -ρ s )f o ) N i=1 (ρ i -ρ i+1 )a 3 i b i c i , (158) 
u xy = 8π 15 G (ρ s g s + (ρ o -ρ s )g o ) N i=1 (ρ i -ρ i+1 )a 3 i b i c i , (159) 
u xz = 8π 15 G (ρ s h s + (ρ o -ρ s )h o ) N i=1 (ρ i -ρ i+1 )a 3 i b i c i , (160) 
u yx = 8π 15 G (ρ s f s + (ρ o -ρ s )f o ) N i=1 (ρ i -ρ i+1 )a i b 3 i c i , (161) 
u yy = 8π 15 G (ρ s g s + (ρ o -ρ s )g o ) N i=1 (ρ i -ρ i+1 )a i b 3 i c i , (162) 
u yz = 8π 15 G (ρ s h s + (ρ o -ρ s )h o ) N i=1 (ρ i -ρ i+1 )a i b 3 i c i , (163) 
u zx = 8π 15 G (ρ s f s + (ρ o -ρ s )f o ) N i=1 (ρ i -ρ i+1 )a i b i c 3 i , ( 164 
)
u zy = 8π 15 G (ρ s g s + (ρ o -ρ s )g o ) N i=1 (ρ i -ρ i+1 )a i b i c 3 i , (165) 
u zz = 8π 15 G (ρ s h s + (ρ o -ρ s )h o ) N i=1 (ρ i -ρ i+1 )a i b i c 3 i , (166) 
where ρ N +1 := ρ o and for * ∈ {s, o},

f * = 2π a * b * c 2 * 1 0 1 + a 2 * -c 2 * c 2 * t 2 -3/2 1 + b 2 * -c 2 * c 2 * t 2 -1/2
t 2 dt, (167)

g * = 2π a * b * c 2 * 1 0 1 + a 2 * -c 2 * c 2 * t 2 -1/2 1 + b 2 * -c 2 * c 2 * t 2 -3/2
t 2 dt, ( 168)

h * = 2π a * b * c 2 * 1 0 1 + a 2 * -c 2 * c 2 * t 2 -1/2 1 + b 2 * -c 2 * c 2 * t 2 -1/2 t 2 dt. ( 169 
)
The Lagrangian L go (η, q) of the problem is then

L go (η, q) = (ω c + Ω) T I c (ω c + Ω) 2 + (ω s + Ω) T I s (ω s + Ω) 2 + (ω o + Ω) T I o (ω o + Ω) 2 - 3GM p 2 r T Ir r 5 -U self (q). ( 170 
)
The Lie momenta associated with η = (ω o , ω c , ω s ) are

Π o = ∂L go ∂ω o = I o (ω o + Ω), (171) 
Π c = ∂L go ∂ω c = I c (ω c + Ω), (172) 
Π s = ∂L go ∂ω s = I s (ω s + Ω), (173) 
from which we deduce the Hamiltonian

H go (y) = Π T c (I c ) -1 Π c 2 + Π T o (I o ) -1 Π o 2 + Π T s (I s ) -1 Π s 2 -Ω T (Π c + Π o + Π s ) + 3GM p 2 r T Ir r 5 + U self (q), (174) 
which is a function of y = (Π o , y c , y s ) with y i = (Π i , I i , J i , K i ). The Poisson matrix B go (y) associated with this set of variables is

B go (y) =   Πo 0 0 0 b(y c ) 0 0 0 b(y s )   , b(y i ) =     Πi Îi Ĵi Ki Îi 0 0 0 Ĵi 0 0 0 Ki 0 0 0     , i = c, s. ( 175 
)
Although y has 27 components, the system evolves in a phase space Σ go of dimension 14 = 2 × 7 whose degrees of freedom are the three rotations of the central region, the three rotation of the shell and an additional degree of freedom associated with the ocean:

Σ go = {y ∈ R 27 : C i go (y) = c i , 0 ≤ i ≤ 12} ( 176 
)
where the thirteen Casimir functions are

C 0 go (y) = 1 2 Π T o Π o , C 1 go (y) = 1 2 I T c I c , C 2 go (y) = 1 2 J T c J c , C 3 go (y) = 1 2 K T c K c , C 4 go (y) = J T c K c , C 5 go (y) = K T c I c , C 6 go (y) = I T c J c , C 7 go (y) = 1 2 I T s I s , C 8 go (y) = 1 2 J T s J s , C 9 go (y) = 1 2 K T s K s , C 10 go (y) = J T s K s , C 11 go (y) = K T s I s , C 12 go (y) = I T s J s .
(177) In order to proceed, we have to compute the inverse of the inertia matrix of the ocean (I o ) -1 for which we are missing the principal basis. The other terms of the Hamiltonian H go (Eq. 174) are fully explicit and do not cause any problem. To make the computation analytical, we anticipate the equilibrium point solution

