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Abstract. Today, the routine assimilation of satellite data
into operational models of ocean circulation is mature
enough to enable the production of global reanalyses de-
scribing the ocean circulation variability during the past
decades. The expansion of the “reanalysis” concept from
ocean physics to biogeochemistry is a timely challenge
that motivates the present study. The objective of this pa-
per is to investigate the potential benefits of assimilating
satellite-estimated chlorophyll data into a basin-scale three-
dimensional coupled physical–biogeochemical model of the
North Atlantic. The aim is on the one hand to improve fore-
casts of ocean biogeochemical properties and on the other
hand to define a methodology for producing data-driven cli-
matologies based on coupled physical–biogeochemical mod-
eling. A simplified variant of the Kalman filter is used to
assimilate ocean color data during a 9-year period. In this
frame, two experiments are carried out, with and without
anamorphic transformations of the state vector variables.
Data assimilation efficiency is assessed with respect to the as-
similated data set, nitrate of the World Ocean Atlas database
and a derived climatology. Along the simulation period, the
non-linear assimilation scheme clearly improves the surface
analysis and forecast chlorophyll concentrations, especially
in the North Atlantic bloom region. Nitrate concentration
forecasts are also improved thanks to the assimilation of
ocean color data while this improvement is limited to the
upper layer of the water column, in agreement with recent
related literature. This feature is explained by the weak cor-
relation taken into account by the assimilation between sur-
face phytoplankton and nitrate concentrations deeper than 50

meters. The assessment of the non-linear assimilation exper-
iments indicates that the proposed methodology provides the
skeleton of an assimilative system suitable for reanalyzing
the ocean biogeochemistry based on ocean color data.

1 Introduction

Monitoring the evolution of the marine biogeochemistry
with relevant accuracy and resolution is a key require-
ment to better understand the ocean response to accelerat-
ing global climate change and the consequent effects on the
carbon cycle and living resources. Unfortunately, the sig-
nature of the oceanic biogeochemical functioning, such as
the regional patterns, vertical extension and timing of pri-
mary production at basin-scale, is still poorly known as a
result of sparse historical data (Garcia et al., 2010) and
the incomplete deployment of dedicated observing systems
(Claustre et al., 2010a, b).

While it is conceivable to characterize the biogeochem-
ical properties of a limited zone in the coastal domain
through field measurements only (oceanographic cruises, au-
tonomous sensors, etc.), it seems unrealistic to obtain spa-
tially and temporally synoptic descriptions of vast ocean
basins using similar approaches in the foreseeable future.
Spatial ocean color sensors are the main source of global
biogeochemical data available today. These sensors enable
the observation of optical properties of the upper ocean such
as the water leaving radiance in the visible spectrum, which
can be related to the sea surface chlorophyll concentration.
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Today, more than one decade of global ocean color data have
been collected (Wilson, 2010), starting with the “proof-of-
concept” Coastal Zone Color Scanner mission and more re-
cently with several missions such as MEdium Resolution
Imaging Spectrometer (MERIS), Moderate Resolution Imag-
ing Spectrometer (MODIS), and Sea-viewing Wide Field-of-
View (SeaWiFS). In spite of the invaluable merit of ocean
color data, these sensors do not measure (directly or indi-
rectly) other biogeochemical components such as nutrients
(e.g., nitrates, ammonium) or trophic species. In addition,
measurements are limited to the ocean surface, while the only
source for deep observations is through the deployment of in
situ sensors (Johnson et al., 2009).

An alternative approach to obtain depictions of the biogeo-
chemical oceanic state is to use large-scale coupled physical–
biogeochemical models (CPBM). The concept behind these
models is to advect and diffuse biogeochemical tracers con-
sistently with the ocean circulation as simulated by a numer-
ical model solving the Navier–Stokes equations. A variety of
biological formulations (either empirical or mechanistic) are
used to update biogeochemical concentrations in the coupled
model. One of the key assets of CPBMs is their ability to pro-
vide information on the coupled system with a high tempo-
ral and spatial resolution in three dimensions. A recognized
weakness of CPBMs, however, is the approximate modeling
of processes governing exchanges between the biogeochem-
ical compartments. These processes are mostly dependent on
the level of complexity of the model formulation, while in
reality these interactions are time- and space-dependent as a
lot of local factors may interfere in it (Doney et al., 1999).
This is an obvious source of errors in the parameterization of
the biogeochemical model and resulting model simulations.

The present study aims to combine ocean color satel-
lite measurements with a CPBM to improve the representa-
tion of the biogeochemistry and its variability, extracting the
best features from the model and the observations while re-
ducing their respective weaknesses. Since satellite data are
thought to describe the near-surface biogeochemistry with
some faith, it is assumed here that the CPBM has enough skill
to extrapolate the surface observations onto non-observed
biogeochemical properties (especially at depth), in agree-
ment with the underlying ocean physics and the biogeochem-
ical principles of the model. Essentially, this is achieved by
assimilating satellite chlorophyll data into a CPBM to in-
crease the realism of the biogeochemical state variables. This
approach has many similarities with the philosophy of al-
timeter data assimilation into dynamical models, which aims
at inverting the signature of the surface dynamic topography
into estimates of its internal dynamics (e.g., Fukumori et al.,
1995; Brasseur et al., 1999).

Today, the routine assimilation of satellite data (e.g., al-
timetry, sea surface temperature) into operational forecasting
models of ocean physics is mature enough to provide rele-
vant information on non-observed parameters such as salin-
ity, temperature and velocity fields (Cummings et al., 2009).

This capacity has been demonstrated by the production of
global reanalyses of ocean physics to reconstruct the vari-
ability of its circulation during the past decades (Stammer et
al., 2010).

The expansion of the “reanalysis” concept from physics
to biogeochemistry is a timely challenge that motivates the
present study. The sequential assimilation of a biogeochem-
ical data set into CPBMs has, however, not yet reached the
same level of maturity as for the physics, in spite of a number
of successful studies on the subject (Carmillet et al., 2001;
Natvik et al., 2003; Ford et al., 2012). A comprehensive re-
view of biological data assimilation experiments, both se-
quential and variational, can be found in Gregg et al. (2009).

Several specific difficulties appear when considering the
assimilation problem into CPBMs. Firstly, the measurement
of top-of-atmosphere water-leaving radiance usually exhibits
large differences with above-sea-surface equivalent values,
as a result of strong interactions between visible light and
the atmosphere (Lavender et al., 2005); this issue partly ex-
plains why most of the pioneer studies dealing with ocean
color data assimilation were first carried out using pseudo-
data (extracted from a model) rather than real data (Carmillet
et al., 2001; Natvik et al., 2001). Secondly, it is often difficult
to use the ocean color information to control the effect of er-
rors in the ocean physics that cascade onto the biogeochem-
istry (Béal et al., 2010). Thirdly, in general the response of
three-dimensional biogeochemical models to external forc-
ings and parameterizations is highly non-linear, making the
traditional assimilation framework inappropriate to develop
these applications (Bertino et al., 2003; Doron et al., 2011).
In the context of multivariate state estimation, where not
only the observed variables are impacted by the assimila-
tion process, these non-linearities can lead to failure of the
method where corrections applied to the non-observed vari-
ables are unrealistic (Nerger and Gregg, 2007; Gregg 2008).
Finally, global ocean circulation models require important
numerical resources and are generally designed to be run on
the most powerful computers dedicated to oceanographic re-
search or operational systems. The coupling of global and
biogeochemical models requires the advection and diffusion
of supplementary state variables which increase the numeri-
cal needs such that the CPBM becomes hard to handle from a
practical point of view. This is especially true for ensemble-
based methods where the model needs to be run∼O(100)
times to obtain statistically consistent ensembles of simula-
tions.

