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ARTICLE

Ultra-low and ultra-broad-band nonlinear acoustic
metamaterials
Xin Fang1, Jihong Wen1, Bernard Bonello2, Jianfei Yin1 & Dianlong Yu1

Linear acoustic metamaterials (LAMs) are widely used to manipulate sound; however, it is

challenging to obtain bandgaps with a generalized width (ratio of the bandgap width to its

start frequency) >1 through linear mechanisms. Here we adopt both theoretical and

experimental approaches to describe the nonlinear chaotic mechanism in both one-

dimensional (1D) and two-dimensional (2D) nonlinear acoustic metamaterials. This

mechanism enables NAMs to reduce wave transmissions by as much as 20–40 dB in an

ultra-low and ultra-broad band that consists of bandgaps and chaotic bands. With

subwavelength cells, the generalized width reaches 21 in a 1D NAMs and it goes up to 39 in a

2D NAM, which overcomes the bandwidth limit for wave suppression in current LAMs. This

work enables further progress in elucidating the dynamics of NAMs and opens new avenues

in double-ultra acoustic manipulation.
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Acoustic metamaterials1–5 (AMs) are promising for
many applications, including acoustic and vibration
insulation6–8, sound absorption9, cloaking10–12, sensors4

and topological insulators13. Relatively broad low-frequency
bands are desirable and most studies1–18 in this field have
focused on linear AMs (LAMs) based on the sub-wavelength
locally resonant (LR) mechanism1, 18. However, LR bandgaps
are generally narrow2, 3. The generalized width of a band is
γ= (fcut−fst)/fst, where fst (fcut) denotes the start (cutoff) frequency
of the band. In theory5 γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þmr=mb

p � 1 for the LR band-
gap, where mr (mb) is the mass of the resonator (the base media)
in a meta-cell, for example, γ≈ 0.22 for mr=mb/2. Recent works
couple the LR and Bragg bandgaps19, 20 to obtain a width γ= 0.71
in a one-dimensional (1D) LAM21 with a lattice constant a≈ 2λ/5
and γ= 0.85 in a two-dimensional (2D) LAM22 with a≈ λ/4,
where λ refers to the wavelength at fst. Therefore, obtaining a
generalized width γ> 1 in LAMs remains a challenge. May
nonlinearity help overcome this difficulty?

Similar to nonlinear electromagnetic metamaterials23–26

where desired nonlinear responses have been demonstrated27–31,
nonlinear acoustic metamaterials (NAMs) deserve special
attention. When acoustic waves propagate within a nonlinear
acoustic medium, such as Fermi–Pasta–Ulam chains32–34 or
granular crystals35–38, nonlinear phenomena including discrete
breathers39, solitons40, 41 and bifurcations42 can be observed.
Acoustic diodes36, 43, 44, rectification45 and lenses46 based on
nonlinear media have been designed. However, the involved
mechanisms hardly allow for simultaneous low-frequency
and broadband properties; therefore, the discovery of new
mechanisms is required for further progress.

For finite LAMs, bandgaps are stop bands; however, the broad
passbands actually consist of dense resonances that localize
energy to enhance incident waves. Recently, a mechanism was
theoretically predicted in discrete NAMs47–49: the chaotic bands.
Chaos is an aperiodic long-term behavior in a deterministic/
nonlinear system exhibiting a strong dependence on the initial
conditions50. In NAMs49, chaotic bands are those passbands in
which an incident low-frequency periodic wave becomes a chaotic
emerging wave, reducing wave transmission. The chaotic wave
features a high-frequency continuous spectrum evidencing the
dispersion of energy47, 49. These waves have lower amplitudes
than the corresponding linear resonances; thus, NAMs can
suppress wave propagation in the passbands. The wave
suppression effect of the strong chaos is broadband and it
depends on the frequency but not the width of the nonlinear LR
bandgap49. Therefore, we can design a NAM with nonlinear
meta-cells that generate ultra-low frequency but narrow
linearized LR bandgaps. When strong nonlinearities occur, the
passbands higher than these nonlinear LR bandgaps become
chaotic and wave propagation is suppressed; an ultra-low and
ultra-broad (double-ultra) band NAM is thus obtained.

In this work, we report on NAMs based on the chaotic band
that achieves double-ultra band wave suppression. We design
both a 1D NAM beam and a 2D NAM plate with periodic
strongly nonlinear sub-wavelength meta-cells. When the strong
nonlinearity appears, our experiments demonstrate that
the NAMs substantially suppress wave propagation in the double-
ultra bands. By combining frequency responses, bifurcations,
Lyapunov exponents and different experiments, we describe the
propagation of waves and demonstrate that the double-ultra
effect is induced by the chaotic waves.