Π o,e = C o Ωk Π s,e = C s Ωk, I s,e = i, J s,e = j, K s,e = k, Π c,e = C c Ωk, I c,e = i, J c,e = j, K c,e = k, (178) 
where

C o = C s -C c . We further define A o = A s -A c and B o = B s -B c .
We then expand (I o ) -1 in Taylor series up to the second order in yy e . This is sufficient to get the equations of motion of the linearised system. We verify that y e (Eq. 178) actually is a solution of ∇ y H go (y e ) = i µ i ∇ y C i go (y e ) where the Lagrange multipliers are

µ 0 = 0, µ 1 = 3A o c σ 0 xx + u xx , µ 2 = 3B o c σ 0 yy + u yy , µ 3 = 3C o c σ 0 zz + (C c + C c )Ω 2 + u zz , µ 4 = µ 5 = µ 6 = 0, µ 7 = 3A o s σ 0 xx + u xx , µ 8 = 3B o s σ 0 yy + u yy , µ 9 = 3C o s σ 0 zz + (C s -C s )Ω 2 + u zz , µ 10 = µ 11 = µ 12 = 0, ( 179 
) with A o s = A s + A s , A o c = A c -A c . ( 180 
)
The same rules apply for B o s , C o s , B o c and C o c . Let us write the matrix of the linearised problem in the variables δy * = δΠ s,z , δΠ c,z , δI s,y , δI c,y , δΠ s,x , δI s,z , δΠ c,x , δI c,z , δΠ o,x , δΠ s,y , δJ s,z , δΠ c,y , δJ c,z , δΠ o,y , δΠ o,z , δI s,x , δJ s,y , δK s,z , δI s,y + J s,x , δI c,x , δJ c,y , δK c,z , δI c,y + J c,x , δI s,z + K s,x , δJ s,z + K s,y , δI c,z + K c,x , δJ c,z + K c,y T , (181) such that, with the driving perturbation, the system reads

δ ẏ * -A * go (y e )δy * = δz go (t), A * go (y e ) :=         0 -A 12 go 0 0 • A 21 go 0 0 0 • 0 0 0 -A 34 go • 0 0 A 43 go 0 • 0 0 0 0 0         , (182) 
with

A 12 go = 3(B o s -A o s )(κ 1 -κ 2 ) + U xy -U xy -U xy 3(B o c -A o c )(κ 1 -κ 2 ) + U xy , ( 183 
)
A 21 go =    1 C s 0 0 1 C c    , (184) 
and

A 34 go =           -Ω M B s + U yz + F B 1,s 0 -U yz -F B 3 F B 2,s 1 B s C s -B s B s Ω 0 0 0 0 -U yz -F B 3 -Ω M B c + U yz + F B 1,c -F B 2,c 0 0 1 B c C c -B c B c Ω 0 0 -F B 2,s C o Ω 0 F B 2,c C o Ω -F B 4 -Ω           , (185) 
A 43 go =           -Ω M A s + U xz + F A 1,s 0 -U xz -F A 3 F A 2,s 1 A s C s -A s A s Ω 0 0 0 0 -U xz -F A 3 -Ω M A c + U xz + F A 1,c -F A 2,c 0 0 1 A c C c -A c A c Ω 0 0 -F A 2,s C o Ω 0 F A 2,c C o Ω -F A 4 -Ω           . (186) 
In matrices A 34 go and A 43 go (Eqs. 185,186), the interaction with the central planet is represented by the terms

M A i = 3(C o i -A o i )κ 1 , M B i = 3(C o i -B o i )κ 2 , i = s, c, (187) 
the core/shell gravitational coupling through the ocean interface is given by

U xy := u xy + u yx -u xx -u yy , (188) 
U xz := u xz + u zx -u xx -u zz , (189) 
U yz := u yz + u zy -u yy -u zz , (190) 
From the expressions of (u ab ) a,b∈{x,y,z} given in Eqs. (158-166), we get

U xy = 2G(B o c -A o c )(ρ s (g s -f s ) + (ρ o -ρ s )(g o -f o )), (191) 
U xz = 2G(C o c -A o c )(ρ s (h s -f s ) + (ρ o -ρ s )(h o -f o )), (192) 
U yz = 2G(C o c -B o c )(ρ s (h s -g s ) + (ρ o -ρ s )(h o -g o )). (193) 
Finally, the remaining terms