Considering recent advances made in the field of non-
linear data assimilation (e.g., Bertino et al., 2003; Simon and
Bertino, 2009; Bocquet et al., 2010; Brankart et al., 2012),
and the need to develop the next generation of operational
ocean monitoring systems within the framework of the My-
Ocean project (http://www.myocean.eu.org/), the aims of the
present study are (i) to implement a multivariate, ocean color
assimilative system based on state-of-the-art methods and
to assess its performance in a pre-operational configuration,
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(ii) to produce a multi-year reanalysis of the North Atlantic
biogeochemistry using SeaWiFS satellite chlorophyll data
from the period 1998–2006, which could eventually super-
sede the biogeochemical climatologies available today, and
(iii) to investigate more specifically how information on su-
perficial chlorophyll concentration can be projected onto
non-observed variables. Here, non-observed variables mean
both chlorophyll where no satellite data are available and
other unmeasured biogeochemical components (e.g., nutri-
ents).

The strategy adopted for this work relies on assimilation
of the SeaWiFS data set because this mission consists of the
longest time series of ocean color data to date (September
1997 to December 2010). The model domain is the North
Atlantic, which exhibits highly contrasted seasonal and spa-
tial biogeochemical behavior as well as many ocean cir-
culation features found in other ocean basins. In order to
make the assimilation tractable from a computational point
of view, a simplified version of the Singular Evolutive Ex-
tended Kalman (SEEK) filter (Pham et al., 1998) has been
chosen while anamorphic transformations as developed by
Béal et al. (2010) are used to deal with the non-linear and
non-Gaussian behavior of the CPBMs. Validation of the re-
analysis is performed using independent data gathered from
the World Ocean Atlas 2009 (WOA09) nitrate data set (Gar-
cia et al., 2010).

The paper is organized as follows: Sect. 2 describes the
model setup, observations and the assimilation method im-
plemented in the assimilative system; Sect. 3 presents the
experimental setup of the reanalysis system; and Sect. 4 dis-
cusses the results of the 1998–2006 reanalysis, showing the
impact of the assimilation on a selection of observed and
non-observed variables. Finally, an assessment of the results
is presented in Sect. 5 before drawing conclusions.

2 Data, models and assimilation method

The coupled physical–biogeochemical model and assimila-
tion framework considered in this paper is inherited from
previous modeling studies of the North Atlantic biogeochem-
istry (Berline et al., 2007; Ourmières et al., 2009) and related
assimilation developments (Béal et al., 2010; Doron et al.,
2011). In the next section the main features of the model-
ing system developed for ocean color assimilation are briefly
described.

2.1 The coupled physical–biogeochemical model and
associated modeling errors

The physical component of the coupled model is simulated
using the Nucleus for European Modelling of the Ocean
(NEMO) code (Barnier et al., 2006) implemented in the
North Atlantic basin at 1/4° horizontal resolution, which is
considered as “eddy-permitting” in the mid-latitudes. NEMO

Fig. 1. Model domain and biogeochemical regions (left); LOB-
STER biogeochemical model components and fluxes (right).

is a primitive equation model based on the free surface for-
mulation. The prognostic variables are the three-dimensional
velocity fields, temperature and salinity. The model domain
covers the North Atlantic basin from 20° S to 80° N and from
98° W to 23° E (Fig. 1, left). Buffer zones are specified at the
southern, northern and eastern (Mediterranean) boundaries
(Treguier et al., 2001). Vertical discretization involves 45
geopotential levels, with grid spacing that increases from 6 m
at the surface to 250 m at the bottom. The model is forced by
ERA-INTERIM atmospheric fields (Dee et al., 2011) from
the European Centre for Medium-Range Weather Forecasts
(ECMWF), using bulk formulations as proposed by Large
and Yeager (2004).

The biogeochemical component of the coupled model is
the LOBSTER model (Levy et al., 2005) in the North At-
lantic setup described by Ourmières et al. (2009). The LOB-
STER formulation is nitrogen-based and contains six prog-
nostic variables: nitrate, ammonium, phytoplankton, zoo-
plankton, detritus and semilabile dissolved organic matter
(Fig. 1, right). All biogeochemical variables are advected and
diffused in three-dimensional space following the oceanic
circulation computed by the physical model. The LOBSTER
model considers closed boundaries at model grid frontiers.
The chlorophyll concentration is a diagnostic variable, com-
puted according to the phytoplankton concentration through
a space- and time-dependent chlorophyll-to-nitrogen (Chl/N)
ratio. The LOBSTER model updates biogeochemical con-
centrations with the same time step as the circulation model,
i.e., every 40 minutes.

As in every simulation, the numerical modeling system has
many imperfections so that the simulations exhibit a variety
of errors compared to the “true” system evolution. This may
be due to the atmospheric input data which are themselves
derived from a model and therefore cascade into physical and
biogeochemical modeling errors. Another possible source of
errors lies in the parameterizations used to represent the ef-
fect of physical and biological processes that are not resolved
explicitly by the model. This includes, among others, the ef-
fects of the sub-grid scale physical processes as well as the
overly simplified structure of the ecosystem model, which
is unable to represent the behavior of the actual ecosystem
in nature. Furthermore, spatial and temporal discretizations
used in numerical algorithms are another source of errors
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that necessarily impact the model solutions. Finally, the ini-
tialization of physical and biogeochemical oceanic fields is
generally done using approximate values (climatology or ho-
mogenous assumptions), and in spite of a necessary spin-up
period the resulting simulation always keeps the signature
of the chosen initialization method including its unrealistic
features. The main goal of data assimilation is to reduce the
adverse impacts of the modeling errors on the representation
of the biogeochemistry by combining the model information
with observations.

2.2 The ocean color data set and associated errors

The satellite chlorophyll concentrations that are assimilated
in the coupled model are derived from SeaWiFS using the
OC4 algorithm applied to the remotely-sensed water leav-
ing radiance (Feldman and McCain, 2010). To simplify the
assimilation process, satellite products are systematically
remapped onto the model grid prior to their assimilation. The
use of a composite data set (i.e., obtained by merging scenes
from different sensors such as MODIS, MERIS and Sea-
WiFS) is not essential within the framework of the present
study since the number of sensors available during the pe-
riod of interest varies between 1 and 3 in one given location,
and composite data would therefore make the diagnostics of
the assimilation experiments rather complex.

Limited accuracy of ocean color products is another source
of errors that must be taken into account in the assimilation
process. The fraction of water leaving radiance measured at
top-of-atmosphere by satellite sensors such as SeaWiFS is
typically only 5–20 % of the total measured signal (Lavender
et al., 2005). The remainder of the signal is due to interac-
tions between light and the Earth atmosphere (e.g., Rayleigh
reflectance, aerosol reflectance). Thus, in order to obtain re-
liable satellite-derived data in the visible spectrum, the ap-
plication of atmospheric corrections is required to estimate
the original above-sea-surface water leaving radiance. These
corrections, however, are a major source of errors in retriev-
ing the meaningful physical parameters from the water leav-
ing radiance. More specifically, the OC4 algorithm used here
is an empirical function conveying uncertainties in the cho-
sen parameterizations. Other biogeochemical features (e.g.,
different assemblages of phytoplankton communities, pres-
ence of chromophoric dissolved organic matter, etc.) are also
responsible for imperfections in the retrieval process of the
chlorophyll concentration. All things considered, it will be
admitted in our experiments that the error of the SeaWiFS
chlorophyll products is on average 30 % of the measured sig-
nal amplitude in open oceans (Gregg and Casey, 2004).

2.3 The assimilation method

The assimilation method chosen to develop the reanalysis
system is a sequential algorithm derived from optimal esti-
mation theory: the model state trajectory is corrected inter-

mittently by computing statistical updates of the state vector
using a combination of available data and model predictions
weighted according to their respective uncertainties.

