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Abstract We revisit the rotation dynamics of a rigid satellite with either a liquid
core or a global sub-surface ocean. In both problems, the flow of the fluid com-
ponent is assumed inviscid. The study of a hollow satellite with a liquid core is
based on the Poincaré-Hough model which provides exact equations of motion. We
introduce an approximation when the ellipticity of the cavity is low. This simpli-
fication allows to model both types of satellite in the same manner. The analysis
of their rotation is done in a non-canonical Hamiltonian formalism closely related
to Poincaré’s “forme nouvelle des équations de la mécanique”. In the case of a
satellite with a global ocean, we obtain a seven-degree of freedom system. Six of
them account for the motion of the two rigid components, and the last one is as-
sociated with the fluid layer. We apply our model to Titan for which the origin of
the obliquity is still a debated question. We show that the observed value is com-
patible with Titan slightly departing from the hydrostatic equilibrium and being
in a Cassini equilibrium state.

Keywords multi-layered body - spin-orbit coupling - Cassini state - synchronous
rotation - analytical method - Io - Titan
1 Introduction

The spin pole of Titan, Saturn’s largest moon, is lying close to the plane defined
by its orbit pole and the Laplace pole (Stiles et al., 2008, 2010). This observation,
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made by the RADAR instrument of the Cassini mission, suggests that Titan is in
(or very close to) a Cassini state (Colombo, 1966; Peale, 1969). For a rigid body,
the equilibrium obliquity is a function of its moments of inertia. Those of Titan
have been deduced from its Stokes coefficients Jo = (33.599 + 0.332) x 107% and
Caz = (10.121 £ 0.029) x 107% and from the hydrostatic equilibrium hypothesis
implying a mean moment of inertia I/(mR?) = 0.3431 (Iess et al., 2012, SOL1la),
where m and R are the mass and radius of Titan, respectively. The assumed
hydrostatic equilibrium is suggested by the ratio Jo/Ca2 & 10/3 which is precisely
the expected value for a hydrostatic body (e.g., Rappaport et al., 1997). Assuming
these values, if Titan were rigid and in a Cassini equilibrium state, its obliquity
would be 0.113 deg (Bills and Nimmo, 2011), i.e. about one third of the radiometric
value 0.32 deg (Stiles et al., 2008, 2010; Meriggiola et al., 2016). To match the
observations, the frequency of the free libration in latitude must be reduced by
a factor 0.526 (Bills and Nimmo, 2011). In particular, this would be the case
if I/(mR?) were increased to 0.45 (ibid.), a value exceeding 2/5 obtained for a
homogeneous body, as if the mass of the satellite was concentrated toward the
surface. This result leads to think that the observed obliquity is that of a thin
shell partially decoupled from the interior by, e.g., a global ocean (ibid.).

The idea that the ice-covered satellites of the outer planets hold a global under-
neath ocean has already been proposed based on models of their internal structures
(e.g., Lewis, 1971). Even the dwarf planet Pluto is suspected to harbour a subsur-
face ocean (Nimmo et al., 2016). In the case of Titan, the presence of the ocean
is also revealed by laboratory experiments on the behaviour of water-ammonia
compounds at high pressure and low temperature (Grasset and Sotin, 1996), by
the detection of electromagnetic waves in its atmosphere (Béghin et al., 2012) and
by the high value of its Love number ko (Iess et al., 2012).

A dynamical problem closely related to the present one is that of a hollow
satellite with a liquid core as described by the Poincaré-Hough model (Poincaré,
1910; Hough, 1895). For this specific problem, Poincaré (1901) developed a new
Lagrangian formalism, based on the properties of the Lie group acting on the
configuration space, which allows to derive the equations of motion in a very
simple and elegant manner. Such a system is characterised by four degrees of
freedom, three of them being associated with the rotation of the rigid mantle and
the last one being due to the motion of the liquid core (e.g., Henrard, 2008).
Applying this model to Jupiter’s satellite Io, Henrard (2008) observed that the
frequency of the additional degree of freedom is close to the orbital frequency and
should thus multiply the possibility of resonances. For Titan, we shall expect the
same conclusion due to the presence of the ocean, but unfortunately, Poincaré’s
model relies on the concept of a fluid simple motion which cannot be rigorously
transposed to the case of a satellite with a global subsurface ocean.

In the case of Titan, the effect of an ocean on the rotation dynamics has
been studied numerically using Euler’s rotation equations taking into account the
gravitational interaction of Saturn on each layer, the pressure torques at the two
fluid-solid boundaries, and the gravitational coupling between the interior and the
shell (Baland et al., 2011, 2014; Noyelles and Nimmo, 2014). The elastic deforma-
tion of the solid layers and the atmospheric pressure have also been included in a
modelling of the libration in longitude (Richard et al., 2014) and in a modelling
of the Chandler polar motion (Coyette et al., 2016). Despite several arguments in
favour of an ocean, this model does not easily explain the tilt of Titan’s spin-axis.
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Indeed, under the hydrostatic equilibrium hypothesis, Baland et al. (2011) and
Noyelles and Nimmo (2014) found that the obliquity of the Cassini state remains
bounded below 0.15 deg, i.e. about one half of the observed value. There thus
seemed to be a need for a significant resonant amplification to bring the system
out of the Cassini equilibrium (Baland et al., 2011; Noyelles and Nimmo, 2014).
However these studies do not invoke the same mode as the origin of the resonant
amplification. In addition, this solution does not agree with extended observations
of the spin-axis orientation (Meriggiola and Iess, 2012). The model has then been
amended to allow the Cassini state obliquity to reach the observed 0.32 deg, but
this has only been made possible after releasing the hydrostatic shape assumption
leaving the ratio J2/C22 =~ 10/3 unexplained (Baland et al., 2014).

It should be stressed that models developed thus far discard the rotation of the
ocean relative to the inertial frame. This is a valid assumption to reproduce libra-
tions in longitude (e.g., Richard, 2014), but not anymore for precession motion.
By consequence, the associated dynamical system only has 6 degrees of freedom
equally shared by the rigid interior and the shell (Noyelles and Nimmo, 2014). Yet,
a comparison of this problem with that of a satellite with a liquid core strongly
suggests that a three layered body must have 7 degrees of freedom, one of which
being brought by the ocean. Here, we aim at building a new dynamical model
accounting for the rotation of the liquid layer as done by Mathews et al. (1991)
for the Earth. More recently, the latter model has been adapted to the study of
the Moon (Dumberry and Wieczorek, 2016)" and of Mercury (Peale et al., 2016).
Here we reconsider the problem with a Hamiltonian approach. In that scope, we
first extend the Lagrangian formalism described in (Poincaré, 1901) to a non-
canonical Hamiltonian formalism allowing to study relative equilibria in a very
efficient manner as in (Maddocks, 1991; Beck and Hall, 1998). The method has
proven its efficiency in the context of a rigid satellite in circular orbit (Beck and
Hall, 1998), in the analysis of the two rigid body problem (Maciejewski, 1995), and
in several studies of the attitude of a satellite with a gyrostat (e.g., Hall and Beck,
2007; Wang and Xu, 2012, and references therein). The approach is described in
Sect. 2 and illustrated in the case of a rigid satellite in Sect. 3. We revisit the
problem of a moon with a fluid core with this approach and we propose a sim-
plification straightforwardly transposable to a three layered body in Sect. 4. The
rotation dynamics of a satellite with a subsurface ocean is presented in Sect. 5. In
the subsequent section 6, we test our model and our simplification on lo, a satel-
lite with a liquid core, verifying that the derived eigenfrequencies are in very good
agreement with those obtained in previous studies of the same problem made by
Noyelles (2013, 2014). In this section, we also analyse the case of Titan showing
that the additional degree of freedom makes the system highly sensitive to the in-
ternal structure and that the observed obliquity can be easily reproduced. Finally,
we discuss our model and conclude in Sect. 7. The notation used in this paper is
explained in Tab. 1.

1 Dumberry and Wieczorek (2016) could only highlight 5 degrees of freedom because their

model of the Moon is axisymmetric and not triaxial.
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2 Non-canonical Hamiltonian formalism
2.1 Equations of motion
2.1.1 General case

Let a dynamical system with n degrees of freedom described by a Lagrangian L. We
denote by @ the configuration space and each point q € @ is represented by a set of
m > n coordinates (g1, - ,¢m). The number of coordinates is purposely allowed
to be greater than the actual dimension of the manifold Q. As in (Poincaré, 1901),
we assume that there exists a transitive Lie group G acting on ). The transitivity
of G means that for all q,q’ € Q, there exists an element g of the group G such
that q' = gq. In particular, given an initial condition qg, there exists g; € G such
that the configuration q(t) at time t reads q(t) = g+qo. In this work, G will be the
rotation group SO(3), the translation group 7'(3), or some combinations of both.