F K 1,s = (C s -K c )(C s -K s ) K o Ω 2 , K = A, B (194) 
F K 1,c = (C c -K s )(C c -K c ) K o Ω 2 , K = A, B (195) 
F K 2,i = C i -K i K o Ω, i = s, c, K = A, B (196) 
F K 3 = (C s -K s )(C c -K c ) K o Ω 2 , K = A, B (197) 
F K 4 = C o -K o K o Ω, K = A, B (198) 
are only present in the linearised system because of the rotation of the ocean. If the Casimir C 0 (y) = Π o • Π o /2 were set equal to zero, i.e., if the ocean were not rotating with respect to the inertial frame, all F K 1,i , F K 2,i , F K 3 , and F K 4 , with K = A, B and i = s, c, would be nil. The same conclusion would hold if the kinetic energy of the ocean Π T o (I o ) -1 Π o /2 were skipped from the Hamiltonian H go . We thus interpret these terms as due to the centrifugal force felt by the ocean and responsible for an additional pressure on the interfaces with the interior and the shell. In that case -i.e., if the kinetic energy of the ocean were dropped -, the ocean angular momentum Π o would be decoupled from the rest of the system. A quick inspection of the last row and column of the matrices A 34 go and A 43 go indeed shows that a perturbation of Π o would rotate at the eigenfrequency Ω with respect to the laboratory frame, and would thus be fixed in the inertial frame.

We note that given the structure of the matrix A * go , the linearised system is characterised by two libration frequencies in longitude and five frequencies associated with libration in latitude and wobble.

For this problem, the Lyapunov function reads

N go (y) = 1 2A o Π o,x - 1 2 (C c -A c )Ω(I c,z -K c,x ) + 1 2 (C s -A s )Ω(I s,z -K s,x ) 2 + 1 2B o Π o,y - 1 2 (C c -B c )Ω(J c,z -K c,y ) + 1 2 (C s -B s )Ω(J s,z -K s,y ) 2 + 1 2A c Π c,x + 1 2 (C c -A c )Ω(I c,z -K c,x ) 2 + 1 2B c Π c,y + 1 2 (C c -B c )Ω(J c,z -K c,y ) 2 + 1 2C c Π 2 c,z + 1 2A s Π s,x + 1 2 (C s -A s )Ω(I s,z -K s,x ) 2 + 1 2B s Π s,y + 1 2 (C s -B s )Ω(J s,z -K s,y ) 2 + 1 2C s Π 2 s,z + U xy 4 ((I c,y -J c,x ) -(I s,y -J s,x )) 2 + U xz 4 ((I c,z -K c,x ) -(I s,z -K s,x )) 2 + U yz 4 ((J c,z -K c,y ) -(J s,z -K s,y )) 2 + n s 1 2 (J s,x -I s,y ) 2 + n s 2 2 (I s,z -K s,x ) 2 + n s 3 2 (J s,z -k s,y ) 2 + n c 1 2 (J c,x -I c,y ) 2 + n c 2 2 (I c,z -K c,x ) 2 + n c 3 2 (J c,z -k c,y ) 2 , (199) 
with

n * 1 = 3 4 (B o * -A o * )(κ 1 -κ 2 ), n * 2 = 1 4 (C o * -A o * )(Ω 2 + 3κ 1 ), n * 3 = 1 4 (C o * -B o * )(Ω 2 + 3κ 2 ), (200) 
and where * = s, c. We deduce that the system is nonlinearly stable if the following conditions are met

U xy > 0, U xz > 0, U yz > 0, C o * > B o * > A o * with * = s, c. (201 
) Using the expressions of U xy , U xz , and U yz expanded at first order in the equatorial and polar flatness, the conditions (201) are equivalent to a Moments of inertia of the core computed from the internal model 1 of [START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF]. Finally, as in the previous section, to get the forced solution, we decompose the driving excitation δz go (t) as (δz 1 go , δz 2 go , 0), with

   ρ s a s -c s a s + (ρ o -ρ s ) a o -c o a o > ρ s a s -b s a s + (ρ o -ρ s ) a o -b o a o > 0, C o * > B o * > A o * , * = s, c. (202) 
δz 1 go (t) =     3(B o s -A o s )σ 1 xy 3(B o c -A o c )σ 1 xy 0 0     , δz 2 go (t) =                 3(C o s -B o s )σ 1 yz 0 3(C o c -B o c )σ 1 yz 0 0 -3(C o s -A o s )σ 1 xz 0 -3(C o c -A o c )σ 1 xz 0 0                 . ( 203 
)
6 Application