The ocean color data are assimilated using a Singular Evo-
lutive Extended Kalman (SEEK) filter (Pham et al., 1998)
implemented in the coupled model using the System of Se-
quential Assimilation Modules (SESAM) assimilation plat-
form (Brankart et al., 2012). This tool is used to perform
all matrix operations required by the assimilation scheme,
such as the computation of empirical orthogonal functions
(EOF) of the reduced-order filter, the innovation vector and
the analysis update. A reduced-rank Kalman filter with static
error sub-space (Brasseur and Verron, 2006) is chosen here
because its comparatively low computational burden enables
making extended experiments vs. ensemble-based methods
(e.g., ensemble Kalman filter) which require the explicit
computation of ensemble evolution. Nevertheless, the up-
grade of the assimilation scheme toward a fully explicit en-
semble scheme will be straightforward in forthcoming appli-
cations.

The state vector entering the assimilation procedure is
composed of all prognostic biogeochemical state variables
of the three-dimensional model grid. This means that a mul-
tivariate analysis update is computed, where all observed and
non-observed components of the biogeochemical model are
modified. In addition, the SEEK filter is implemented us-
ing two different versions of the analysis step: in the first
version, the analysis is performed using the original model
state variables; in the second version, anamorphosis trans-
formations are applied to each separate variable of the state
vector prior to the analysis step, and the corresponding in-
verse transformation is applied after analysis to restart the
model integration in the original model space. This aspect
is identified as a key ingredient of the assimilation scheme
that contributes to the efficiency of the procedure. When the
analysis includes anamorphic transformations, the marginal
probability density functions (PDFs) of the forecast variables
are transformed into PDFs that are close to Gaussian. We
will not enter into the mathematical details here, as this as-
pect is already fully documented elsewhere (e.g., Bertino et
al., 2003; B́eal et al., 2010; Brankart et al., 2012; Simon
and Bertino, 2012). The parameterization of the anamor-
phic transformation is equivalent to the one used in Doron
et al. (2011). The anamorphosis transformation presents sev-
eral advantages that are expected to improve the assimilation
efficiency. Firstly, as the final marginal PDFs are more Gaus-
sian than the original ones, the assimilation process should be
more respectful of the assumptions underlying the Kalman
filter optimality. This ensures a better description of the cor-
relations between observed and non-observed variables, as
discussed in Brankart et al. (2012). Secondly, it is possible to
parameterize the error statistics (more specifically the tails of
the marginal probability distributions) in such a way that any
”extrapolation” outside the range of values described by the
ensemble is avoided. In essence, it means that it becomes
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impossible to obtain negative values for the concentration
variables of the state vector after the analysis update. In the
linear case, negative concentrations obtained after an assim-
ilation step were systematically set to a concentration value
of 1 e−6 mmol m−3.

3 Experimental setup of the reanalysis system

3.1 Initialization of the coupled model and simulation
strategy

The simulations described in this paper were performed on a
9-year period from 1 January 1998 to 1 January 2007. Physi-
cal variables were initialized following a 16-year spin-up pe-
riod starting from the Levitus monthly climatology (Levitus
et al., 1998) for temperature and salinity fields, while veloc-
ity fields were null. Biogeochemical variables were initial-
ized following a 2-year spin-up period. This short spin-up
was initialized using nitrate concentrations from the World
Ocean Atlas climatology (Garcia et al., 2010), while homo-
geneous values were assigned to the other biogeochemical
variables (see Ourmières et al., 2009).

The coupled model is subsequently run without data as-
similation; this simulation will be referred hereafter as the
“free” run. Two simulations using the data assimilation sys-
tem are performed in parallel. These two reanalysis runs as-
similate a set of temporally-binned satellite chlorophyll maps
every 8 days. The assimilated maps are a binning of satellite
data for the 8 days preceding the assimilation date, allowing
to stay in an operational framework where future observa-
tions are not known.

In the first run, the analysis update is performed with no
non-linear transformation of the state vector in the assimi-
lation scheme. This experiment is referred hereafter as the
“linear” run. For the second run, the anamorphosis transfor-
mation is applied to the state vector, the observation vector
and the error covariance matrix. This second experiment will
be referred hereafter as the “anamorphosis” or “non-linear”
run.

Considering the assimilation increment procedure, the
model is stopped every time an observation is available, then
an analysis is computed. The model is then restarted from
this analysis on the first time step and evolves freely until the
next available observation.

Time-averaged data shown in this manuscript are obtained
by computing the mean state of the considered data for each
time step on a given period.

3.2 Specific setup of the assimilation system

The practical setup of the assimilation method is a critical
step of the present reanalysis system. Numerous parameters
enter the analysis computation, influencing the performance
of the reanalysis experiments. However, as discussed previ-
ously, large-scale CPBMs require important computational

resources, preventing an exhaustive exploration of the sensi-
tivity of the assimilation process on each parameter (includ-
ing their mutual interplay). We describe below the strategy
chosen to prescribe the key parameters of the reanalysis sys-
tem.

The EOF basis entering the computation of the SEEK
analysis is obtained from the free run variability. For each
analysis date, a specific set of EOFs is computed using a tem-
poral ensemble of state vectors sampled from the free model
trajectory with a 2-day frequency. This “deterministic” en-
semble is constructed as follows: for a given day of the year,
all model states falling into the 2-month period surrounding
the assimilation date are selected in the period 1999 to 2005
covered by the free simulation. Thus, every temporal ensem-
ble contains 210 members that are used to compute the EOF
basis and finally the error covariance matrix. The EOF ba-
sis is then truncated to the 20 dominant modes to perform
the state vector update. The same ensemble of 210 members
is also used in the non-linear run to build the anamorpho-
sis transformation locally in space and time. More precisely,
each time observations are assimilated, a specific non-linear
transformation is computed for each model grid cell and for
each model variable from the histogram of 210 values that
are associated with this day of the year.

Concerning the parameterization of the tails of the
anamorphic transformations (outside the range of the avail-
able ensemble), we make the simple assumption of a zero
forecast probability in these regions of the state space. The
direct consequence is that, even if an observation falls in
these peripheric regions, our estimation of the observed vari-
able cannot get close to the observation because it is bound
to stay inside the range defined by the ensemble. However,
in our application, this is not expected to occur very often,
because the ensemble is built using the seasonal and interan-
nual variability of the free model simulation (which is large
during the bloom event), so that the dispersion of the ensem-
ble could easily be tuned to be large enough to include most
of the assimilated observations (except in some regions of
the subtropical gyre). We thus preferred safety by avoiding
any kind of extrapolation outside the range of values effec-
tively explored by the model simulation. More sophisticated
assumptions about the tails of the distribution (e.g., Gaussian
tails) can be found in the works of Bertino et al. (2003) and
Simon and Bertino (2009).

Regarding the observations, the SeaWiFS chlorophyll con-
centration maps are converted into phytoplankton concentra-
tion maps using the Chl/N ratio computed by the coupled
model. These phytoplankton distributions are then assimi-
lated in the coupled model and considered as representa-
tive of phytoplankton concentration in the upper first layer
of the water column. The error associated with each distinct
observation pixel is set to 30 % of the considered data, in
agreement with the commonly used SeaWiFS error estimates
for case 1 waters. In the non-linear run (with anamorphic
transformations), uncertainties in the observations cannot be
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specified exactly in the same way since they must be assumed
Gaussian for the non-linearly transformed variables rather
than for the original variables. Nevertheless, to give a similar
importance to each observation in the two assimilation runs,
we compute the observation error standard deviation for the
transformed variable by multiplying the original observation
error standard deviation (i.e., the 30 % of the observed chla
concentration) by the local slope of the non-linear transfor-
mation (which we approximate in practice by a finite differ-
ence over one standard deviation).