Results
NAM design. As elucidated by the sketched band structure of the
diatomic model (Fig. 1a, b), we propose 1D and 2D NAMs with

the band structure sketched in Fig. 1d, to demonstrate the double-
ultra concept based on chaotic bands. The subwavelength
meta-cell consists of a Duffing oscillator51 and a coupled
vibro-impact system52, 53 (Fig. 1c). We expect passbands
near LR1 and LR2 to become chaotic bands and reduce wave
propagation. A nonlinear meta-cell (Fig. 2a) is achieved by the
nonlinear force between permanent magnets and internal
collisions. The primary structure is a linear uniform rectangular
beam (or square plate) with density ρ and thickness h. The lattice
constant and width of the beam are a and b, respectively. Each
attached oscillator consists of three columniform magnets,
a columniform strut and a bolt that is used to constrain the
magnets. The entire attachment is fixed on the primary beam/
plate at point O. At rest, the magnets are separated from one
another by the same clearance Δ. The central magnet with mass
mr, is the local resonator in the transverse direction. Other
parameters are labeled in Fig. 2.

Nonlinear magnetostatic repulsion forces between the magnet
mr and the other two magnets54 induce a transverse force F(x) on
mr (see Methods):

F xð Þ � k1x þ k2x
3; ð1Þ

where x is the deviation from the equilibrium position and
−Δ< x < Δ. Therefore, the transverse motion of the attached
oscillators can be treated as the Duffing system51 shown in Fig. 2a
where m0 is the equivalent concentrated mass added at point O.
Its linear resonant frequency is fr.

As shown in Fig. 2b, the flexural oscillation of the entire
attachment is modeled as a linear torsional system JO−kT−Jr,
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Fig. 1 Schematic and conceptual diagram. a Diatomic NAM model
composed of periodic linear base mb coupled with Duffing oscillators mr

through the nonlinear spring k1x + k2x3, where k1 and k2 are the linear and
nonlinear stiffness coefficients, respectively. b Its band structure. Here, the
passbands become chaotic bands, where a periodic input wave uin
generates chaotic output wave (uout red) with an amplitude is much
lower than that of the corresponding linear resonance (uout dashed black).
c Two nonlinear sources in our NAM cell: Duffing oscillator and coupled
vibro-impact system (mc couples to Jr through a linear spring k3 and with
a clearance δ). d Conceptual diagram of the double-ultra mechanism using
chaotic bands. LR1 (LR2) represents the first (second) LR bandgap induced
by the linearized Duffing and vibro-impact systems, respectively. The
black (dashed black) arrow represents the input wave uin (its transmission)
in linear resonant passbands and the red arrows represent the frequency
components in the chaotic wave uout. In b, d, the light blue (white) areas
represent the band structure of the NAM (the corresponding LAM), where
the blue lines are the upper limits of the chaotic bands
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where JO is the inertia located at O, Jr is the free moment
of inertia and kT is the stiffness of the torsion spring connecting
JO and Jr (see Methods). As established, Jr also causes a negative
index meanwhile the other LR bandgap in the metamaterials is
near the natural frequency fT1.

Moreover, the magnet features a central hole. A small clearance
δ= 5 × 10−4 m is left between the strut and the magnet mr, and
collisions occur in this clearance when the flexural amplitude
becomes large. Therefore, the mass mr generates two different
nonlinear interactions during the motions along the transverse
and longitudinal directions, respectively. Along the longitudinal
direction, it is a vibro-impact oscillator53 coupled to Jr through
the nonlinear force P(x) (see Methods):

P xð Þ ¼ k3x þ kcx
n; ð2Þ

where kc= αδ−n,α≈ 1. The linear part k3x derives from the small
longitudinal component of F(x). As δ<< Δ, a fair approximation
for k3 is k3≈ k1/10. Parameter kc becomes very large as n
increases, e.g., kc≈ 1 × 1010 Nm−3 for n = 3, which indicates that
it produces a strong nonlinearity under a smaller amplitude than
in the Duffing oscillator. As a compromise, we use n= 3 to
calculate periodic solutions. A comparative study for larger n is
shown in Supplementary Fig. 5. Figure 2c shows the complete
equivalent system for the NAM beam. However, for the
NAM plate, the torsional motion is equivalent to two identical

coupled vibro-impact systems in 3D space (see Fig. 2e). The
structural parameters are listed in Table 1 and other nonlinear
factors are neglected in theoretical methods.

A NAM beam and a NAM plate consisting of periodic meta-
atoms are shown in Fig. 2f, g and various parameters are listed in
Table 2. The experimental methods and apparatuses are described
in Methods.