Io's libration modes

Io, one of the Galilean satellite of Jupiter, is assumed to have a liquid core [START_REF] Anderson | Galileo Gravity Results and the Internal Structure of Io[END_REF]. Its rotation motion has already been studied within the Poincaré-Hough paradigm using a Hamiltonian formalism [START_REF] Henrard | The rotation of Io with a liquid core[END_REF]. This analysis has then been extended using the same method in [START_REF] Noyelles | The rotation of Io predicted by the Poincaré-Hough model[END_REF][START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF]. Although the approach in ibid. is Hamiltonian, it differs from that described in Sect. 4 which is expressed in non-canonical variables. Here, we revisit the problem with the aim of validating our method and, more specifically, the quasi-spherical approximation (Sect. 4.2).

The orbital and physical parameters of Io, which are summarised in Tab. 2, are taken from [START_REF] Noyelles | The rotation of Io predicted by the Poincaré-Hough model[END_REF][START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF] 2 . The eigenfrequencies ω u , ω v , ω w and ω z are directly computed from the matrix A * fc (Eqs. 132,133) for the Poincaré-Hough model (Sect. 4.1), and from the matrix A * fc (Eqs. 146,147) for the quasi-spherical approximation (Sect. 4.2). Hereafter, the two models are referred to as "model fc" and "model fc ", respectively. The eigenfrequencies are then converted into periods for a direct comparison with [START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF]. The correspondence between the eigenperiods of ibid. and the eigenfrequencies of this work is

T u = 2π ω u , T v = 2π ω v -Ω , T w = 2π ω w , T z = 2π ω z . ( 204 
)
The results are gathered in Tab. 3. We observe a good match between model fc and that of [START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF] for T u , T w , and T z with a maximal error of about 0.2%. There is a larger discrepancy between the two approaches in the case of T v with a deviation of almost 6%, but this eigenmode is more sensitive due to the small denominator ω v -Ω (Eq. 204). It is also very sensitive to the polar flattening of the core [START_REF] Noyelles | Behavior of nearby synchronous rotations of a Poincaré-Hough satellite at low eccentricity[END_REF]. Nevertheless, the agreement is satisfactory given that the methods to compute the eigenperiods in both studies are very different. The eigenfrequencies given by models fc and fc are also very close to each other. Once again, the largest discrepancy occurs for T v , but here it does not exceed 0.5%. We thus conclude that the quasi-spherical approximation is justified.

Figure 2 represents the trajectories of the principal axes I, J, and K in the laboratory frame (i, j, k) while the system stands in each of the eigenmodes. The corresponding eigenfrequencies are recalled below each subfigure. We recognise the libration motions of a rigid satellite which the name of the eigenmodes have been taken from. In [START_REF] Henrard | The rotation of Io with a liquid core[END_REF] and in [START_REF] Noyelles | The rotation of Io predicted by the Poincaré-Hough model[END_REF][START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF], the eigenmode associated with ω z is referred to as the free libration of the core. Nevertheless, given the strong similarity between the motions associated with ω v and ω z , we chose to attribute the same name "libration in latitude" for both of them. Furthermore, from the observation of the surface only it is hardly possible to distinguish one from the other. Actually, the distinction between the two modes lies in the relative position of Π c and Π, as shown in Fig. 3. When the satellite is in the eigenmode associated with ω v , the two vectors are on the same side from the origin, while in the eigenmode of frequency ω z they are on opposite side.

Titan's equilibrium obliquity

In this section, we analyse the rotation of Titan orbiting Saturn. Several hints suggest that this satellite holds a global ocean under its surface (Coyette et al., 2016, and references therein). Among these clues, an important one for our purpose is Titan's "high" obliquity of 0.32 • which could not be explained if the satellite were solid [START_REF] Bills | Rotational dynamics and internal structure of Titan[END_REF]. Nevertheless, a discrepancy still persists between the observations and the expected obliquity associated with the Cassini state, the latter remaining below 0.15 • for a large class of interior models (e.g., [START_REF] Baland | Titan's obliquity as evidence of a subsurface ocean?[END_REF]. Therefore, it has been proposed that Titan's current obliquity is amplified by a resonance with one of the remaining orbital forcing frequencies [START_REF] Baland | Titan's obliquity as evidence of a subsurface ocean?[END_REF][START_REF] Noyelles | New clues on the interior of Titan from its rotation state[END_REF].

In his abstract, [START_REF] Henrard | The rotation of Io with a liquid core[END_REF] wrote about Io that "the addition of a degree of freedom (the spin of the core) with a frequency close to the orbital frequency multiplies the possibility of resonances". In the case of Titan, we also have an additional degree of freedom in comparison to the previous studies quoted above. We thus expect our model to be able to tilt Titan's axis more easily.