Spatial coverage of the data is an issue that raises the ques-
tion of spatial correlations of the signal in assimilation sys-
tems. As an example, some high-latitude regions may not be
visible by satellite ocean color sensors during several months
of the year (in winter of the corresponding hemispheres). For
these conditions, performing a global analysis is an issue as
it is evident that the mesoscale system state at mid-latitudes
is not correlated to the system state at high latitudes. Con-
sidering this, it was decided to implement a local analysis
scheme with a short influence radius for every distinct data
available. The horizontal e-folding radius of influence is set
to 2 grid points and the cut off radius to 5 grid points. This
value was chosen as it is equivalent to meso-scale features
for mid-latitude regions.

It is noteworthy that Hu et al. (2012) recently proposed
equivalent parametrization of observation error and local in-
fluence radius within the framework of an ocean color data
experiment.

3.3 Validation strategy

A data assimilation experiment involves at least three sets
of information: the free simulation, the data to be assimi-
lated, and the simulation with data assimilation. While in-
tercomparisons between these three information sets is nec-
essary to assess the method efficiency, it will never be totally
conclusive since the three information sets are intertwined
(Gregg et al., 2009). An independent data set of unassim-
ilated variables is required for an objective determination.
We use here the nitrate database extracted from the historical
World Ocean Atlas 2009 (WOA09) as an independent data
set to validate the assimilation process. The historical nutri-
ent measurements available in this atlas were obtained from
the National Oceanographic Data Center and World Data
Center archive, including all data gathered as a result of the
Global Oceanographic Data Archeology and Rescue (GO-
DAR) and the World Ocean Database (WOD) project (Boyer
et al., 2006). This large-scale data set is to our knowledge the
one containing the largest number of in situ nitrate concen-
trations. The temporal and spatial coverage of this data set
allows a systematic and objective comparison with the simu-
lation outputs.

4 Results

In this section, we examine the effects of the assimilation on
the variability of the biogeochemical properties in space and
time, comparing the linear and anamorphosis runs with the
free model simulation. The performances of the assimilative
system are first evaluated in terms of ocean surface prop-
erties, before investigating how the assimilated ocean color
data modify the distribution of nutrients in the sub-surface
layers.

4.1 Surface patterns of chlorophyll and nitrate
concentrations

Figure 2 shows the surface chlorophyll maps obtained after
time-averaging the simulation results over successive 60-day
periods during the year 2006 (first row: days 1 to 60; second
row: days 61 to 120; etc.). Figure 3 is organized the same
way but for the surface nitrate distributions. These maps are
shown for (a) the free run, (b) the SeaWiFS data or clima-
tology, (c) the linear run and (d) the anamorphosis run. The
free run shows some significant differences with the SeaW-
iFS data (Fig. 2). The chlorophyll bloom starts slightly later
in the free run than observed (second row, corresponding
to March–April). An elongated structure centered at∼35° N
appears along the southern flank of the Gulf Stream, while it
is not present in the data (third row, corresponding to May–
June). Inversely, SeaWiFS data show for the same period an
increase of chlorophyll concentration at latitudes greater than
45° N, corresponding to the beginning of the spring bloom,
while concentration values are much lower in the free simu-
lation. The available nutrients are rapidly consumed (Fig. 3,
third and fourth rows, i.e., May–August), inducing a strong
increase of the chlorophyll concentration. During the peak of
the chlorophyll bloom in the free run, concentrations seem to
be overestimated at high latitudes although the order of mag-
nitude remains correct. When all nitrates are consumed, the
chlorophyll concentration decreases quickly (Fig. 2), while
the SeaWiFS data exhibit larger values that persist later until
the summer season, and to a lower extent until the end of the
year.

To summarize the comparison between the free simula-
tion and satellite chlorophyll data, the modeled chlorophyll
bloom starts too late and chlorophyll concentrations increase
quickly to reach values overestimating data before decreas-
ing rapidly. It is important to note here that, in spite of these
differences, the main features of the annual biogeochemi-
cal cycle are well described (chlorophyll spring bloom, olig-
otrophic subtropical gyre, upwelling along the Mauritanian
coast). This is a crucial point since the free run is actually
sampled to compute the EOF basis and the local anamorpho-
sis transformations that are used in the assimilation scheme.

Considering the runs with data assimilation, the bloom
starts almost in phase with the observations, while the elon-
gated pattern mentioned above in the Gulf Stream area is not
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Fig. 2.Surface chlorophyll concentration binned on 60-day period (from top to bottom) for year 2006 for(a) free run;(b) SeaWiFS data;(c)
linear run;(d) non-linear run. Concentrations are given in mg(Chl) m−3.

present anymore (Fig. 2; columns c and d; third row). During
the bloom, the model values are in the order of magnitude of
the observations both in the linear and anamorphosis situa-
tions (third and fourth row), while strong spatial differences

are visible (e.g., subpolar gyre). However, the model values
are still underestimated on average by the end of the year, as
shown above for the free run. To understand why the assim-
ilation efficiency is weaker on chlorophyll concentrations by
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Fig. 3. Surface nitrate concentration binned on 60-day period (from top to bottom) for year 2006 for(a) free run;(b) WOA09 climatology;
(c) linear run;(d) non-linear run. Concentrations are given in mmol(NO3) m−3.

the end of the year, one should consider the way the error
covariance matrix is specified. The error covariance matrix
is computed using free run model outputs on a 2-month pe-
riod running window over the year. As the free run variabil-

ity is weaker than the variability revealed by observations
on a 2-month period, the EOF basis is not able to capture
the actual variability of the ecosystem in an efficient manner.
This issue is related to the fixed-based variant of the SEEK
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filter chosen to assimilate data and could be attenuated by
increasing the temporal windows during which the EOF are
computed. However, one must be aware that it could lead to
erroneous state corrections as it will include in the EOF com-
putation numerous states having an extremely low probabil-
ity to happen. This seasonal variation in the spreading of the
non-stochastic ensemble used here is illustrated by Fig. 13 of
Brankart et al. (2012).

The spreading of the ensemble obtained after the compu-
tational setup of the EOF basis as described above raises
the question of the performance of anamorphosis transfor-
mations in such a situation. In the non-linear assimilation
procedure, the analysis is constrained to be in the range of
values defined by the historical ensemble. As a result, the
transformation back to the original space may induce by it-
self a truncation of the analyzed values. To assess whether
the truncations play an important role in the non-linear pro-
cedure, it is relevant to check how every assimilated ob-
servation compares to the maximum of the historical en-
semble used to compute the anamorphosis transformation
for the phytoplankton variable (assimilated variable in the
CPBM). However, computing strictly how many observa-
tions are above the ensemble maximum does not account for
observation errors, as the observations are characterized by a
probability distribution rather than by an absolute value. We
therefore computed the number of assimilated data for which
the 95 % confident interval of the observation PDF does not
overlap the concerned local ensemble. We previously defined
the observation error as 30 % of the considered data, so the
minimum bound of this 95 % confident interval corresponds
to 40 % of the considered data (observation minus 2 times
the standard deviation). Thus, when 40 % of the observation
value is above the ensemble maximum, we consider that the
observation PDF does not overlap the local ensemble, indi-
cating that the ensemble spread resulting from the EOF com-
putation within 2-month periods is possibly too small.