Let g be the Lie algebra of G. By definition, there exists X € g such that
the generalised velocity reads q = X(q). Since the action of G on @ is transitive,
the dimension of g is equal to the number n of degrees of freedom. Let B =

(X1, ,Xn) be a basis of g and (Xi;)1<i<n,1<j<m be the n x m functions of gq
defined as

- )

= 47

We denote by 1 = (m1,- -+ ,mn) € R™ the coordinates of X in B such that

4= nXila) . @

Because the term “generalised velocity” is already attributed to ¢, hereafter we
call ) the Lie velocity of the system. Given two configurations q and q’ infinitely
closed to each other, we also define the n-tuple 6¢ = (661, - - -, d&n) such that

fdqi=q —q= ZX )& (3)

1=1

Poincaré considers the Lagrangian as a function of (1, q) and writes its infinitesi-

mal variation as
n

Z

i + X (L)0&;. (4)

The resulting equations of motion are (Poincaré, 1901)

d oL r OL
i om, jkC]njank+ (L) (5)
where C”, defined as
n
[Xi, Xj] = XiX; — X;X; = Z ijXky (6)

k=1
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are the structure constants of g with respect to the chosen basis B.
To get the Hamiltonian equations equivalent to Eq. (5), we introduce a mo-
mentum 7r associated with the Lie velocity n, and defined as

oL

™= ' (7)

Following the same nomenclature as for 1, we call this momentum 7 the Lie mo-
mentum of the system. The Hamiltonian H is constructed by means of a Legendre
transformation as

H(m,q) =m-n— L(n,q). (8)

Using Egs. (4) and (7), the infinitesimal variation of H (Eq. 8) reads
n
0H = nidm; — Xi(L)d;. (9)
i=1
But since H is a function of 7 and q, we also have, as in Eq. (4),
—~ OH
0H =) —om; + X;(H)dE;. 10
D G, 07+ ()5 (10)

The identification of Egs. (9) and (10) gives

__0H
m_am

and Xl(H) = —Xi(L). (11)

Using these identifications, the expression of q (Eq. 2), and Poincaré’s equation
(5) where OL/0n; is replaced by m; (Eq. 7), we get the non-canonical equations of
motion associated with H, viz.,

. = 0H . x OH
4 = 2 aTTij(qz') and ;= ]Z];Cz‘j o, Xi(H). (12)

Let us denote the state vector by y = (m,q) € R™™™. The equations of motion
(12) written in matrix form read

y=-B(y)VyH. (13)
The so-called Poisson matrix B(y) is

BO) = | Sy, (14

T . . .
where ()~ means the transpose of a vector or of a matrix. X is an n X m matrix
and C an n X n matrix whose elements are

[X]ij = Xij and [C}Z] = — Zcfjﬂ'k. (15)
k
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2.1.2 Translation group

The simplest illustration of the above formalism is the case where G is the trans-
lation group. In that case, 1 is the usual velocity vector v and 7 is the standard
linear momentum, commonly denoted p. The vector fields of the tangent configu-
ration space are X; = 6%1-' The associated structure constants cfj are all nil. The
Poisson matrix is then

01
B = | %) (16)
and we retrieve the canonical equations of motion

oH . oH
0gq;’ qzi@pi '

Di = (17)

2.1.3 Group SO(8) in the body-fized frame

The group SO(3) naturally appears in studies of the rotation motion of solid
bodies. For this problem, two choices can be made: vectors are expressed either
in the body-fixed frame or in the “laboratory” frame. Here, we consider the first
option where vectors are written in the body-fixed frame. The Lie velocity is the
rotation vector designated by w and the orientation of the body is parametrised
by the coordinates in the body-fixed frame of the laboratory base vectors, i.e.,
q = (i,j, k). For any function f(i, j, k), we have

d,.. . Of o of of
el k) = — A A k) 2L
=—w- ingr'ngrkxg
- i 7" B ok )
Thus, the vector field X = (X1, X2, X3) is
1o} 0 0
X=—iX = —jxX = —kx =— 1
1X BH X 5] X ok’ (19)
with structure constants ci—“j = —e¢;j; where ¢, = 1 when (3, j, k) is a cyclic permu-

tation of (1,2,3), -1 when (¢, j, k) is a cyclic permutation of (3,2, 1), 0 otherwise.
Hence, the Poisson matrix reads

(20)

RO = >
S C O
© O O«
S oo =

where for any vector v, we have defined

0 —v. vy
=|v: 0 —vg| . (21)
—vy vz O

<>
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The corresponding equations of motion are

dm OH ., OH ., OH OH

E:ﬂ—xa—ﬂ_JﬂxﬁJﬁ]xa—jJrkxﬁ, (22)
%:ixg—f7 (23)
%:kxg—f (25)

with O0H /07 = w.

2.1.4 Group SO(3) in the laboratory frame

Here we again consider the rotation motion of a solid body but now vector coordi-
nates are written in the laboratory frame. The latter is the frame with respect to
which the motion of the spinning body is described. Note that it does not have to
be inertial. The generalised coordinates are the base vectors of the rotated frame
q = (I,J, K) and the Lie momentum associated with the rotation vector is denoted
I1. Applying the same method as above, we get

0 1o} 0

For this basis, the structure constants are cf]- = €;5% and thus, the Poisson matrix
is
MiJK
1000
B=|-. . 27
JO0O0O ( )
K0O0O

The associated equations of motion are

Al 9H OH OH oH

E_ainXH—FﬁXI—FOiJXJ—FBiKXK’ (28)

where OH /OII still is the rotation vector, although expressed in the laboratory
frame.
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2.2 Linearisation and driven solution

For the sake of completeness, we here recall the general method leading to the lin-
earisation of the equations of motion in the non-canonical Hamiltonian formalism
(Maddocks, 1991; Beck and Hall, 1998). We also present the criterion of nonlinear
stability as described in ibid.

Let a non-autonomous Hamiltonian H(y,t) associated with an n degrees of
freedom system expressed as a function of non-canonical variables y € R? with
p > 2n. We assume that H(y,t) can be split as follows

H(y,t) = Ho(y) + Hi(y,t), (32)

where Ho(y) is the autonomous part of H(y,t) and H1(y,t) a small perturbation.
Let us skip the perturbation H; for a moment. The equations of motion associated
with Ho(y) are of the form

y = —B(y)VyHo(y). (33)

The system has n degrees of freedom, its phase space X' is thus a manifold of
dimension 2n. Since y € R?, there exists s = p — 2n Casimir functions C;(y) and
s constants ¢;, 1 <14 < s, such that

Y={yeRl:Ci(y)=c1,...,Cs(y) =cs}. (34)

We recall that Casimir functions are constants of the motion for any Hamiltonian
because their gradients constitute a basis of the kernel of the Poisson matrix:

ker B(y) = span{VyCi(y),..., VyCs(y)}, (35)

and thus
Ci(y) = (VyHo) " B(y)VyCi =0 (36)

for all Hamiltonian Hy.

Let ye be an equilibrium, i.e., a fixed point of Hp. According to Eq. (33),
¥, = 0 implies Vy Hy(ye) € ker B(ye). Thus, there exists s coeflicients (i;)1<i<s
such that

VyHo(ye) =) niVyCilye). (37)
i=1
Let
F(y) = Ho(y) = Y miCiy). (38)
i=1

By construction, F satisfies Vy F'(ye) = 0. Coefficients u; can be seen as Lagrange
multipliers and functions C;(y) as constraints since we search for an extremum of
Ho(y) under the conditions C;(y) = ¢;. The p + s equations VyF(y.) = 0 and
Ci(ye) = ¢; allow to determine y. and the coefficients p;.

Once y. and coefficients p; are known, the linearisation of the equations of
motion (Eq. 33) are given by

0y = A(ye)dy (39)
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K W' K

w [é w
A B j
/ \ /
| | liquid  / |1
core
mantle
Rigid satellite Satellite with a liquid core Satellite with a subsurface ocean

Fig. 1 Rigid satellites are characterised by their basis vectors (I,J,K) and their rotation
vector w with respect to the laboratory frame. The same vectors are used for satellites with a
liquid core, but the angular speed w/, of the core with respect to the mantle is also specified.
In the case of a satellite with a global ocean, all vectors are expressed in the laboratory
frame. These are the basis vectors of the shell (Is,Js, Ks) and of the interior (Ic, J¢, Kc), and
the rotation vectors we, w,, ws associated with the central region, the ocean and the shell,
respectively.

with dy =y — y. and (Maddocks, 1991)
A(ye) = —B(ye) Vi Flye). (40)

In a last step, the perturbation Hi(y,t) is taken into account and the equations
of motion become

6y — A(ye)dy = z(t), (41)
with
Z(t) = _B(Ye)VyHl (Ye,t)- (42)

Equation (41) is then solved using standard techniques.

The relative equilibria y = y. is said to be nonlinearly stable if the quadratic
form (or Lyapunov function) N(y) = y* Ny, defined on the phase space X by its
Hessian (below), is a strictly convex function (Beck and Hall, 1998). The Hessian
of N(y) is given by (see ibid.)

N = VN = Q(y.)V*F(ye)Q(ve), (43)
where Q(y) is the orthogonal projection matrix onto the range of A(y),
Qy) = 1-Ky) (X" (y)Ky) 'K (y), (44)

and where K(y) is a p X s matrix given by

K(y)=[VCi(y) -+ VCs(y)]. (45)
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Table 1 Notations

symbol

definition

CyOy M3 S

indices standing for Core, Ocean, Mantle, and Shell, respectively
indices standing for Rigid Satellite, Fluid Core, and Global Ocean

rs) fcy go
Fin = (io,Jjo, ko) inertial frame
Flab = (1,4, k) laboratory frame

Fi= 15, Ji, Kq)
Q

frame associated with the layer ¢
rotation vector of Fj,p with respect to Fi, expressed in Fip

Wi

we

1I;

I,

L;,J:, K

R; =[L;,J;, K]

yvi = (I, 1;, 33, K;)
y

rotation vector of F; with respect to Fj,1, expressed in Fiap
rotation vector of F. with respect to F,, expressed in F,
Lie momentum associated with w;

Lie momentum associated with w/,

basis vectors of F; expressed in Fi,p

rotation matrix of the layer ¢ relative to Fi,p

state vector of the layer i

state vector of the whole system

T(y) kinetic energy

Uly,t) potential energy

L(y,t) Lagrangian

H(y,t) Hamiltonian

Ci(y) Casimir functions

i Lagrange multipliers

F(y) Lagrangian associated with the minimisation of Hg with constraints
B(y) Poisson matrix

A(y) matrix of the linearised system

Uo(y) constant part of Uy, t)

Ui(y,t) perturbation U(y,t) — Uo(y)

Usert(y) self gravitational energy of the satellite

(wij)i,jefw,y,2} constant parameters of Ugels

Ho(y) autonomous part of H(y,t)