The orbital elements of Titan are taken from the ephemeris TASS1.6 [START_REF] Vienne | TASS1.6: Ephemerides of the major Saturnian satellites[END_REF]. From the full solution, we only retain the keplerian motion and the nodal precession of the orbit with respect to the Laplace plane3 . These parameters are summarised in Tab. 4. Regarding Titan internal structure, we

libration in latitude (ω v ) Π c Π y-axis x-axis libration in latitude (ω z ) Π c Π y-axis
x-axis Fig. 3 Trajectories of the projections of Π and Πc on the plane (i, j) while Io is in libration in latitude. Dots represent successive positions of the vectors. Open circles denote the initial conditions. In the eigenmode with frequency ωv, the two vectors are on the same side from the origin whereas in the eigenstate of frequency ωz, they are on opposite side. The radial coordinate of each vector is plotted in a log scale with arbitrary units. These figures have been computed using Io's parameters (cf Tab. 2).

select two models proposed by [START_REF] Fortes | Titan's internal structure and the evolutionary consequences[END_REF], hereafter referred to as model F1 and F2. They assume a global ocean with extreme densities equal to 1023 kg/m 3 and 1281 kg/m 3 , respectively. In model F1, the ocean is a mixture of water and methanol, while in model F2, the ocean is made of water and ammonia. Parameters of these interior models are summarised in Tab. 5. In both models, the average density is 1881 kg/m 3 and the mean moment of inertia I/(mR 2 ) remains within the errorbars provided by [START_REF] Iess | The Tides of Titan[END_REF]. The equatorial flattening ζ is obtained by integration of Clairaut's equation [START_REF] Clairaut | Théorie de la figure de la Terre[END_REF] assuming an hydrostatic equilibrium (same as [START_REF] Richard | Modèle de satellite à trois couches élastiques : application à la libration en longitude de Titan et Mimas[END_REF]. The boundary semi-axes at volumetric mean radius R between two layers are given by (e.g., [START_REF] Rambaux | Tides on Satellites of Giant Planets[END_REF])

a = R 1 + 7 9 ζ , b = R 1 - 2 9 ζ , c = R 1 - 5 9 ζ . ( 205 
)
The values of the derived parameters involved in the Hamiltonian H go (y) (Eq. 174) are listed in Tab. 6. The eigenfrequencies computed for the two interior models F1 and F2 are shown in Tab. 7. For each model, we assume either a rotating or a static ocean with respect to the inertial frame (see Sect. 5). For reference, we also provide the eigenfrequencies assuming a fully rigid satellite. To interpret these eigenfrequencies, the associated trajectories of the vectors (I c , J c , K c ) and (I s , J s , K s ) are displayed in Fig. 4. We recognise librations in longitude at ω u1 and ω u2 , librations in latitude at ω v1 , ω v2 and ω v3 , and wobbles at ω w1 and ω w2 . From Tab. 7, we observe that each eigenmode has a specific range of frequencies. Libration frequencies in latitude are close to the mean motion Ω ≈ 143.9240 rad/a. Frequencies of libration in longitude are between 2 and 8 rad/a, and the wobble is the slowest motion with frequencies ranging between 0.01 and 0.2 rad/a. a The semimajor axis has been computed from the masses of Saturn and Titan given by Campbell and [START_REF] Campbell | Gravity field of the Saturnian system from Pioneer and Voyager tracking data[END_REF] and the orbital parameters N6 and p06 provided by [START_REF] Vienne | TASS1.6: Ephemerides of the major Saturnian satellites[END_REF].

b Inclination with respect to the Laplace plane given by the amplitude of the second harmonic of ζ06 in the notation of [START_REF] Vienne | TASS1.6: Ephemerides of the major Saturnian satellites[END_REF].

Table 5 Physical parameters of the two interior models of Titan considered in this study taken from [START_REF] Fortes | Titan's internal structure and the evolutionary consequences[END_REF]. The condition for Titan to have a significant (shell) obliquity is that one of the libration frequencies in latitude gets close to the excitation frequency of the perturbation σ 1 xz (t) (Eq. 69), namely, ω 1 xz = Ω -Φ ≈ 143.9330 rad/a. In the case of a rigid satellite there is no lever arm. The libration frequency only depends on the total moments of inertia which are constrained by observations. This frequency, equal to 143.9582 rad/a, leads to an obliquity of 0.113 • which is about one third of the actual value ε obs = 0.32 • .