Figure 4 shows the percentage of model grid points where
the observation PDF does not overlap the local ensemble
used to compute the anamorphosis transformation. This per-
centage is shown for the eight regions considered with re-
spect to time. The percentage of observations for which 40 %
of the value exceeds the local ensemble is generally weak
(below 10 %) for regions 1, 4, 5, 6, 7, and 8. It should be
noted, however, that the actual percentage of observations
discarded by anamorphosis truncations is evidently larger
than the numbers shown in Fig. 4. The seasonal distribution
of this percentage is centered around the bloom period, es-
pecially for high latitude regions (1 and 2). regions 2 (North
Sea) and 3 (Gulf of St. Lawrence) show inversely high per-
centages, up to 40 % of the whole assimilated data. In addi-
tion, the mean averaged percentage of observations exceed-
ing the local ensemble for regions 2 and 3 are 16 % and
32 %, respectively. These regions are also the ones showing
the most contrasted differences between the linear and non-
linear run (see Figs. 2 and 3), indicating that the truncations

of the assimilated observation are, at least partly, responsible
for these divergences. While this link is clear for regions 2
and 3, it is less clear for region 8 but cannot be totally dis-
criminated. Indeed, in this region the percentage of observa-
tions out of the ensemble remains low along the simulation
period but the region is spatially extended. In that configura-
tion, even a low percentage could nevertheless hide the same
process as highlighted for regions 2 and 3.

It is likely from Fig. 4 that the spead of the ensemble ob-
tained for regions 2 and 3 is too small to capture the ob-
servation information available over these regions. By in-
creasing the time window for computing the EOFs above
two months, the spread of the ensemble could become larger
but, at the same time, spurious correlations might occur more
frequently, e.g., between phytoplankton and nitrate concen-
tration values. From a global point of view, surface nitrate
concentrations as modeled by the linear run (Fig. 3c) clearly
differ from the climatology, the free run and the anamorpho-
sis simulations along a seasonal cycle. The minimum sur-
face nitrate concentrations reached after the bloom remain
significantly higher than the climatology, suggesting that the
multivariate linear analysis fails to estimate coherent surface
nitrate patterns. Same conclusions (as for chlorophyll vari-
able) about observations truncation can be drawn for nitrates
regarding regions 2, 3 and 8.

Nevertheless, Fig. 3 shows a global drift in nitrate concen-
trations toward unrealistic values, for high latitude regions
(1–4) along the whole seasonal cycle. However, as already
discussed above, the amount of surface chlorophyll observa-
tions discarded by the anamorphosis transformation for re-
gions 1 and 4 are relatively low and localized in space and
time. So these truncations are not sufficient to explain the bet-
ter performance of the non-linear scheme in terms of nitrate
estimations on the whole domain for a complete seasonal cy-
cle.

Another interesting point is that the higher percentages
of observations exceeding the local ensemble distribution
are found for continental waters (North Sea, Gulf of St.
Lawrence and also probably Senegal upwelling). The CPBM
used in this paper is clearly not designed to produce real-
istic results in coastal waters. As an example, river plumes
are simply considered as “pure water” runoffs without extra
nutrient inputs. However, these specific processes are most
relevant in the context of coastal ocean color data assimi-
lation experiments (Fontana et al., 2009, 2010; Ciavatta et
al., 2011; Hu et al., 2012). Thus, the ensemble used to com-
pute the anamorphosis transformation does not overlap the
real biogeochemical state of ocean in these areas. In that
sense, the truncation of the observational information avoids
any kind extrapolation outside of the range of the ensemble
which may lead to incoherent multivariate correlation struc-
ture in the peripheral regions of the state space that have not
been explored by the ensemble (see, e.g., Fig. 3c, fourth and
fifth rows). And finally, prior to the definitinon of a complex
parametrization of the tails of the anamorphosis function, a
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Fig. 4. Percentage of grid cells for which 40 % of the assimilated data exceed the upper bound of the historical ensemble for each biogeo-
chemical region with respect to time.

more realistic simulation of these areas (and thus an ensem-
ble overlapping the real system state) will naturally lower the
number of observations truncated.

4.2 Seasonal and interannual variability of the surface
chlorophyll

After having investigated the annual cycle of the surface bio-
geochemical properties of a particular year (2006), we extend
the diagnostics to focus on the seasonal-to-interannual vari-
ability of the primary production between 1998 and 2007.
Figure 5 shows the temporal evolution of the horizontally av-

eraged chlorophyll concentration in the first layer of the cou-
pled model during the simulation period. The data and the
model outputs are plotted after time-averaging over 16-day
periods. The temporal evolution is shown for 8 biogeochem-
ical provinces adapted from the Longhurst (1995) classifica-
tion, as defined in Fig. 1.

The green fringe under the SeaWiFS curve is an indica-
tor of the satellite data spatial coverage in the considered re-
gion. The fringe thickness vanishes when the considered re-
gion is fully covered by satellite data. Conversely, the fringe
thickness increases linearly with respect to the number of
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missing observations, approaching 100 % of the observation
value when almost no data are available. When no data at all
are present, no dots and no fringe are drawn. The thickness
of the green fringe can thus be interpreted as an observation
error index associated with the lack of data.

In region 1, the free run almost systematically overesti-
mates the maximum peak of chlorophyll that occurs during
the bloom period (late spring/early summer). This bias is ef-
ficiently corrected by the assimilation system, both in the lin-
ear and non-linear experiments. Unfortunately, during other
seasons the number of chlorophyll observations is sometimes
too low (as shown by the large green fringe) to enable effi-
cient corrections of the model estimates. As an example, in
2000 the satellite was not able to collect any ocean color mea-
surement in region 1 during several months in winter. Similar
conclusions can be drawn in other high latitude regions, e.g.,
in region 2 that includes the Baltic and North Seas where the
seasonal signal looks very weak. A first conclusion that can
be drawn for these regions is that the maximum chlorophyll
concentrations during the bloom are efficiently constrained
in the range defined by the satellite data. Another point to be
underlined is the difference between the linear and non-linear
runs, which is generally small, suggesting that the multivari-
ate corrections have similar effects in both experiments.

Region 3 exhibits a seasonal cycle in the SeaWiFS data,
with well-marked peaks of chlorophyll in the early spring pe-
riod. This cycle is reproduced by the free run, but with maxi-
mum chlorophyll values that remain much below the mea-
surements. Nevertheless, an overestimation of the chloro-
phyll content by the SeaWiFS data set cannot be excluded
in these coastal waters, notwithstanding the rather poor per-
formance of the CPBM for such coastal areas as discussed
previously. The non-linear run slightly increases the chloro-
phyll concentrations toward the measured values. This is not
the case for the linear run, probably because the temporal
dynamics are completely modified as a result of strong incre-
ments on nitrate concentrations (see Fig. 3c, third and fourth
row).

Considering region 4 in the open ocean, it appears that the
bloom in the free run starts slightly too late, does not last
as long as it should when compared to the data, and reaches
values that overestimate the observed peak. The free run and
the data are satisfyingly reconciled by the assimilation proce-
dure during the bloom period. The corrections applied during
winter are very modest, once again due to a lack of data in
this zone. However, the absolute values of chlorophyll con-
centration are consistently improved all along the simulation
period thanks to the assimilation process.

In the mid-latitude region 5, the bloom period is well re-
produced by the free run, however with values that are over-
estimated during the peak of the bloom. This flaw is likely
due to the presence of the Gulf Stream pattern discussed
above. For this region, the linear as well as anamorphosis
runs help to constrain the chlorophyll evolution with a good
accuracy. Interestingly, a drift of the chlorophyll concentra-

tions appears after several years in the free simulation, while
this trend is removed when applying the assimilation scheme.

In the mid-latitude region 6, the free run performs well in
terms of both timing and maximum values of the bloom. The
anamorphosis run outstandingly increases the accuracy of the
chlorophyll description all along the simulation period. The
results are different when considering the linear run. Indeed,
after the first year of simulation, the estimated chlorophyll
becomes very different from the data and the other simula-
tions. It is a consequence of the high chlorophyll spots that
occur in that region after several years of simulation (as dis-
cussed in the previous paragraph). The unrealistic corrections
applied to non-observed variables in the case of the linear
run induce secondary effects on the biogeochemical dynam-
ics that eventually lead to the failure of the method.

In the Gulf of Mexico (region 7), all simulations under-
estimate the satellite-estimated chlorophyll content while the
temporal variability differs from the observations, for similar
reasons as in the coastal region 3. This bias remains stable all
along the experiment and the corrections applied to chloro-
phyll are modest.