Hi(y,t) perturbation H(y,t) — Ho(y)

r, r(t) radius vector connecting the satellite barycenter to the planet
S(t) GMprrT /r®

So constant part of S(t)

Sl(t) S(t) —So

(va)qL,1)€{m,y,z}
(G%LU (t))u,ve{m,y,z}

elements of the matrix Sg
elements of the matrix Sy (t)

g

M,

i, Bi, Vi
pi

a;, bi,c;
¢

L;

]I/

A, Bi, Gy
A B, C'

Wy
Wy

gravitational constant

mass of the central planet

(Cz — B7‘)/147‘7 (C,L — Az)/BZ, (Bz — Az)/CZ, respectively
density of the layer ¢

radii of the outer boundary of the layer ¢
equatorial flattening (a — b)/a

inertia tensor of the layer ¢ expressed in Fj,p,
ancillary inertia tensor

principal moments of inertia of the layer ¢
ancillary moments of inertia

frequency of libration in longitude

frequency of libration in latitude

wobble frequency
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3 Rigid satellite

Let a rigid satellite whose rotation is close to the synchronous state, i.e., whose
mean rotation rate is equal to the orbital mean motion. The goal of this section is
to compute the frequencies associated with the free modes of rotation, to evaluate
the forced obliquity driven by the orbital precession, and eventually to check the
nonlinear stability of the system in the vicinity of the equilibrium. The analysis is
performed using the non-canonical Hamiltonian formalism described in Sect. 2. It
turns out to be convenient to describe the problem in a laboratory frame rotating
at constant angular speed € with respect to the inertial frame. {2 will then be
chosen equal to the mean orbital motion. We denote by w the rotation vector of
the satellite with respect to the laboratory frame Fi,1, and by (I,J, K) its principal
axes of inertia such that the matrix of inertia reads

I = Rdiag(A, B,C)R", (46)

where R = [I,J, K] is the rotation matrix of the satellite with respect to the labo-
ratory frame and where ()T denotes the transpose operator. Note that the matrix
of inertia can also be written in a equivalent form facilitating the computation of
the gradient of the forthcoming Hamiltonian

I=Aa11" + BJJ" + CKK". (47)

The Lie velocity of the system is thus w while (I,J, K) are the generalised coordi-
nates. We also denote by (i, j, k) the basis vectors associated with the laboratory
frame. The radius vector connecting the planet and the satellite barycenter is as-
sumed to be a known function of time and is denoted either by r(¢) or simply by
r. G and M, are the gravitational constant and the mass of the planet, respec-
tively. With these notations, the (non-autonomous) Lagrangian L.s(w,I,J, K,t)
governing the rotation of the rigid satellite is

T T
Lus(w, LI, K, 1) = @5V 211(“’ +Q) 3%”1’ rlr (48)
T

The Lie momentum IT associated with w reads

aLrs
= ow

=T(w + Q). (49)

We recognise the spin angular momentum of the satellite with respect to the iner-
tial frame and expressed in the laboratory frame. The Hamiltonian Hys(II,1,J, K, t)
resulting from the Legendre transformation applied to Lys(w,I,J, K, t) reads

' 3GM, rT1
Ho(L LK, )= L L oy 36Mpr Ir (50)
2 2 75
with
T T T
o 1D + 7 + KK (51)

A B c
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The Poisson matrix Bys(y) associated with y = (II,I,J,K) is the one given in
Eq. (27). The gradient of the Hamiltonian reads

OH:s

T O —
£ ITII-Q =w, (52)
OHrs (I-1II) GM,
3 = A II+3 - A(r - Dr, (53)
O0H,s (J-II) GM,
3 - B II+3 p B(r - J)r, (54)
0Hrs (K- -II) gM,
K - C© I1+3 p C(r-K)r, (55)
and thus the equations of motion are
ﬂ:nxn—ggi\f”(]lr)xr, (56)
I=wxI, (57)
J=wxJ, (58)
K=wxK. (59)

Equations of motion (Egs. 56-59) are those of the full Hamiltonian. Because
r(t) is a function of time, the set of equations (56-59) has no fixed point. To
proceed, we set € = 2k with 2 equal to the mean orbital motion such that, in
the laboratory frame (i, j, k),

I‘I‘T
S(t) = GMy o = S0 + S1(1) (60)

where S is a constant matrix and S1(¢) a small perturbation. Furthermore, the
initial angle of the rotation is chosen such that Sg is diagonal with components
(02, agy, 02.). Similarly, we denote by o4,,, where u,v € {x,y, 2z}, the elements of
S1(t). The gravitational potential energy U (y, ) is then split into Up(y) + Ui (y,t)
with

Uo(y) = g (AITSOI + BITSoJ + CKTSOK) , (61)

_ 3 T T T

Ul(y,t) = 5 Al Sl(t)I + BJ Sl(t)J + CK Sl(t)K . (62)

As a result, the Hamiltonian H,s(y,t) also get split into H(y) + Hx(y,t) with

i
HSS(Y) = f - QTH + UO(Y): (63)
Hy(y,t) = Uy, 1). (64)
In the case of a Keplerian orbit with eccentricity e and inclination ¢ with respect
to the reference frame,

—-3,0 —3,2 . —3,0 .
Ugg; = gé\f” (XO (e) + X5 77(c) cos? <%) + 7){0 5 e) sin? <;>> , (65)

2
M. [ X=30(e) — x =32 ) =30 .
agy = ga3p ( o () 5 2 "(¢) cos? (%) 40~ 5 (e) sin? (%) , (66)
3,0
0o _ IMp Xy (e) sin? 7, (67)

g =
zz a3 2



Rotation of a rigid satellite with a fluid component 13

where X;"™(e) are Hansen coefficients (Hansen, 1855) defined as Fourier coeffi-

cients of the series
\" imv n,m ik M
- = E X 68
(a) € = p(e)e (68)

with a, v, M being the semimajor axis, the true anomaly and the mean anomaly,
respectively. Besides, in this study a single element of the matrix S1(t) plays a role
in the tilting of the Cassini state, this is the term in o1, (t) = U;z(t) corresponding
to the first harmonic of the orbital precession in inclination whose expression is

-3,0 -3,2 .
or.(t) = Ql\gp (XO 3 (e) cosi + X2 3 (e) cos” ;) sinsin(£2t — @) (69)
a

where @ is the longitude of the ascending node. The expression of the Hansen
coefficients involved in Sg and S1(¢) are

X5 50e) = (1 — €)%/, (70)
—3,2 1 § 2 E 4 _ ﬁ 6 8
X;7%(e)=1 5¢ + 16¢ ~ 288° + O0(e%). (71)

Following the steps recalled in the previous section 2.2, we now skip the pertur-
bation S1(t) for a while and only retain the autonomous part of the Hamiltonian
HY(y). The gradient of the Hamiltonian HQ(y) reads

8;1[_% I 'M-Q=w, (72)
851% _d AH) IT + 3A4Sol, (73)
3;95 _ %H +3BS0d, (74)
8;{93 _ (Kén)n + 30S0K. (75)

Only IT (Eq. 56) is affected by the averaging process. Its new equation of motion
reads
IT =TI x Q 4 3A(SoI) x I+ 3B(SoJ) x J + 3C(SoK) x K. (76)

3.1 Linearisation

To perform the linearisation of Eqs. (76, 57-59), we note that the phase space
Xs of the system is a manifold of dimension 6 (associated with the 3 degrees of
freedom of the group SO(3)) defined as

S ={y e R"?: C\(y) = Chly) = Cx(y) = 1/2,

7
Cfs (Y) = C]?s(y) = Cfs(y) = 0}7 ( )

where the Casimir functions are
1 1 1
Cry) =35I L Ca(y) =533, Cu(y)=;K K
Cr(y) =3 K, CLy)=K-I, Ci(y)=1-J. (78)
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Indeed, it can be checked that

0 0 0 0 0 0

I 0 0 0 K J
ker B;s(y) = span ol'lal’lol' Ikl lol |1 (79)

0 0 K J I 0

Let Fis(y) = H&(y) — 3, #iCl(y). The condition Vy Fs(ye) = 0 leads to
I - Q=w. =0, (80)
Ie N He
%ne +3ASoLe — I — psKe — peJe =0, (81)
Ve Ty, 4 3803, — pade — pakKe — pole = 0, (82)
K. - Tl.

%He + 3CSOK3 - M3Ke - ,LL4Je - /145]:6 = Oa (83)

whose a solution is

we=0, II.=CNk, I.=i, J.=j K=k,
p1 =340, pe = SBogy7 us =3Col, + C2*,  pa=ps = pe = 0. (84)

The other solutions are equivalent to this one but with a permutation of the
moments of inertia A, B, C'. The matrix A,s(ye) of the linearised system is given
by Eq. (40). To simplify the result, we perform the change of variables §y = Pdy™
with

Sy* = ((mz, 81y, 811, 611,, 81, 8., 61u, 8.0y, 6K -,
T (85)
Iy + 0Js, 61, + 6K, 6.0, + 5Ky) ‘

The first two components of dy* are associated with the libration in longitude,
the next four components describe the wobble and the libration in latitude, and
finally, the last six coordinates being in the kernel of Birs(ye) remain identically
equal to zero. Let As(ye) be the matrix of the linear system in the new variables
Sy*, ie., A =P 'AP, and let AL and A2 be the respective 2 x 2 and 4 x 4
matrices such that

AL o
A:s(ye) = 0 A?s : (86)
0O 0O

where the dots - represent arbitrary matrices not influencing the motion. We have

0 —3(B-A) (2, — agy)

1 _
AI‘S - 1/0 0 ) (87)
and
0 n 0 3(C — B)(02, — a3,)
-2 0 3(C - A)(ng - ng) 0
A= _1L 0 _¢-B, . (88)
B B
Loy C-4g 0
A A
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Hence, the frequency of libration in longitude wrs v, which is the eigenvalue of AL,

reads
wrs,u = /37 (K1 — K2), (89)

and the frequencies associated with the wobble wys,w and the libration in latitude

Wrs v, the eigenvalues of A2, are given by

1/2 1/2
/2 _4 /2 —4
Wrs,w = <W> ) Wrs,v = <P+1;H]> (90)

2
with
p=(+aB)2°+3(Br1 + aka), (91)
q:a6(94+3(m+n2)92+9mm), (92)
K1 =00y — 0%, (93)
K2 = Ggy - ngv (94)
and C-B C—A B-A
a=—z o Pt =T (95)

Here we retrieve the well-known eigenfrequencies of a rigid satellite close to the
synchronous equilibrium state (e.g., Rambaux et al., 2012). Let us nevertheless
stress that Egs. (89) and (90) are associated with the motion of the three vectors
(I,J,K) in the rotating frame. By consequence, if we denote by @wrs,o ~ 362/2 the
frequency of libration in latitude associated with the motion of the sole vector K
with respect to the inertial frame (as it is commonly defined for an axisymmetric
body), we have wrs,, = @Wrs,o + §2.