F1 F2 ρ R ζ ρ R ζ Layer (kg/m 3 ) (km) (10 -5 ) (kg/m 3 ) (km) (10 - 
When the ocean is taken into account, the system has three distinct frequencies of libration in latitude which can potentially be in resonance with the orbital precession rate. It should nevertheless be stressed that when the rotation of the ocean is set to zero, the frequency ω w3 in Tab. 7 is just the mean motion Ω which is not involved in the tilting of the shell axis. Titan's obliquities ε computed with the different models are gathered in Tab. 8. Note that we allow the obliquity to be negative as explained in Fig. 5. As expected, within the "static ocean" hypothesis the ocean is not affected by the perturbation σ 1 xz . Its obliquity is ε o = -i, meaning that Π o remains aligned with the Laplace pole k which is the third axis of our laboratory reference frame. The last two eigenfrequencies ω v1 and ω v2 are further away from ω 1 xz than ω v3 . They only produce a shell obliquity of ε s ≈ 0.06 • which is much lower than the observed one. Furthermore, this result does not significantly vary from model F1 to model F2.

If the rotation of the ocean is set equal to the mean rotation of the satellite, ω w3 is the eigenfrequency responsible for the tilt of Titan's shell spin pole. With the two models F1 and F2 considered here, the results are still very low: ε s = 0.004 with model F1 and ε s = 0.108 • with model F2. However, the two values vary by a factor 27. A modification of Titan's interior is thus more likely to produce the observed obliquity if the rotation of the ocean is taken into account.

To illustrate this statement, we generate a series of interior models of Titan based on the model F1. To simulate inhomogeneities in the shell, we slightly modify the equatorial flattening ζ s of the surface from 11.890 × 10 -5 to the hydrostatic value 12.068 × 10 -5 given in Tab. 5. These numbers should be compared to the Laplace pole orbit pole spin pole i ε Fig. 5 Definition of Titan's inclination i and obliquity ε. In a Cassini state of the averaged problem, the Laplace pole, the orbit pole and the spin pole are in a same plane. We define the orientation of this plane by the inclination measured from the Laplace pole to the orbit pole which by convention is positive. This allows to defined the obliquity as a signed angle measured from the orbit pole to the spin axis. In this figure, ε is positive. The meaning of the sign of the obliquity is explained in Fig. 5.

equatorial flattenings computed with the two models provided by [START_REF] Iess | The Tides of Titan[END_REF], i.e., 11.911×10 -5 (SOL2) and 12.005×10 -5 (SOL1a). To keep the global moments of inertia constant, the equatorial flattening of all the other layers are refitted using Clairaut's equation. It has been checked that all these models are nonlinearly stable according to the condition Eq. ( 202). Figure 6 displays the evolution of the libration frequencies in latitude ω v2 and ω v3 as a function of the surface equatorial flattening ζ s . When the rotation of the ocean is considered (left plots), ω v3 varies sufficiently to cross the resonant frequency ω 1 xz at ζ s ≈ 11.97 × 10 -5 where, in the linear approximation, the shell obliquity diverges. More interestingly, for ζ s ≈ 11.94 × 10 -5 , the driven shell obliquity ε s is equal to the observed value ε obs = 0.32 • . In comparison, when the ocean is assumed to be static (right plots of Fig. 6), ω v3 remains strictly equal to Ω and ω v2 barely evolves. As a consequence, the equilibrium shell obliquity remains practically constant close to 0.062 • .

Conclusion

This paper provides a general method for analysing the rotation dynamics of a rigid body with a fluid internal layer. The study is performed in a non-canonical Hamiltonian formalism well adapted to systems near relative equilibria such as synchronous satellites in a Cassini state. The Poisson structure of the non-canonical Hamiltonian is here obtained by a Legendre transformation of the corresponding Lagrangian written using Poincaré's formalism which makes use of the properties of the Lie group acting on the configuration space.

With this approach, we have been able to treat the case of a satellite with a liquid core or with a global underneath ocean in the exact same manner as that of a rigid satellite. All the difficulty is in the calculation of the Lagrangian function -and more specifically, of the kinetic energy of the fluid layer -in terms of generalised coordinates and Lie velocities. For a satellite with a liquid core, Poincaré introduced the concept of a fluid simple motion which cannot be rigorously transposed to a satellite with an ocean. Nevertheless, at first order this fluid layer behaves like a rigid body for which the kinetic energy is known. Tests on a satellite with a liquid core, assuming Io's physical and orbital parameters, have shown that the errors induced by this approximation do not exceed 0.5% on the eigenfrequencies.