The subtropical gyre is defined as region 8, for which the
free run performs well and the non-linear run slightly better.
Corrections applied directly to chlorophyll concentrations
are low as a consequence of the low seasonal variability of
phytoplankton content in that region and the correspondingly
low variability contained in the EOFs. A chlorophyll peak is
visible by the end of year 1998; it is actually the signature of
an exceptionally extended Northwest African upwelling (not
shown) probably linked to the 1997–1998 El Niño changes
that may intensify this process (Demarcq, 1998), implying
a biogeochemical response of the system (Ohde and Siegel,
2010). Once again, spots of strong nitrate concentrations ap-
pear in that region as a consequence of the inappropriate
multivariate linear analysis, inducing unrealistic chlorophyll
concentrations by the end of the simulation period (see also
Fig. 3c; third and fourth row).

Overall, the assessment of the data assimilation experi-
ments shows satisfactory results on the chlorophyll represen-
tation along the simulation period. The realism of the tempo-
ral evolution of chlorophyll concentrations is improved by
the assimilation of chlorophyll SeaWiFS data in the open
ocean regions considered here. Moreover, the non-linear as-
similation scheme performs better than the linear one. The
results are less convincing in coastal regions, a statement that
is not surprising since the numerical system (both model and
assimilation components) was not specifically set up to per-
form well in these regions.

4.3 Surface chlorophyll concentration forecast

Additional diagnostics of surface chrorophyll estimates are
performed to assess the prediction capacity of the assim-
ilative system, investigating how the model is able to pre-
serve after 8 days some benefit of the assimilation increments
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Fig. 5. Surface chlorophyll temporal evolution spatially binned on biogeochemical regions as defined on Fig. 1. Concentrations are given in
mg(Chl) m−3.

injected in initial conditions. This forecast diagnostic is a
first indication of the relevance of the multivariate correction
scheme, as it is frequently observed that initial conditions
poorly balanced with respect to the model governing equa-
tions tend to reject the assimilation increments very quickly
(Hemmings et al., 2008; Ford et al., 2012).

In order to derive a statistical measure of the forecast skill,
every individual observation pixel assimilated in the model
was compared to its equivalent 8-day forecast computed in
the free, linear and anamorphosis runs. The comparison is
based on 410 model snapshots and more than 1.9 107 Sea-
WiFS individual pixel data. Figure 6 shows the probability
density function (PDF) of the log(CSeaWiFS/Cmodel) function,
where CSeaWiFSand Cmodel are the SeaWiFS and model con-

centration, respectively. It appears that the 8-day forecast of
the free run is slightly biased, with an overestimation of the
chlorophyll content by the model. This general behavior is
mainly due to the overestimation of primary production at
high latitudes during the spring bloom. The linear run shows
an improvement of these diagnostics by reducing the PDF
dispersion, while a strong bias remains visible. The assimi-
lation impact is further improved when considering the non-
linear run. Indeed, while the non-linear PDF is equivalent to
the linear PDF for extreme values (log error lower than –2
and higher than 2), the PDF maximum is now centered close
to 0.
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Fig. 6. Normalized histogram of log(CSeaWiFS/Cmodel) function
where CSeaWiFSand Cmodel stand for the SeaWiFS and the mod-
eled concentration of chlorophyll, respectively.

We show here that the prediction capacity of the model
over a period of 8 days is improved with the assimilation
system. In the case where the CPBM would have completely
“forgotten” the increment from the previous assimilation
step, the PDF as defined above would be slightly modified
between the free and assimilation run. Conversely, the per-
sistence of the analysis increment between two assimilation
steps is an indication that the forecast skill of the system is
improved in the assimilation run. More generally, Fig. 6 il-
lustrates the benefit that can be expected in terms of fore-
cast skill by assimilating ocean color data into a basin-scale
CPBM.

4.4 Comparison with independent in situ nitrate
measurements

In this section, we investigate how the assimilation is able to
propagate the observed information to non-observed quan-
tities (surface and sub-surface nutrients). The nitrate model
compartment is chosen here because in situ nitrate observa-
tions have been collected with a good coverage in the North
Atlantic during the period of reanalysis. These diagnostics
will provide further indications that the multivariate scheme
is well suited for combining ocean color observations with
CPBM predictions.

The WOA09 data set was used to objectively evaluate
the reanalysis of nutrient distributions. For comparison, only
data measured in deep sea waters (i.e., bottom model topog-
raphy deeper than 500 meters) were kept in the process. This
selection was made to ensure an objective determination of
the method efficiency since the CPBM used here is not well
designed for shallow waters. Figure 7 shows the in situ data
available in the WOA09 data set during the simulation pe-
riod (depth less than 10 meters). It is apparent that the data
set covers the North Atlantic area well, permitting a valuable
assessment of the method efficiency within the framework
of this realistic experiment. The number of data per years in-
side of the modeled domain and for a bathymetry higher than
500 m for the period 1998 to 2006 is 1901, 1228, 530, 108,
758, 1405, 619, 0, 0.

A histogram of the log(Cin situ/Cmodel) function where
Cin situ and Cmodel are the in situ and colocalized model con-
centrations is shown in Fig. 8 for the surface data (depth less
than 10 meters) represented in Fig. 7. It is important to note
that the nitrate model concentrations used for the comparison
correspond to model forecasts from day 1 to day 8 (actually
between two assimilation steps). This histogram, based on
1759 measurements, is shown for the free run, the linear run,
the non-linear run and the WOA09 climatology. The free run
shows a centered function while some extreme mismatches
of both over- and under-estimations appear, resulting in a
logarithmic root mean square error (RMS) of 0.82. The his-
togram of the linear run shows that the number of instances
where the model underestimates the measured concentration
is reduced by the assimilation process. By contrast, the num-
ber of instances where the model overestimates the obser-
vations is increased. In this configuration, the RMS of the
linear run is 0.87, attesting that the assimilation of satellite
chlorophyll did not help to improve the nitrate representation.
The result is objectively different when considering the non-
linear assimilation scheme, as overestimations remain more
or less unchanged compared to the free run while strong un-
derestimations are reduced, yielding an RMS value of 0.72.
This result demonstrates that, in terms of nitrate, the fore-
cast was improved by the assimilation of satellite chlorophyll
data.

A more interesting point to be underlined is that the his-
togram of the climatology is very similar to the non-linear
one, with a RMS of 0.66. The difference between the clima-
tology and the data from which the climatology was com-
puted may appear surprising. There are several reasons that
could explain this difference. Firstly, only a limited number
of data included in the WOA09 data set were used to compute
the WOA09 climatology as a result of numerous data qual-
ity control tests (e.g., range and gradient check; statistical
check; subjective flagging; see Garcia et al., 2010) to elim-
inate questionable data from the climatology computation.
Secondly, the temporal binning of data used to compute the
climatology at monthly timescale intrinsically induces tem-
poral representativeness errors. The fact that the histogram
of the non-linear run looks very similar to the climatology
histogram indicates that the differences that may occur be-
tween the non-linear run and the in situ data are mainly due
to questionable data. Therefore, this comparison should be
more significant when considering only confident data.

Following the same methodology, an identical RMS index
was computed for several running depth intervals in the eu-
photic layer. Considered intervals are 0–5, 5–10, 10–50, 30–
70, 50–90, 70–110, 90–130, 110–150 and 130–170 meters.
Figure 9 shows the mean of the considered depth interval
with respect to the corresponding RMS where all data en-
tered the computation (a), and where only data higher than
1 mmol(NO3) m−3 entered the computation (b). A total of
1198 distinct data entered the computation for Fig. 9a while
only 646 were kept for Fig. 9b.
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Fig. 7.Nitrate measurements contained in the World Ocean data set for the period 1998–2006 for depths lower than 10 m.