3.2 Stability

For this problem, the Lyapunov function Nys(y), as defined in Eq. (43), is

1 1 2 1 2
PR B (I —J)2+1 (I —K)2+1 (J. — Ky)?
20 2”1 y T 27742 z T 2”3 z y
(96)
with

ny = %(BfA)(mfm), na = é(CfA)(QQJrfsm), ng = %(CfB)(QerSm).

(97)
We recall that the system is nonlinearly stable if Nys(y) is a strictly convex func-
tion. Coefficients A, B, and C are positive, as required. The nonlinear stability is
then achieved when ni, na, and ns3 are all positive. Given that k1 > k2 > 0 at low
inclination ¢, the criterion implies C' > B > A, which is the well-known stability
condition for this classical equilibrium where the longest axis points towards the
parent planet (e.g. Beck and Hall, 1998).



16 G. Boué, N. Rambaux & A. Richard

3.3 Driven solution

Here we look for the forced solution when the time-dependent perturbation HL (t)
is taken into account. In the variables dy* (Eq. 85), and with the notation of
Eq. (41), the perturbation dz;s(t) is given by

025 (t) = =P 'Bra(ye)Vy His(ye, t). (98)

To match the notation of the matrix AX, let 5y’ and dy? be the first 2 and the
next 4 components of dy™, idem for 0z (¢), such that the linear problem with
perturbation reads

sy" — Absy* =628 (1), k=12 (99)
By definition,
Syt = (6I1.,61,)", 6y = (6I,,011,,61.,5J.)T, (100)
and Eq. (98) implies

3(C — B)o,.(t)

1 1
5Z1}S(t) — <3(B - Ig)o-xy(t)> 5 5Z?S(t) = _3(0 _64)Uzz(t) . (101)
0

Note that the term U;Z (t) is present in the perturbation §z2(t) but its effect on the
orientation of the spin axis is very weak. For instance, according to the ephemeris
of Titan in TASS1.6 (Vienne and Duriez, 1995), the amplitude associated with
the angle (2t — &) in o, (¢) is about 500 times lower than that in oy, (¢). In the
numerical applications (Sect. 6), a;z(t) is simply discarded.

4 Satellite with a liquid core

In this section we consider a satellite with a rigid mantle/crust layer surrounding
a liquid core. In a first step, we analyse the problem using the Poincaré-Hough
model which is valid for all eccentricities of the ellipsoidal cavity containing the
fluid core (Poincaré, 1910; Hough, 1895). In a second one, we truncate the problem
at the first order with respect to the equatorial and polar flattening of the cavity.
The same simplification will be used again in Sect. 5 where the case of a satellite
with a subsurface ocean is treated. Here, the two models of the same problem are
used to estimate the error made by the approximation.

4.1 Poincaré-Hough model

As in the previous model, A, B, C designate the principal moments of inertia of the
whole satellite. Those of the liquid core are denote by A., B, C.. We assume that
the axes of the core/mantle ellipsoidal boundary are aligned to those of the satellite
surface. Hence, the principal axes (I, Jc, K¢) of the core are aligned to those of the
mantle denoted (I, Jm, K ) which are also aligned to those of the whole satellite
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(I,J,K). The vector w still represents the rotation vector of (I, J, K) with respect
to the laboratory frame expressed in the laboratory frame. We add the rotation
vector w!, associated with the simple motion of the liquid core with respect to the
mantle and expressed in the mantle-fixed frame (Poincaré, 1910). As in the rigid
case, the laboratory frame rotates with respect to the inertial frame at the speed
Q. Let I, I. and I’ be the inertia matrices defined as

I = Rdiag(A, B,C)R", (102)
I, = diag(Ac, Be, C.), (103)
I' = diag(A’, B',C")R", (104)

where R = [I,J, K] is the rotation matrix of the mantle relative to the laboratory
frame. Furthermore, we have defined

A= Ac\/1— a2, B' = B.\/1 -2, C'=Ce\/1—72, (105)
C. — Be _ Ce— Ac

Bc - Ac
i B. T
For this problem, the Lie velocity is 7 = (w,w.) and the generalised coordinates
are limited to q = (I,J, K). Coordinates associated with the simple motion of the
liquid core do not appear in the equations of motion because the fluid is assumed
to be incompressible and its volume is set by the mantle, thus the kinetic and
the potential energies only depends on n and q. The kinetic energy Ti.(n,q) of
rotation of the satellite is (Poincaré, 1910; Hough, 1895)

w+)TMw+Q)  oilw,
B 2 T

The potential energy is the same as in the rigid satellite case (see sect. 3). Thus,
the Lagrangian L. (7, q) reads

with

Ve (106)

+ Wi T (w + Q), (107)

ch (777 q)

T 1 Tyr 1 T
Lee(n,q) = (w+ Q) [(w+ Q) L We ILw, —Q—w'CT]I'(w—i—Q) _3GMpr ]Ir. (108)
2 2 2 75
The Lie momenta associated with w and w/, are respectively
= 86% =T(w+Q)+1"w, (109)
/ aLfc ! /
= =1 I Q 11
e = g, — Lewe F (w+Q), (110)
with the inverse transformation,
w=QI-Q I, - Q, (111)
we = QI — Q', (112)
where
_ . Ac Bc CVc T
Q = Rdiag (AAC—A’Q’ BB. — B2’ CCCfCQ) R, (113)
A B C
o =di 114
Qe=ding { 42 BB, — B2’ ¢C, -2 )’ (114)

A B c’
r_ s T
Q = diag (AAC — A2’ BB, — B2’ CC. — 0’2) R (115)
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The Hamiltonian of the problem is then

3G M, r'TIr
2 rs

n'Qn 1mlQLIr
He(y,t) = 2@ + ;Q Q- Q'+

(116)

with the state vector y = (IT,,, I, I, J,K). In these variables, the Poisson matrix
reads
1. 0000
0 MIJK
Bi(y)=|0 1000 (117)
0 JoooO
0 KOOO

and the equations of motion are

I, = w. x I, (118)
. GM,

I =TI x @ — 3= £ (Ir) x 1, (119)
I=wxI, (120)
J=wxJ, (121)
K=wxK. (122)

As in the rigid case (Sect. 3), we now split the Hamiltonian H.(y,t) into its
autonomous part H{(y) and a perturbation H{.(y,t) using the decomposition
of the gravitational potential energy Up(y) and Ui(y,t), Egs. (61-62). There are
seven Casimir functions given by

Chy) = 5TI. T,

1 1 1
Cily) = 511, Cily)=53-3, Ci(y) = ;K K, (123)
Crely) =J K, CR(y)=K-I Ci(y)=IJ.

The equilibrium ye of Hf.(y) is solution of

wee — polly . =0, (124)
we =0, (125)
Aelle - 1316/)1::4//1(;6 Teo) 1, 4 34801, — ple — psKe — pede =0, (126)
Be(J. %%;_Bl;(,‘;e Mooy, 4 3BS0T. - pade — paKe — pele =0, (127)
ColKe Hcg_icgf MLe.c) I + 30SoKe — pusKe — paJe — psIe = 0. (128)

We stress that IT is written in the laboratory frame while IT. is expressed in the
mantle-fixed frame. Thus, in Eq. (126), (I-II) = I, Il + I, 11, + I.1I. whereas
(I-II.) = II;,. The same reasoning holds in Egs. (127,128). The norm of the
angular velocity w; . can be arbitrarily chosen. This is due to the conservation
of the Casimir Cf.(y). Here, we assume that the fluid core has no mean angular
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velocity with respect to the mantle and thus w’c,e = 0. Under this hypothesis, we
get

we=0, M., =C0Nk, M.=CNk, I.=i J.=j, Kc=k,

po =0, 1 =3Acy,, p2=23Boy,, us=3C02,+C02% pa=ps=ps=0.
(129)

The linear system is expressed in the coordinates

Sy* = (5172,6]?,,517;90,6]72)3/,5171,5177,,51275JZ,5Hé’z75]z,6Jy,6Kz,
«  (130)
8Ly + 0y, 0L, + 6Ky, 00 + 6Ky) ‘

Let Af.(ye) be the matrix of the linear system evaluated at the equilibrium point
and expressed in the coordinates dy*. As in the rigid case, we define the matrices
Al and A% such that

Af{. 0
A;‘c(ye) = 0 AfQC o (131)
0O 00

where the dots - still denote arbitrary matrices. We get

0 —3(B — A)(02 — o9y)
A%C = CC 0 9 (132)
CC,—Cn
and
r C/ Cl ! 9 T
0 E(Z 0 —EQ 0 —ECQ
Cl Cl ! 9
759 0 grz 0 ECQ 0
0 0 0 0 0 —3(C' — B)ka
A2 = 133
f 0 0 -2 0 30C-A)mm 0 (133)
1 1 C
0 B 0 B 0 (1 — E) ]
1 1 C
Y a, ! ‘(“z)” ]
with
1 _ A 1 A 1A
A AA. - A2 A, AA.— A2 AT AA.— A
1 B 1 B. 1 B’
B BB.—-B? B, BB.—B? B  BB.-B? (134)
1 c 1 C. 1 c’
c cc.—c? C. CcC.—Cc? ¢ CC.-C?