The analysis of a hollow satellite with a fluid core leads to a four degree of freedom dynamical model. The linearised problem in the vicinity of the synchronous equilibrium state is thus characterised by four eigenmodes. These are a libration in longitude, a wobble and two librations in latitude. To this solved problem, we have provided an analytical expression of the linearised equations written in terms of intuitive variables, namely the components of the angular momenta and of the base frame vectors. We also have clearly identified the fourth eigenmode as a libration in latitude.

The rotation dynamics of a satellite with a global subsurface ocean is governed by seven eigenmodes associated with the seven degrees of freedom of the problem, six of which being equally shared by the interior and the outer shell and the last one being brought by the ocean. Near the synchronous equilibrium state, these eigenmodes are identified as two librations in longitude, two wobbles and three librations in latitude. The amplitude of the third libration in latitude would only vanish if the ocean were static with respect to the inertial frame.

Our study has been motivated by Titan's obliquity measured by the Cassini-Huygens mission. Thus far, dynamical models struggle to explain its high value under the hydrostatic shape hypothesis suggested by the ratio of its Stokes coefficients J 2 /C 22 ≈ 10/3. Here, we show that the rotation of the ocean makes the dynamical model much more sensitive to small perturbations of the interior model than when the ocean is assumed static. As an example, starting from a body in perfect hydrostatic equilibrium, we slightly modified the equatorial flattening of the shell by about 1% of the nominal value. This was enough to bring the obliquity of the Cassini state even beyond the radiometric value with the seven degree of freedom model while the same quantity computed with the static ocean hypothesis remained practically constant scarcely reaching a 0.1% increase.

This work is intended to demonstrate the capability of the seven degree of freedom dynamical model to explain the observed high obliquity of Titan. The problem has therefore been intentionally simplified. Tidal deformations, atmospheric torques, and all orbital perturbations but the main precession relative to the Laplace plane have been discarded. These additions would be required for an exhaustive search of the interior models compatible with the measurements made by the Cassini-Huygens mission: the rotation state, the gravity field coefficients, the shape, the tidal Love number, and the electric field. But this is beyond the scope of the present paper and shall be discussed elsewhere.

Fig. 2

 2 Fig.2Eigenmodes of Io's rotation motion computed with the parameters of Tab. 2. Positions at constant time intervals of the principal axes (I, J, K) are depicted by black dots. Open circles indicate the initial condition. Intersections of the dotted great circles of the unit sphere represent the laboratory frame (i, j, k). Jupiter is in the direction of the vector i. The associated eigenfrequencies are recalled below each figure.

Fig. 4

 4 Fig.4Eigenmodes of Titan's rotation motion computed with the interior model F1. Positions at constant time intervals of the shell principal axes (Is, Js, Ks) are depicted by black dots on the unit sphere. Those of the interior (Ic, Jc, Kc) are plotted at half the radius of the unit sphere. The white dots indicate the initial condition. Intersections of the dotted great circles of the unit sphere represent the laboratory frame (i, j, k). Saturn is in the direction of the vector i. The associated eigenfrequencies are recalled below each figure.
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 6 Fig. 6 Obliquity and libration frequencies as a function of the surface equatorial flattening assuming a rotating ocean (left) or a static ocean (right). The vertical dashed line indicates the location of the resonance ω v3 = ω 1 xz . In the upper plots, εs represents the obliquity of the shell at the Cassini state and ε obs the observed value.

Table 2

 2 Orbital and physical parameters of Io taken from[START_REF] Noyelles | Contribution à l'étude de la rotation résonnante dans le Système Solaire[END_REF].

	Parameter	value units
	GMp (Jupiter)	126 712 765 km 3 /s 2
	a	422 029.958 km
	e	0.00415
	i	2.16 arcmin
	Ω	1297.204 472 527 9755 rad/a
	A/(mR 2 )	0.375 127
	B/(mR 2 )	0.377 342
	C/(mR 2 )	0.378 080
	Ac/(mR 2 ) a	0.006 007 5578
	Bc/(mR 2 ) a	0.006 283 9600
	Cc/(mR 2 ) a	0.006 253 4432

Table 3

 3 Eigenperiods of Io's rotational motion (Eq. 204).

	source	Tu (day)	Tv (day)	Tw (day)	Tz (day)
	Noyelles (2014)	13.2322 166.3520	225.0927	1.7382
	This work: model fc (Sect. 4.1)	13.2504 157.2780	224.5395	1.7385
	This work: model fc (Sect. 4.2)	13.2502 156.5653	224.5402	1.7368

Table 4

 4 Orbital parameters of Titan used in this study.

	Parameter	value units	reference
	GMp (Saturn)	37 931 272 km 3 /s 2	(Campbell and Anderson, 1989)
	a	1 221 729 km	computed a
	e	0.028	(Vienne and Duriez, 1995)
	i b	0.320 deg	(Vienne and Duriez, 1995)
	Ω	143.924 047 85 rad/a	(Vienne and Duriez, 1995)
	dΦ/dt	-0.008 931 24 rad/a	(Vienne and Duriez, 1995)

  For each layer, ρ is the density and R and ζ respectively denote the mean radius and the equatorial flattening of the upper boundary.