It appears that the assimilation reduces the error of the
free run in the 0–5 and 5–10 intervals for the non-linear run
and only in the first 0–5 m for the linear run (Fig. 9a). For
the deeper part of the euphotic layer, the results are more
contrasted and the non-linear assimilation process even in-
creases the error at some depth intervals. Results are im-
proved when considering only measured data greater than
1 mmol(NO3) m−3 (Fig. 9b). In this case, the RMS pro-
file in the non-linear situation is close to the climatology
throughout the water column up to the 130–170 m interval.
In the 0–5 m interval, the RMS is outstandingly reduced
from 0.75 to 0.31 thanks to the assimilation process. The
linear run reduces the error of the free run in the first two
depth intervals, but increases it almost everywhere in the
euphotic layer. There are several reasons to explain why
the assimilation process performs better for observed values
greater than 1 mmol(NO3) m−3. Indeed, these data are gen-
erally measured outside the oligotrophic sub-tropical gyre,
where the low temporal variability of biogeochemical con-
centrations for the free run (used to compute the EOFs) does
not allow the assimilation system to correct strong differ-
ences between model and data. Secondly, data lower than

1 mmol(NO3) m−3 are also measured in strong nutrient con-
centration gradients (around 45° N) where a well-reproduced
ocean circulation is essential to obtain satisfying biogeo-
chemical modeling. As the physics was not constrained by
data assimilation, these transition zones may not be located
at their exact position, explaining the poor performance of
the assimilation system.

Figure 10 shows the spatial distribution of the
log(Cin situ/Cmodel) function computed for all data of
the WOA09 data set included in the 0–10 m depths interval.
Here, white dots indicate a weak difference between the
model (or climatology) and the observations, blue dots
indicate overestimation by the model, and red dots indicate
underestimation by the model.

Maps are plotted for the free run (a), the linear run (b),
the non-linear run (c) and the climatology (d). Maps were
divided into 5 frames to make the discussion of the results
clearer. At high-latitude regions (frame 1), the nitrate con-
centration remains roughly unchanged in the different ex-
periments (a, b, c) as a consequence of the lack of ocean
color data in this part of the ocean. The nutrient-enriched area
(frame 2) shows the most significant differences between
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Fig. 8. Histogram of log(Cin situ/Cmodel) function where Cin situ
and Cmodel stand for the in situ and the modeled concentration of
nitrate, respectively.

Fig. 9. Nitrate logarithmic RMS between in situ data and model
with respect to the depth for:(a) all available data;(b) only data
higher than 1 mmol (NO3) m−3.

each experiment. While the nitrate concentrations are over-
estimated and underestimated by (resp.) the free (a) and the
linear run (b), the non-linear run (c) shows a clear improve-
ment. In this region, we can see that the non-linear run per-
foms as well as the climatology (d) both in terms of mag-
nitude and error bias. In the western part of the subtropical
gyre (frame 3), results remain unchanged for the various ex-
periments, as previously observed for the chlorophyll vari-
able. In the eastern part of the subtropical gyre (frame 4),
the situation is the same except in the region of the North-
west African upwelling (25° W – 15° N) where nutrient in-
puts into the superficial layers of the water column induce a

rather strong biogeochemical response captured by the EOF
decomposition. This explains the good behavior of the non-
linear run in that part of the ocean, performing even better
than the climatology (d). In the Gulf of Mexico (frame 5),
none of the modeled situations or climatology perform well,
showing that even the WOA climatology is not designed to
fit the biogeochemical ocean state in coastal regions.

4.5 Assimilation impact on sub-surface biogeochemical
description

To understand the assimilation impact on the biogeochemical
variables in the water column, it is interesting to consider a
zonal vertical section at 58° N from 60° W to 10° W. This
vertical section is plotted for chlorophyll (Fig. 11) and nitrate
concentrations (Fig. 12), showing the free (a), linear (b) and
non-linear (c) runs. These sections were produced during a
chlorophyll bloom (30 days temporal binning between 1 June
2006 and 1 July 2006). As previously stated, this period is the
one offering the best assimilation efficiency. It is apparent
that the vertical distributions of chlorophyll keep a similar
shape (high in the euphotic layer, low deeper) even after data
assimilation, whatever method used.

For each assimilation situation, chlorophyll concentrations
are also bound by realistic values, relatively close to those of
the free run. However, this is not the case when considering
nitrate concentrations in the same vertical section (Fig. 12).
Indeed, the linear run (b) does not follow the vertical distri-
bution obtained in the other situtations (a and c) and exhibits
larger values, as was already visible in Fig. 3 for the first layer
of the model. In order to understand the assimilation mecha-
nism responsible for this behavior, one must consider the cor-
relations specified in the analysis scheme between observed
and non-observed variables. Figure 13, for instance, shows
the correlation of the ensemble on the geographic location
40° W–58° N between the surface phytoplankton (proxy of
chlorophyll in our study) and the nitrate concentration along
the water column for 1 June 2006. The linear case is rep-
resented as black dots while the non-linear one is repre-
sented as red dots. The linear run shows extremely high neg-
ative correlations in the first two layers of the model, while
the correlation rapidly decreases as depth increases. In the
deeper part of the water column, the correlation remains sta-
ble around –0.2, attesting that the surface phytoplankton con-
centration is correlated to nitrate even below the euphotic
layers. Nervertheless, these correlations are not a sufficient
proof of the method efficiency, as we previously showed that
nitrate description was not improved in the deeper part of the
water column by the linear assimilation process. When look-
ing at the non-linear correlation profile, we see that a signifi-
cant correlation (between –0.6 and –0.8) up to 50 m depth is
visible while it rapidly decreases to approximately 0 below
this depth. This 50 m depth is the one for which the method
was proved to be efficient for nitrate data (Fig. 9) and is also
the typical depth of the euphotic layers, as visible in Figs. 11
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Fig. 10.Spatial distribution of log(Cin situ/Cmodel) function where Cin situ and Cmodelstand for the in situ and the modeled concentration of
nitrate (resp). Frames a, b, c and d correspond to the free run, the linear run, the non-linear and the climatology, respectively.

and 12. Therefore, mitigated performances of the data assim-
ilation system below the euphotic layer appear to be related
to weak correlations between surface phytoplankton and ni-
trate concentration deeper in the water column. We can thus
argue that the correlation profile showed here between sur-
face phytoplankton concentration and nitrate concentration
is more realistic when using an anamorphosis transforma-
tion. Indeed as expected intuitively, the correlation is high
in the euphotic layer and almost null below. This substantial
increase in the spatial correlations description is discussed
in Brankart et al. (2012) when considering several data as-
similation experiments using anamorphosis transformation,
including the present one. This analysis of vertical sections
and correlation profiles highlights a limitation of the method-
ology setup within the framework of the present study. In-
deed, results indicate that when using an efficiently defined
assimilation method (as previously shown by model to inde-
pendent data set comparison), the surface phytoplankton con-

centration is not correlated to the nitrate concentration below
the euphotic layers. And thus we could not expect to control
the three-dimensional CPBM using only superficial informa-
tion such as those brought by remote sensing of ocean color
without defining a priori information about biogeochemical
concentration vertical distributions.

5 Conclusions and perspectives

In this paper, a state-of-the-art assimilation system was de-
veloped to assimilate satellite-derived chlorophyll data into a
three-dimensional CPBM of the North Atlantic Ocean. Dif-
ferent simulations were conducted during a 9-year period
(1998–2006), allowing the assimilation of 410 SeaWiFS-
estimated maps of chlorophyll temporally binned every 8
days. The simulations were performed with a fixed variant
of the reduced-rank Kalman filter (SEEK) to limit the com-
putational burden of the assimilation process. Several key
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Fig. 11. Vertical section of chlorophyll concentration on 58◦ N between 60◦ W and 10◦ W temporally binned on 30 days between 1 June
2006 and 1 July 2006 for:(a) free run;(b) linear run ;(c) non-linear run. Concentrations are given in mg(Chl) m−3.