20 G. Boué, N. Rambaux & A. Richard

The eigenfrequencies are

CCC 1/2
Wic,u = <m> Wrs,u, (135)
Wfc,v = Wrs,v + O(E), (136)
Wfc,w = Wrs,w + 0(6), (137)
ou
C,2 N+0 138
e = 240 (138)

with € being the mass of the core divided by the total mass of the satellite. wrs,u,
Wrs,v, and wrs w are the frequencies obtained in the rigid case (Egs. 89,90). ws, is
the frequency of the additional degree of freedom induced by the presence of the
liquid core. In the case where the fluid core represents a significant fraction of the
total mass of the satellite, Egs. (136-138) are no longer valid and eigenfrequencies
should be directly computed from the matrix A7 (Eq. 133).

The Lyapunov function (Eq. 43) associated with this problem is

2
Neely) = 1(U—Amﬁ-@-MU mo

2A A

1 B 21,

1 | 2
+ 54 (H - AQ(I )> + 35, (H BQ( Ky))

+ inl(l‘y — Jz)2 + Enz(fz - Km)Q + 5”3(&72 - Ky)27
(139)
where n1, n2, and ng are the same as in the rigid case (see Eq. 97). Given that A,
B,, C,, Ac, and B are all positive, the nonlinear stability criterion is identical to

that of a rigid satellite, namely C' > B > A. In particular, there is no restriction
on the moments of inertia of the core (Ac, Be, Ce).

The driven equations of motion of the satellite with a liquid core in the vicinity
of the relative equilibrium y. are of the form

oy* — ALoy" = ozt(t), k=12, (140)
with

Sy' = (0I1.,61,)",  6y? = (8I1. 4,610,611, 611,,61.,5.J.) ", (141)

and
3(C — B)o,.(t)
) —3(C — A)oy.(t)
Szb(t) = (3(3 - zg)%y(t)) L R = 0 L (142)

o O O
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4.2 Quasi-spherical approximation

In this section, we reconsider the case of a satellite with a liquid core, but we
assimilate A’, B’ and C’ to the moments of inertia of the core, i.e., we assume

A~ A, B' = B., O~ C.. (143)

According to Eq. (105), this is equivalent to a first order approximation in a, ¢
and ~.. With this simplification, the kinetic energy (Eq. 107) can be rewritten as
follows

/ Tyr/o
ch’ (nvq) = (w x Q)T];m(w + Q) + (wc + RT(w + Q)) ;Ic(wc + RT((—U + Q))

(144)
where

I, =1—-RILR"

. T (145)

= Rdiag(Am, Bm,Cm)R
is the inertia tensor of the mantle written in the laboratory frame (A,, = A — A,
B, = B— B, and Cy, = C —C.). According to the expression (144), the problem
behaves as if the liquid core were rotating rigidly relative to the mantle at the
angular velocity w/, with a matrix of inertia I/, constant in the mantle-fixed frame.
Indeed, wﬁ:—i—RT(w—i—ﬂ) is the rotation speed of the core with respect to the inertial
frame written in the mantle-fixed frame. We here retrieve the approximation made
by Mathews et al. (1991) who neglected the small departure of the fluid velocity
field from a pure solid rotation. Following the same procedure as in Sect. 4.1,
the two submatrices of the linearised system written in the set of variables dy*
(Eq. 130) become

0 —3(B—A) (ol — ng)
1

A =] 1 0 , (146)
Cm
and
B BC. C. CcC. 2 ]
0 BchQ 0 meQ 0 5 7]
ACC Cc CCC 2
_AmAcQ 0 —AmQ 0 ™ ) 0
AZ, — 0 0 0 ) 0 —3(C — B)ka
0 0 -0 0 3(C — A)ky 0
1 1 C
1 1 C
I Y (1 - E) @0
(147)

Although we retrieve the eigenfrequencies obtained in section 4.1 within the ap-
proximation (Eq. 143) only, the second member 6z (t) of the driven system is
exactly the same as 0z (t) (Eq. 142).
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5 Satellite with a subsurface ocean

Here, we consider a satellite with a rigid central part ¢ (also called interior) and a
rigid shell s separated by a global ocean o. By assumption, the shell is ellipsoidal
with inner radii a,, b, ¢, and outer radii as, bs, cs. The interior, an ellipsoid of radii
ac, be, cc, might be differentiated, i.e., it can be made of a succession of N concentric
ellipsoidal layers with different densities (p;)1<i<n and outer radii a;,b;, c;. We
have thus any = ac, by = be and ¢y = c.. The ocean and the shell are assumed to
be homogeneous with respective density p, and ps. Nevertheless, the results can
easily be extended to the case of a stratified rigid shell. Because the simple motion
introduced by Poincaré (1910) for a satellite with a liquid core cannot be applied
in this case, we use the approximation described in Sect. 4.2. We could describe
the evolution of the central region and of the ocean in the shell-fixed frame to
remain close to the study made on the satellite with a liquid core, but equations
are more symmetrical if all coordinates are given with respect to a same given
frame which we chose to be the laboratory frame. In this frame, the configuration
of the system is given by the coordinates of the principal axes of the interior and
the shell, i.e., the generalised coordinates are q = (I.,Jc, K¢, Is,Js, Ks). The Lie
velocities are the rotation vectors of the three layers with respect to the laboratory
frame n = (wo, we, ws). Within the approximation of Sect. 4.2, the kinetic energy
of the satellite with a global ocean reads

(we + Q) L (we + Q) n (ws + Q)L (ws + Q)

Tgo(n: q) = 2 2
T (148)
(wo + Q)T (wo + N)
+ )
2
with the inertia tensors
I. = R, diag(A., B, Ce)R,, (149)
I, = R, diag(As, Bs, Cs)Ro (150)
I, = R, diag(A, By, C.)R; — Re diag(AL, Br, Co)R. (151)
where RC = [IC,JC,Kc], RS - [187J87K8]7 and
N 47
A, = Z ﬁpi (aibici(b? —+ 012) — ai71bi716171(b§_1 + C?_l)) , (152)
i=1
A, = AT becs (b2 4 ¢2 boco(b2 + 2 153
5—15[)5 as scs(s+cs)_a0 OCO(o+co) ) ( )
Al = %poacbccc(bg + cg)7 (154)
4
Al = Tgpoaoboco(bz +c2). (155)

In Eq. (152), we apply the convention ag = bg = ¢o = 0. The other quantities B,
C are deduced from Egs. (152-155) by circular permutation of a, b, c. Let us stress
that the matrix of inertia of the whole satellite is simply

I=1T.+1, + L. (156)



Rotation of a rigid satellite with a fluid component 23

In addition to the gravitational potential energy U(y,t) between the planet
point mass and the extended satellite, to get the Lagrangian we also need to
include the self gravitational potential energy Uscs(q) of the satellite as it is a
function of the relative orientation of the interior and the shell. This potential
energy reads (Laplace, 1798)

Uself(q) = u;I (Ic . 13)2 + u;y (Ic . Js)2 + u;Z (Ic . Ks)2
+ “;9” (Jo 1) + %(JC I+ “;’ (J. - Ks)>? (157)
+ S5 (Ke - L)P 4 T2 (Ke - 30)P 4 S5 (Ko Ko,

with
Ugy = %rg (psfs+ (po = ps) fo) Zf\;l(pi — pit1)aibici, (158)
Uny = 352G (psgs + (Po — ps)go) Yoy (pi — pis1)aibici, (159)
sz = S2G (pshs + (po — ps)ho) Soiey (pi — pit1)adbic, (160)
Uz = 522G (psfs + (po — ps)fo) Soiey(pi — pir1)aibic, (161)
Uyy = 532G (psgs + (Po — ps)go) oiey (pi — piy1)aibics, (162)
Uyz = 32G (pshs + (po — ps)ho) S, (pi — pis1)asbics, (163)
Uzw = 535G (psfs + (po — ps) fo) YLy (pi = pip1)aibicy, (164)
sy = 525G (psgs + (o — ps)go) Y1y (pi — pit1)aibict, (165)
Uzz = 526G (pshs + (po — ps)ho) S0 (pi — pir1)aibic?, (166)

where pn+1 = po and for x € {s, 0},

1 2 2 —3/2 2 2 -1/2
fe zzw“*f*/ (1+ = 2C*t2) (1+ & Qc*tz) 2dt, (167)
c 0

* * C*
e [N aimd TR\ T

g =212 / (1+“ - t2) (1+ — t2) t2dt, (168)
ci Jo ci cx

* N

1 2 2 -1/2 2 —1/2
ha zzwa*f*/ <1+a* QC*tQ) (1+b* — t2) t2dt. (169)
¢z Jo c c

*

The Lagrangian Lgo(n,q) of the problem is then
(we + )L (w. + Q) N (ws + Q)L (ws + Q)

Lgo("h‘l) = T2 92 (170)
(wo + Q) Ih(wo+ Q) 3GM, r'Ir
+ 2 - 2 5 - self(q)-
The Lie momenta associated with n = (w,, w.,ws) are
L
II, = %wg‘) =To(wo + ), (171)
OLgo
e = &j =L (we + ), (172)
c
L
I, = Olzo _ L (ws + £2), (173)

T Ows
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from which we deduce the Hamiltonian
! (1) 'II. N ! (1i,)"'r, N Il (1) ',
2 2 2 (174)