							5 )
	Ice	930.9	2575	12.068	930.9	2575	12.080
	Ocean	1023.5	2475	11.878	1281.3	2475	11.887
	Ice V	1272.7	2225	11.552	1350.9	2225	11.488
	Ice VI	1338.9	2163	11.521	-	-	-
	Silicate	2542.3	2116	11.514	2650.4	1984	11.310

Table 6

 6 Derived parameters for Titan's model.Note that the number of digits provided in this table is required to recover the values presented in Tabs. 7 and 8.

	Parameter	model F1	model F2 units
	Ac/(mR 2 )	0.232 133 9588 0.213 354 6838
	Bc/(mR 2 )	0.232 160 7420 0.213 379 0654
	Cc/(mR 2 )	0.232 169 6677 0.213 387 1908
	Am/(mR 2 )	0.035 565 0464 0.035 556 8942
	Bm/(mR 2 )	0.035 569 6492 0.035 561 5041
	Cm/(mR 2 )	0.035 571 1830 0.035 563 0404
	A c /(mR 2 )	0.104 835 1592 0.131 211 1289
	B c /(mR 2 )	0.104 847 2721 0.131 226 2055
	C c /(mR 2 )	0.104 851 3089 0.131 231 2299
	A m /(mR 2 )	0.178 538 4650 0.223 457 6674
	B m /(mR 2 )	0.178 559 6760 0.223 484 2365
	C m /(mR 2 )	0.178 566 7448 0.223 493 0909
	uxx/(mR 2 ) 135.969 642 03 109.837 900 34 1/day 2
	uxy/(mR 2 )	135.989 307 93 109.853 755 74 1/day 2
	uxz/(mR 2 )	135.995 863 22 109.859 040 86 1/day 2
	uyx/(mR 2 )	135.938 311 45 109.813 022 76 1/day 2
	uyy/(mR 2 )	135.957 972 82 109.828 874 57 1/day 2
	uyz/(mR 2 )	135.964 526 60 109.834 158 49 1/day 2
	uzx/(mR 2 )	135.927 870 23 109.804 732 03 1/day 2
	uzy/(mR 2 )	135.947 530 09 109.820 582 64 1/day 2
	uzz/(mR 2 )	135.954 083 36 109.825 866 17 1/day 2

Table 7

 7 Eigenfrequencies of Titan's rotation in rad/a.

		rotating ocean	static ocean	rigid	
		F1	F2	F1	F2	F1/F2 type of motion
	ω u1 ω u2	7.9237 2.3950	8.2656 2.1147	7.9237 2.3950	8.2656 2.1147	2.7117	libration in longitude
	ω v1 ω v2 ω v3	144.3272 144.3641 143.9494 143.9445 143.9307 143.9266	144.2507 143.9528 143.924 a	144.2683 143.9472 143.9582 143.924 a	libration in latitude
	ω w1 ω w2	0.1943 0.0178	0.2105 0.0138	0.1177 0.0214	0.1104 0.0199	0.0228 wobble

a In the case where the ocean is assumed static, ω v3 = 143.9240 rad/a is the mean motion Ω.

Table 8

 8 Obliquity of Titan's layers in degree.

		rotating ocean	static ocean	rigid
		F1	F2	F1	F2	F1/F2
	core	0.294	0.272	0.149	0.207	0.113
	ocean	-0.479	0.208 -0.320 -0.320	0.113
	shell	0.004	0.108	0.062	0.064	0.113
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[START_REF] Dumberry | The forced precession of the Moon's inner core[END_REF] could only highlight 5 degrees of freedom because their model of the Moon is axisymmetric and not triaxial.

Here and throughout the paper, we follow the IAU recommendations which state that the symbol for a Julian year is "a". Hence, radian per year is written "rad/a".

Here, we define Titan's Laplace plane as the plane whose orientation is given by the constant part of the inclination solution of TASS1.6.[START_REF] Vienne | TASS1.6: Ephemerides of the major Saturnian satellites[END_REF] 
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