Fig. 12.Vertical section of nitrate concentration on 58° N between 60° W and 10° W temporally binned 30 days between 1 June 2006 and 1
July 2006 for(a) free run;(b) linear run; and(c) non-linear run. Concentrations are given in mmol(NO3) m−3.

parameters entering the analysis scheme (e.g., model and
observation error parameterizations, local influence radius)
were carefully tuned to maximize the benefit of the assimi-
lation process. Comparisons were made between a free run,
an assimilation run using a linear updating scheme, and an
assimilation run using a non-linear updating scheme with
anamorphic transformations.

These experiments show that the application of anamor-
phosis yields a non-linear analysis scheme which is identified
as a key element of the assimilation performance, without re-
quiring significant increase of computing resources. The as-
similation of chlorophyll data in the non-linear configuration
efficiently improves the description of the seasonal cycles of
surface chlorophyll along the simulation period. The skill of
the model to forecast surface chlorophyll concentrations after
8 days without assimilation was also improved by the assim-
ilation process. Temporal evolution of spatially-binned sur-
face chlorophyll concentration showed that the spatial cover-
age of ocean color data remains a critical point as no ocean
color data are available for high-latitude regions during sev-
eral months each year.

Comparisons between model outputs and an independent
set of in situ measurements showed that surface nitrate con-

centration is more accurately estimated by the assimilation of
satellite-derived chlorophyll concentration. Indeed, the mod-
eled surface nitrate concentration fields were closer to the
climatology generated from the WOA09. The model perfor-
mance was good in the chlorophyll bloom area (north of
45° N) while it was not systematically improved in the re-
gion of the sub-tropical gyre. The gain was limited to the
upper layers of the euphotic zone, while the deeper part of
the water column was not strongly affected by the assimila-
tion process. This is due to the weak correlations between
surface phytoplankton and nitrate below the euphotic layer.
Truncations resulting from the definition of the tails of the
anamorphosis was found to have a direct impact on the as-
similation results for specific regions of the domain. A high
rate of truncations was found in areas where the local ensem-
ble used to compute the anamorphosis transformation does
not overlap the real system state (as indicated by the obser-
vations versus model mismatch), so that truncations avoid ex-
trapolation of system state outside of the range explored by
the ensemble. In that sense, a better match between observa-
tion and model will naturally lower the number of truncated
observations. This dependency between anamorphosis trun-
cations and definition of the historical ensemble deserves to
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be more precisely assessed. Nevertheless, the global and per-
sistent difference between the linear and non-linear assimila-
tion system over the model domain cannot be explained only
by these truncations. This attests that the correlation between
observed and non-observed variables was improved thanks
to the anamorphosis transformation. A qualitative look to a
multivariate correlation profile between nitrate and phyto-
plankton along the water column also confirmed this state-
ment. While we have identified the anamorphosis tranforma-
tion as a key ingredient for the method’s success, some prag-
matic choices made here on its tuning (particularly the local
ensemble definition) deserve to be further investigated.

Overall, the assessment of the non-linear experiment
shows that the assimilation system can be seen as a first pro-
totype, opening perspectives toward reanalyses of the North
Atlantic Ocean biogeochemistry during the satellite ocean
color era. However, this study also highlights that the full
control of a three-dimensional CPBM trajectory is likely
to be hopeless with the assimilation of surface chlorophyll
data only. Equivalent conclusions regarding the mitigated im-
pact of the satellite chlorophyll assimilation below the sur-
face were recently drawn by Hu et al. (2012) and Ford et
al. (2012).

Several solutions can be envisaged to overcome this issue.
The first one could be to define a priori assumptions about
vertical profiles of biogeochemical variable concentrations.
This means that the observation vector would not be lim-
ited to the first layer of the model but integrated along the
water column. Efforts were recently undertaken to character-
ize relationships between spatially-sensed chlorophyll con-
centrations and vertical distribution of phytoplankton content
(see, e.g., Uitz et al., 2006). The use of such relationships to
propagate information brought by surface chlorophyll con-
centrations to deeper parts of the water column would require
further investigations. While this solution could improve the
assimilation performance in open sea waters, a universal a
priori assumption on biogeochemical vertical profiles can
hardly be defined consistently for coastal areas as various lo-
cal factors may influence directly the vertical distribution of
biogeochemical concentrations (river plumes, waves).

In the long-term, a more promising approach would be to
explicitly include deeper observations into the assimilation
process. In this way, no a priori assumption about the ver-
tical distribution of biogeochemical variable concentrations
would be required, while information would be assimilated
explicitly at depth. The critical point here is that it requires
a refined array of in situ sensors systematically measuring
biogeochemical properties at basin-scale; to some degree an
equivalent to the ARGO float dedicated to biogeochemical
measurements. Such a sampling array currently does not ex-
ist but efforts are ongoing to deploy autonomous biogeo-
chemical sensors in deep sea waters that are able to mea-
sure precisely chlorophyll and nitrate profiles (Claustre et al.,
2010a, b). Since such a large-scale data set is intended in
the foreseeable future, investigations to optimally combine

Fig. 13. Model correlation between surface phytoplankton and ni-
trate concentration with respect to the depth at location 58° N–
40° W on 1 June 2006.

satellite and in situ biogeochemical data through observing
system simulation experiments would be a straightforward
extension of the present study.

A large-scale data set is also required to better assess as-
similation efficiency with respect to other components of
the biogeochemical model (e.g., ammonium, zooplankton).
While one could reasonably hope that the assimilation of
satellite chlorophyll should have a positive impact on the rest
of the biogeochemical model, we were not able to prove it as
things stand today.

Upgrading the simplified assimilation scheme used here
to a more sophisticated one should also help in improving
the reanalysis presented in this paper. Indeed, we computed
uncertainties based on the free simulation without error prop-
agation along the simulation. As a consequence, assimilation
showed poor performance in areas where model variability
was lower than data variability. Specifying the uncertainties
in a more complex way (e.g., ensemble Kalman filter, error
propagation) will certainly lead to improving the assimilation
performance.
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Ourmìeres, Y., Brasseur, P., Lévy, M., Brankart, J.-M., and
Verron, J.: On the key role of nutrient data to con-
strain a coupled physical-biogeochemical assimilative model
of the North Atlantic Ocean, J. Mar. Syst., 75, 100–115,
doi:10.1016/j.jmarsys.2008.08.003, 2009.

Pham, D. T., Verron, J., and Roubaud, M. C.: A singular evolutive
extended Kalman filter for data assimilation in oceanography, J.
Mar. Syst., 16, 323–340,doi:10.1016/S0924-7963(97)00109-7,
1998.

Simon, E. and Bertino, L.: Application of the Gaussian anamorpho-
sis to assimilation in a 3-D coupled physical-ecosystem model
of the North Atlantic with the EnKF: a twin experiment, Ocean
Sci., 5, 495–510,doi:10.5194/os-5-495-2009, 2009.

Simon, E. and Bertino, L.: Gaussian anamorphosis extension of
the DEnKF for combined state parameter estimation: Applica-
tion to a 1D ocean ecosystem model, J. Mar. Sys., 89, 1–18,
doi:10.1016/j.jmarsys.2011.07.007, 2012.

Stammer, D., K̈ohl, A., Awaji, T., Balmaseda, M., Behringer, D.,
Carton, J., Ferry, N., Fischer, A., Fukumori, I., Giese, B., Haines,
K., Harrison, E., Heimbach, P., Kamachi, M., Keppenne, C.,
Lee, T., Masina, S., Menemenlis, D., Ponte, R., Remy, E., Rie-
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