3GM, r'1
7QT(HC + Ho + Hs) + %% + Uself(q)a

Hgo(y) =

which is a function of y = (Il,,yc,ys) with y; = (IL;, 1;,J;, K;). The Poisson
matrix Bgo(y) associated with this set of variables is

oo 0 IL I J; K
| He boy_ |[Ti00 0 B
BgO(Y)_ 0 b(Yc) 0 ) (yﬁ)_ j- 00 0|’ t=c¢s (175)
0 0 bly) K, 00 0

Although y has 27 components, the system evolves in a phase space Yy, of di-
mension 14 = 2 x 7 whose degrees of freedom are the three rotations of the central
region, the three rotation of the shell and an additional degree of freedom associ-
ated with the ocean:

Sgo ={y € R*": Cyoly) = ¢,0 < < 12} (176)
where the thirteen Casimir functions are

1 1 1 1
Cgo(y) = §HZH07 Céo(y) = §IEICa Cgo(Y) = iJEJC: Cgo(Y) = gKrcTKCa
1

Cgo(y) = JE‘KC7 Cgo(Y) = KgIC? CSO(Y) = I’CTJC7 Cg7;o(3’) = 51’5187

1 1
Cgso(y) = 5']3']57 Cgo(}") = §KEK87 Cég Y) = JSTKSa Céé (y) = KEIS:
Cgd(y) = I 3.
(177)
In order to proceed, we have to compute the inverse of the inertia matrix of the
ocean (I,) ™! for which we are missing the principal basis. The other terms of the

Hamiltonian Hgo (Eq. 174) are fully explicit and do not cause any problem. To
make the computation analytical, we anticipate the equilibrium point solution

o e =Co2k Tl e =Cs82k, ILic=1i, Jse=j, Kse=k,

. . (178)
Hc,e = Cch, IC,E =1 JC,E =1 KC,E = k?

where C, = C% — C.. We further define A, = A, — A, and B, = B, — B.. We
then expand (I,)~! in Taylor series up to the second order in y — ye. This is
sufficient to get the equations of motion of the linearised system. We verify that
ve (Eq. 178) actually is a solution of Vy Hgo(ye) = 3, i VyCho(ye) where the
Lagrange multipliers are

po =0, p= 3A20906$ + Uzz, M2 = 3B202y + Uyy,
M3:303022+(Cc+02)92+u2z, }L4:,U5:/L6:0, M7:3A20'2m+uacw7
ps = 3Boyy + uyy, po =3Cl00, + (Cs — CO)R% + u..,

pio = p11 = p12 =0,
(179)



Rotation of a rigid satellite with a fluid component 25

with
A2 = A, + AL, A=A, — AL (180)

The same rules apply for B, Cg, BS and C?. Let us write the matrix of the
linearised problem in the variables

Sy = (mw,5nc,z7515,y,51677,751:/5,17515,2,5176@,516,2,5170,175115,7,,
5‘]5727 5H0yy7 5J07Z7 517071/7 5H0,Z7 6157907 5J57y7 5K5727 513;9 + Js,x, SIC@» 5‘]&1}7

T
5Kc,z, 6Ic,y + Jc,x, 613,2 + Ks,ac, 6Js,z + Ks,yv 6Ic,z + Kc,x, 6Jc,z + Kc,y) ’

(181)
such that, with the driving perturbation, the system reads
0 —-AZ2l0 0
Al 0 |0 0O
(5}’* _A;o(ye)(sy* = 5Zg0(t)7 A;o(ye) = 0 0 0 _Agé ) (182)
0 0 |AZ O
0 0 0 0o |0
with
3(Bs — A2)(k1 — K2) + Uy —Us
A12 _ s s Y Yy 1
e Uy B(BY — A (k1 — k) + Usy| )
21 Ci 0
Ago = OS 1 ; (184)
C.
and
-2 MEP+U,.+FP, 0 —Uy. — FF FP,
= G —-B. 0 0 0
Bs Bs
A =0 Uy —Ff -2 MP+U.+FB. —FE. |, (185)
1 C. — B.
— =20
0 0 B. B. 0
L 0 —FP.Cof2 0 FP.Co02 ~Ff — 0]
-—.Q M‘;A‘f'sz‘f'F]és O _U:ZZ_F?;A Fé?s T
< GmAag 0 0 0
4 As A A A A
Ap =10 —Uy, — F3 -2 ME4Uz+Ff, —Fi. |. (186)
1 C.— Ac
— ]
0 0 o e 0
L 0 —F$4,Co02 0 F3'.C.0 —F{ — 0]

In matrices Agﬁ and Agg (Egs. 185,186), the interaction with the central planet
is represented by the terms

M =3(CY — AD)k1, M =3(CY — BY)ra,  i=s,c, (187)
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the core/shell gravitational coupling through the ocean interface is given by

Uy = Uzy + Uya — Uz — Uyy, (188)
Urz = Uzz + Uze — Uza — Uzz, (189)
Uyz == Uyz + Uzy — Uyy — Uzz, (190)

From the expressions of (uab)a,befz,y,-} given in Eqgs. (158-166), we get

sYs

Usy = 2G(B2 — A2)(ps(gs — fs) + (po — ps)(go — fo)), (191)
Uzz = 2G(C2 — A2)(ps(hs — fs) + (po — ps)(ho — fo)), (192)
Uy> = 2G(C2 — BZ)(ps(hs — gs) + (po — ps)(ho — o)) (193)

Finally, the remaining terms

(Cs = Ko)(Cs = Ky)

Ff = e 22 K=AB (194)
Ff. = (CQ*K%(CQ*KQQ?, K=AB (195)
FyY = C/%OK/Q i=s,c, K=AB (196)
i = (G _K;[)((CQ_K‘@)QQ, K=AB  (197)
FF = MQ, K=AB (198)

K,

are only present in the linearised system because of the rotation of the ocean. If
the Casimir Co(y) = Il, - II,/2 were set equal to zero, i.e., if the ocean were
not rotating with respect to the inertial frame, all Fllfi, F{ﬁ, F3K , and Ff, with
K = A, B and i = s, ¢, would be nil. The same conclusion would hold if the kinetic
energy of the ocean II} (I,) ~'TI,/2 were skipped from the Hamiltonian Hg,. We
thus interpret these terms as due to the centrifugal force felt by the ocean and
responsible for an additional pressure on the interfaces with the interior and the
shell. In that case — i.e., if the kinetic energy of the ocean were dropped —, the
ocean angular momentum IT, would be decoupled from the rest of the system. A
quick inspection of the last row and column of the matrices Agé and Aég indeed
shows that a perturbation of IT, would rotate at the eigenfrequency {2 with respect
to the laboratory frame, and would thus be fixed in the inertial frame.

We note that given the structure of the matrix Ag,, the linearised system is

characterised by two libration frequencies in longitude and five frequencies associ-
ated with libration in latitude and wobble.
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For this problem, the Lyapunov function reads

Ngo(y) =
1

1, , ’ 1
a A Hom_* c— 4lc c,z c,T
s (Mo = 3(CL= AR~ Ke) +

2
5(0; - A/s)-Q(Is,z - Ks,ac))

1

+ 2B,

1 2
oy~ H(CL~ BYRJe: — Ke) + 1<c; - BOR(.~ Ko))

24

+

1
Hc,y+§(cc_ )-Q(ch -

sz + = (C A)2Is,. — K 2)

(

- (Hc,x+%(c A)(Ie- — K
(
-

1
+2Bs (H,y+ (Cs — Bs)2(Js,. — K

U. U,
+ Zy ((Ic,y - JC,I) - (Is,y - JS,ZE)) + ZZ ((IC,Z - KC,ZE) - (IS,Z - KS,IE))z
U
+ T (Jerz = Key) = (Juz = Kay))
nS nS S
+ S (Jaw = Lny) 4+ 2 (e = Kew)® + 52 (Jae — kay)
C C C
+ %(Jc,m —Iy)? %(IC,Z — Keax)? + %(JC,Z — ko),
(199)
with
* 3 o o * 1 o o 2
ny = 7(B* - A*)(‘%l - KQ)} ng = 7(C* - A*)(Q +3/€1)7
4 4
h (200)
ni = Z(cjj — BY)(£2° + 3k2),

and where * = s, c. We deduce that the system is nonlinearly stable if the following
conditions are met

Uzy > 0, Uz > 0, Uy. > 0, Cy > B? > A2 with * = s, c.
(201)
Using the expressions of Ugy, Uz, and Uy, (Egs. 191-193) expanded at first order
in the equatorial and polar flatness, the conditions (201) are equivalent to

- - —b —b
B8 4 (po = pa) T2 > p. B 4 (py — pa) 272 >0,

as ao as ao (202)
C? > B > A2, * =5, C.

Ps
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Table 2 Orbital and physical parameters of Io taken from (Noyelles, 2014).

Parameter value  units
GM,, (Jupiter) 126712765  km3/s?
a 422029.958  km

e 0.00415

) 2.16 arcmin
n 1297.204 4725279755  rad/a
A/(mR?) 0.375127

B/(mR?) 0.377 342

C/(mR?) 0.378 080
Ac/(mR2)® 0.006 007 5578
Bc/(mR?)® 0.006 283 9600
C./(mR?)® 0.006 253 4432

“ Moments of inertia of the core computed from the internal model 1 of (Noyelles, 2014).

Table 3 Eigenperiods of Io’s rotational motion (Eq. 204).

source Ty, (day) T, (day) Tw (day) T. (day)
Noyelles (2014) 13.2322  166.3520 225.0927 1.7382
This work: model fc (Sect. 4.1) 13.2504  157.2780  224.5395 1.7385
This work: model fc’ (Sect. 4.2) 13.2502  156.5653  224.5402 1.7368

Finally, as in the previous section, to get the forced solution, we decompose
the driving excitation 0zgo(t) as (5z§0, (52207 0), with

3(BS — A2)ay,

o _ Ao\ .1
suko(t) = | PP T AT el
0

6 Application

6.1 Io’s libration modes

3(05 - Bg)a;z

—3(C%

—3(C2

0

3(C¢ — B)oy.

0
0
— A)oz.
0
- Ag)o—%z
0
0

(203)

To, one of the Galilean satellite of Jupiter, is assumed to have a liquid core (Ander-
son et al., 1996). Its rotation motion has already been studied within the Poincaré-
Hough paradigm using a Hamiltonian formalism (Henrard, 2008). This analysis has
then been extended using the same method in (Noyelles, 2013, 2014). Although
the approach in ibid. is Hamiltonian, it differs from that described in Sect. 4 which
is expressed in non-canonical variables. Here, we revisit the problem with the aim
of validating our method and, more specifically, the quasi-spherical approximation

(Sect. 4.2).
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The orbital and physical parameters of Io, which are summarised in Tab. 2,
are taken from (Noyelles, 2013, 2014)2. The eigenfrequencies wy,, wy, wyw and w,
are directly computed from the matrix Af, (Egs. 132,133) for the Poincaré-Hough
model (Sect. 4.1), and from the matrix Af, (Eqgs. 146,147) for the quasi-spherical
approximation (Sect. 4.2). Hereafter, the two models are referred to as “model fc”
and “model fc'”, respectively. The eigenfrequencies are then converted into periods
for a direct comparison with (Noyelles, 2014). The correspondence between the
eigenperiods of ibid. and the eigenfrequencies of this work is

.=  r,=-2_  r,=2 T

27
Wa Wy — 27 Waw Wy

(204)

The results are gathered in Tab. 3. We observe a good match between model
fc and that of (Noyelles, 2014) for T, Ty, and T, with a maximal error of about
0.2%. There is a larger discrepancy between the two approaches in the case of Ty
with a deviation of almost 6%, but this eigenmode is more sensitive due to the
small denominator w, — 2 (Eq. 204). It is also very sensitive to the polar flattening
of the core (Noyelles, 2012). Nevertheless, the agreement is satisfactory given that
the methods to compute the eigenperiods in both studies are very different. The
eigenfrequencies given by models fc and fc’ are also very close to each other. Once
again, the largest discrepancy occurs for T, but here it does not exceed 0.5%. We
thus conclude that the quasi-spherical approximation is justified.

Figure 2 represents the trajectories of the principal axes I, J, and K in the
laboratory frame (i, j, k) while the system stands in each of the eigenmodes. The
corresponding eigenfrequencies are recalled below each subfigure. We recognise
the libration motions of a rigid satellite which the name of the eigenmodes have
been taken from. In (Henrard, 2008) and in (Noyelles, 2013, 2014), the eigenmode
associated with w, is referred to as the free libration of the core. Nevertheless, given
the strong similarity between the motions associated with w, and w., we chose to
attribute the same name “libration in latitude” for both of them. Furthermore,
from the observation of the surface only it is hardly possible to distinguish one
from the other. Actually, the distinction between the two modes lies in the relative
position of II. and II, as shown in Fig. 3. When the satellite is in the eigenmode
associated with w,, the two vectors are on the same side from the origin, while in
the eigenmode of frequency w, they are on opposite side.

6.2 Titan’s equilibrium obliquity

In this section, we analyse the rotation of Titan orbiting Saturn. Several hints
suggest that this satellite holds a global ocean under its surface (Coyette et al.,
2016, and references therein). Among these clues, an important one for our purpose
is Titan’s “high” obliquity of 0.32° which could not be explained if the satellite were
solid (Bills and Nimmo, 2011). Nevertheless, a discrepancy still persists between
the observations and the expected obliquity associated with the Cassini state, the
latter remaining below 0.15° for a large class of interior models (e.g., Baland et al.,
2011). Therefore, it has been proposed that Titan’s current obliquity is amplified

2 Here and throughout the paper, we follow the IAU recommendations which state that the
symbol for a Julian year is “a”. Hence, radian per year is written “rad/a”.
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libration in longitude (w,,) wobble (wiy)

libration in latitude (w,) libration in latitude (w.)

Fig. 2 Eigenmodes of Io’s rotation motion computed with the parameters of Tab. 2. Positions
at constant time intervals of the principal axes (I,J,K) are depicted by black dots. Open
circles indicate the initial condition. Intersections of the dotted great circles of the unit sphere
represent the laboratory frame (i, j, k). Jupiter is in the direction of the vector i. The associated
eigenfrequencies are recalled below each figure.

by a resonance with one of the remaining orbital forcing frequencies (Baland et al.,
2011; Noyelles and Nimmo, 2014).

In his abstract, Henrard (2008) wrote about Io that “the addition of a degree
of freedom (the spin of the core) with a frequency close to the orbital frequency
multiplies the possibility of resonances’. In the case of Titan, we also have an
additional degree of freedom in comparison to the previous studies quoted above.
We thus expect our model to be able to tilt Titan’s axis more easily.

The orbital elements of Titan are taken from the ephemeris TASS1.6 (Vienne
and Duriez, 1995). From the full solution, we only retain the keplerian motion
and the nodal precession of the orbit with respect to the Laplace plane®. These
parameters are summarised in Tab. 4. Regarding Titan internal structure, we

3 Here, we define Titan’s Laplace plane as the plane whose orientation is given by the
constant part of the inclination solution of TASS1.6. (Vienne and Duriez, 1995)
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y-axis y-axis
A

T-axis

libration in latitude (w,) libration in latitude (w,)

Fig. 3 Trajectories of the projections of IT and IT. on the plane (i,j) while Io is in libration
in latitude. Dots represent successive positions of the vectors. Open circles denote the initial
conditions. In the eigenmode with frequency w,, the two vectors are on the same side from
the origin whereas in the eigenstate of frequency w., they are on opposite side. The radial
coordinate of each vector is plotted in a log scale with arbitrary units. These figures have been
computed using Io’s parameters (cf Tab. 2).

select two models proposed by Fortes (2012), hereafter referred to as model F1
and F2. They assume a global ocean with extreme densities equal to 1023 kg/ m?
and 1281 kg/me’, respectively. In model F1, the ocean is a mixture of water and
methanol, while in model F2, the ocean is made of water and ammonia. Parameters
of these interior models are summarised in Tab. 5. In both models, the average
density is 1881 kg/m? and the mean moment of inertia I /(mR?) remains within the
errorbars provided by lIess et al. (2012). The equatorial flattening ¢ is obtained
by integration of Clairaut’s equation (Clairaut, 1743) assuming an hydrostatic
equilibrium (same as Richard, 2014). The boundary semi-axes at volumetric mean
radius R between two layers are given by (e.g., Rambaux and Castillo-Rogez, 2013)

7 2 5
a:R(1+§C>, b:R(lf§C)7 c:R(1f§g). (205)

The values of the derived parameters involved in the Hamiltonian Hgo(y) (Eq. 174)
are listed in Tab. 6.

The eigenfrequencies computed for the two interior models F1 and F2 are
shown in Tab. 7. For each model, we assume either a rotating or a static ocean
with respect to the inertial frame (see Sect. 5). For reference, we also provide
the eigenfrequencies assuming a fully rigid satellite. To interpret these eigenfre-
quencies, the associated trajectories of the vectors (I.,Jc, K.) and (I,Js,Ks) are
displayed in Fig. 4. We recognise librations in longitude at wy1 and w2, librations
in latitude at wy1, wy2 and wy3, and wobbles at w1 and wy2. From Tab. 7, we
observe that each eigenmode has a specific range of frequencies. Libration frequen-
cies in latitude are close to the mean motion 2 ~ 143.9240rad/a. Frequencies of
libration in longitude are between 2 and 8rad/a, and the wobble is the slowest
motion with frequencies ranging between 0.01 and 0.2rad/a.
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libration in longitude (wy1) libration in longitude (wy2)

libration in latitude (wy2)

libration in latitude (wy3) wobble (wy1)

wobble (wy2)

Fig. 4 Eigenmodes of Titan’s rotation motion computed with the interior model F1. Positions
at constant time intervals of the shell principal axes (Is,Js, Ks) are depicted by black dots
on the unit sphere. Those of the interior (I.,J¢, K¢) are plotted at half the radius of the unit
sphere. The white dots indicate the initial condition. Intersections of the dotted great circles of
the unit sphere represent the laboratory frame (i, j, k). Saturn is in the direction of the vector
i. The associated eigenfrequencies are recalled below each figure.
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Table 4 Orbital parameters of Titan used in this study.

Parameter value  units reference

GM) (Saturn) 37931272 km3/s2  (Campbell and Anderson, 1989)
a 1221729 km computed®

e 0.028 (Vienne and Duriez, 1995)

it 0.320  deg (Vienne and Duriez, 1995)

9] 143.92404785 rad/a (Vienne and Duriez, 1995)
do/dt -0.00893124 rad/a (Vienne and Duriez, 1995)

@ The semimajor axis has been computed from the masses of Saturn and Titan given by Campbell
and Anderson (1989) and the orbital parameters Ng and pos provided by Vienne and Duriez (1995).
b Inclination with respect to the Laplace plane given by the amplitude of the second harmonic of
Coe in the notation of Vienne and Duriez (1995).

Table 5 Physical parameters of the two interior models of Titan considered in this study
taken from (Fortes, 2012).

F1 F2
p R ¢ p R ¢
Layer (kg/m?) (km) (10®°) | (kg/m®) (km) (10®)
Ice 930.9 2575 12.068 | 930.9 2575 12.080
Ocean 1023.5 2475 11.878 | 1281.3 2475 11.887
Ice V 1272.7 2225  11.552 | 1350.9 2225  11.488
Ice VI 1338.9 2163 11.521 - - -
Silicate | 2542.3 2116 11.514 | 2650.4 1984 11.310

For each layer, p is the density and R and ¢ respectively denote the mean radius and the equatorial
flattening of the upper boundary.

The condition for Titan to have a significant (shell) obliquity is that one of
the libration frequencies in latitude gets close to the excitation frequency of the
perturbation o3 (t) (Eq. 69), namely, wi, = 02— ~ 143.9330 rad/a. In the case of
a rigid satellite there is no lever arm. The libration frequency only depends on the
total moments of inertia which are constrained by observations. This frequency,
equal to 143.9582rad/a, leads to an obliquity of 0.113° which is about one third
of the actual value g4, = 0.32°.

When the ocean is taken into account, the system has three distinct frequencies
of libration in latitude which can potentially be in resonance with the orbital
precession rate. It should nevertheless be stressed that when the rotation of the
ocean is set to zero, the frequency w3 in Tab. 7 is just the mean motion {2 which
is not involved in the tilting of the shell axis. Titan’s obliquities € computed with
the different models are gathered in Tab. 8. Note that we allow the obliquity to be
negative as explained in Fig. 5. As expected, within the “static ocean” hypothesis
the ocean is not affected by the perturbation o, . Its obliquity is £, = —i, meaning
that II, remains aligned with the Laplace pole k which is the third axis of our
laboratory reference frame. The last two eigenfrequencies wy1 and wy2 are further
away from w2, than wy3. They only produce a shell obliquity of €5 &~ 0.06° which is
much lower than the observed one. Furthermore, this result does not significantly
vary from model F1 to model F2.

If the rotation of the ocean is set equal to the mean rotation of the satellite, wqp3
is the eigenfrequency responsible for the tilt of Titan’s shell spin pole. With the
two models F1 and F2 considered here, the results are still very low: s = 0.004°
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Table 6 Derived parameters for Titan’s model.

Note that the number of digits provided in this table is required to recover the values presented in

Tabs. 7 and 8.

Parameter model F1 model F2  units
Ac/(mR?)  0.2321339588  0.213 3546838
B./(mR?)  0.2321607420 0.213379 0654
C./(mR?)  0.2321696677 0.213 3871908
Am/(mR?)  0.0355650464  0.035556 8942
Bm/(mR?)  0.0355696492  0.035561 5041
Cm/(mR?) 0.0355711830  0.035563 0404
AlL/(mR2?)  0.1048351592  0.1312111289
B!//(mR2?)  0.1048472721  0.131226 2055
C!/(mR?)  0.1048513089 0.1312312299

Al /(mR?)  0.1785384650  0.223457 6674

B!, /(mR?) 0.1785596760  0.223 4842365
C!./(mR?) 0.178566 7448  0.223 493 0909
Ugz/(MR2)  135.96964203  109.83790034  1/day?
ugy/(MmR?)  135.98930793 109.85375574  1/day?
ugz/(mR?)  135.99586322  109.85904086  1/day?
uye/(MR?)  135.93831145 109.81302276  1/day?
uyy/(mR?)  135.95797282  109.828 87457  1/day?
uyz/(mR?)  135.96452660 109.83415849  1/day?
Uze/(mR?)  135.92787023  109.80473203  1/day?
Uzy/(MR?)  135.94753009 109.82058264  1/day?
uzz/(mR?)  135.95408336 109.82586617 1/day?

Table 7 Eigenfrequencies of Titan’s rotation in rad/a.

rotating ocean static ocean rigid
F1 F2 F1 F2 F1/F2 | type of motion
Wyl 7.9237 8.2656 7.9237 8.2656 27117 libration in
Wyu2 2.3950 2.1147 2.3950 2.1147 ' longitude
Wyl 144.3272  144.3641 | 144.2507  144.2683
libration in
wWy2 143.9494  143.9445 | 143.9528  143.9472 | 143.9582 latitude
wy3 143.9307  143.9266 | 143.924%  143.924¢
W1 0.1943 0.2105 0.1177 0.1104 0.0228 | wobble
Waw?2 0.0178 0.0138 0.0214 0.0199

@ In the case where the ocean is assumed static, wy3 = 143.9240 rad/a is the mean motion 2.

with model F1 and &5 = 0.108° with model F2. However, the two values vary by
a factor 27. A modification of Titan’s interior is thus more likely to produce the
observed obliquity if the rotation of the ocean is taken into account.

To illustrate this statement, we generate a series of interior models of Titan
based on the model F1. To simulate inhomogeneities in the shell, we slightly modify
the equatorial flattening (s of the surface from 11.890 x 10~° to the hydrostatic
value 12.068 x 1075 given in Tab. 5. These numbers should be compared to the
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Laplace pole

orbit pole

spin pole

Fig. 5 Definition of Titan’s inclination ¢ and obliquity €. In a Cassini state of the averaged
problem, the Laplace pole, the orbit pole and the spin pole are in a same plane. We define
the orientation of this plane by the inclination measured from the Laplace pole to the orbit
pole which by convention is positive. This allows to defined the obliquity as a signed angle
measured from the orbit pole to the spin axis. In this figure, € is positive.

Table 8 Obliquity of Titan’s layers in degree.

rotating ocean static ocean rigid
F1 F2 F1 F2 | F1/F2
core 0.294 0.272 0.149 0.207 0.113
ocean | -0.479 0.208 | -0.320 -0.320 0.113
shell 0.004 0.108 0.062 0.064 0.113

The meaning of the sign of the obliquity is explained in Fig. 5.

equatorial flattenings computed with the two models provided by Iess et al. (2012),
ie., 11.911x 107° (SOL2) and 12.005x 10~° (SOL1a). To keep the global moments
of inertia constant, the equatorial flattening of all the other layers are refitted using
Clairaut’s equation. It has been checked that all these models are nonlinearly stable
according to the condition Eq. (202). Figure 6 displays the evolution of the libration
frequencies in latitude w2 and wy3 as a function of the surface equatorial flattening
(s. When the rotation of the ocean is considered (left plots), w3 varies sufficiently
to cross the resonant frequency wi, at ¢ &~ 11.97 x 10~° where, in the linear
approximation, the shell obliquity diverges. More interestingly, for (s ~ 11.94 x
107°, the driven shell obliquity &5 is equal to the observed value go,s = 0.32°.
In comparison, when the ocean is assumed to be static (right plots of Fig. 6),
wy3 remains strictly equal to {2 and w,2 barely evolves. As a consequence, the
equilibrium shell obliquity remains practically constant close to 0.062°.

7 Conclusion

This paper provides a general method for analysing the rotation dynamics of a
rigid body with a fluid internal layer. The study is performed in a non-canonical
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model F1 with a rotating ocean model F1 with a static ocean
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Fig. 6 Obliquity and libration frequencies as a function of the surface equatorial flattening
assuming a rotating ocean (left) or a static ocean (right). The vertical dashed line indicates
the location of the resonance wy3 = w}cz. In the upper plots, €5 represents the obliquity of the
shell at the Cassini state and £,ps the observed value.

Hamiltonian formalism well adapted to systems near relative equilibria such as syn-
chronous satellites in a Cassini state. The Poisson structure of the non-canonical
Hamiltonian is here obtained by a Legendre transformation of the corresponding
Lagrangian written using Poincaré’s formalism which makes use of the properties
of the Lie group acting on the configuration space.

With this approach, we have been able to treat the case of a satellite with a
liquid core or with a global underneath ocean in the exact same manner as that
of a rigid satellite. All the difficulty is in the calculation of the Lagrangian func-
tion — and more specifically, of the kinetic energy of the fluid layer — in terms
of generalised coordinates and Lie velocities. For a satellite with a liquid core,
Poincaré introduced the concept of a fluid simple motion which cannot be rigor-
ously transposed to a satellite with an ocean. Nevertheless, at first order this fluid
layer behaves like a rigid body for which the kinetic energy is known. Tests on a
satellite with a liquid core, assuming lo’s physical and orbital parameters, have
shown that the errors induced by this approximation do not exceed 0.5% on the
eigenfrequencies.

The analysis of a hollow satellite with a fluid core leads to a four degree of free-
dom dynamical model. The linearised problem in the vicinity of the synchronous
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equilibrium state is thus characterised by four eigenmodes. These are a libration in
longitude, a wobble and two librations in latitude. To this solved problem, we have
provided an analytical expression of the linearised equations written in terms of in-
tuitive variables, namely the components of the angular momenta and of the base
frame vectors. We also have clearly identified the fourth eigenmode as a libration
in latitude.

The rotation dynamics of a satellite with a global subsurface ocean is governed
by seven eigenmodes associated with the seven degrees of freedom of the problem,
six of which being equally shared by the interior and the outer shell and the last
one being brought by the ocean. Near the synchronous equilibrium state, these
eigenmodes are identified as two librations in longitude, two wobbles and three
librations in latitude. The amplitude of the third libration in latitude would only
vanish if the ocean were static with respect to the inertial frame.

Our study has been motivated by Titan’s obliquity measured by the Cassini-
Huygens mission. Thus far, dynamical models struggle to explain its high value
under the hydrostatic shape hypothesis suggested by the ratio of its Stokes coef-
ficients J2/C22 =~ 10/3. Here, we show that the rotation of the ocean makes the
dynamical model much more sensitive to small perturbations of the interior model
than when the ocean is assumed static. As an example, starting from a body in
perfect hydrostatic equilibrium, we slightly modified the equatorial flattening of
the shell by about 1% of the nominal value. This was enough to bring the obliquity
of the Cassini state even beyond the radiometric value with the seven degree of
freedom model while the same quantity computed with the static ocean hypothesis
remained practically constant scarcely reaching a 0.1% increase.

This work is intended to demonstrate the capability of the seven degree of
freedom dynamical model to explain the observed high obliquity of Titan. The
problem has therefore been intentionally simplified. Tidal deformations, atmo-
spheric torques, and all orbital perturbations but the main precession relative to
the Laplace plane have been discarded. These additions would be required for an
exhaustive search of the interior models compatible with the measurements made
by the Cassini-Huygens mission: the rotation state, the gravity field coefficients,
the shape, the tidal Love number, and the electric field. But this is beyond the
scope of the present paper and shall be discussed elsewhere.
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