Double-ultra 1D NAM beam. The transfer functions, dispersion
curves, periodic solutions (i.e., frequency responses) and their
bifurcations of the NAM beam are illustrated in Fig. 3. Transfer
functions are defined as HA(B)(ω)= 20log10[XA(B)(ω)/XE(ω)],
where X(ω) denotes the frequency spectrum and the subscripts A,
B and E represent specific measurement points. We compare the
dispersion solutions (Fig. 3b, c) and frequency responses (Fig. 3d)
of the NAM beams considering only the Duffing oscillator
(NAM-N1) and considering both the Duffing and vibro-impact
oscillators (NAM-N2) (see Methods).

Four levels of broadband white noise were used to stimulate the
NAM beam, as shown in Fig. 3a. From cases i to iv, the
nonlinearity strength σ (see Methods) increases from 0 (linear) to
4.22 (strongly nonlinear). In both cases i and ii, σ is so small that
the beam behaves similar to a LAM. The linearized (k2 =0, kc =0)
dispersion curves for NAM-N1 and NAM-N2 are similar, except
that another curve at 10.7 Hz, corresponding to the linearized
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vibro-impact oscillator, appears in N2 (Fig. 3b, c). However, this
curve is nearly horizontal, thus no gap opens up. There are two
LR bandgaps and a Bragg bandgap below 800 Hz: LR1 near fr
(33.5–37.8 Hz, γlr1= 0.13) induced by the linearized Duffing
oscillator and LR2 near fT1 (200–230 Hz, γlr2= 0.15) induced by
the torsional motion coupled with the vibro-impact oscillator.
The Bragg bandgap in 420–660 Hz (γbg= 0.57) is relatively broad.
Point B is the node of the flexural modes near fr; therefore, a small
HB(ω) is obtained in this range. Both HA(ω) and HB(ω)
accurately reproduce the locations of the bandgaps, demonstrat-
ing that the theoretical methods are accurate. For the LAM beam,
we obtain γi< 1 and ∑γi= 0.85; the passbands are linear resonant

bands in which resonances amplify the waves. The two basic
properties make obtaining an ultra-low and broad bandgap to
suppress waves in the LAM challenging.

The periodic nonlinear meta-cells create amplitude-dependent
properties. In the strongly nonlinear case iv, the nonlinear
dispersion solutions for N1 show that the nonlinearity shifts the
peak of the first dispersion curve upward; thus, LR1 disappears.
Figure 3a demonstrates that enhancing the nonlinearity increases
the transmission in LR1 and makes it disappear in case iv. For N2,
the curve at 10.7 Hz disappears and LR2 shifts downwards
because the high nonlinear stiffness 3kcx2 makes the spring
become rigid, which is the limit dispersion solution48 under a
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large amplitude. The shifting of LR2 is not noticeable in
experiments, because this limit solution overestimates the wave
amplitudes, as further demonstrated in Fig. 3d. LR1 and LR2 are
termed as nonlinear LR bandgaps. In both N1 and N2, additional
curves in LR2 and near the fourth passband of harmonic balance
method (HBM) solutions represent unstable waves that do not
appear in practice48, as indicated by HA(B).

Notably, the nonlinearity strongly influences wave propagation
in the second and the third passbands, including a small
region below LR1. From cases i to iv, relative to the resonant
peaks, the wave transmission through the NAM beam decreases
by ~20–40 dB in the ultra-low and ultra-broad band of 30–660 Hz
(it is ~20 dB in the passbands and it is ~40 dB in the bandgaps).
The generalized width reaches γ= 21, which constitutes a
breakthrough compared with conventional LAMs (Supplemen-
tary Fig. 7). Therefore, the passbands of the strongly nonlinear
AMs can significantly attenuate the elastic waves and enables
subwavelength properties with a= λf/9 (see Methods). In the first
passband, the influences of the nonlinearity on the three
resonances are: significant for 31.56 Hz, moderate for 16 Hz
(H(ω) decreases by 8 dB) and weak for 6 Hz (H(ω) unchanged),
suggesting that the lower the resonance frequency below LR1, the
weaker the effect of the nonlinearity47, 49.

The frequency responses of the LAM and NAM beams confirm
the previously detailed properties, as summarized in Fig. 3d
(Supplementary Figs. 6, 7). The resonances and bandgaps derived
from the theory are in good agreement with the measured H(ω).
However, some discrepancies occur because the parameters and
boundary conditions in the theoretical model do not perfectly
reproduce the experimental conditions.

A moderate force F= 5 N causes the NAM to behave as a
strongly nonlinear system (see Fig. 3d). The differences between
N1 and N2 illustrate that: the periodic Duffing oscillators are
responsible for the wave suppression near LR1 but its influence
decreases with increasing distance to LR1 (both below and above
LR1); and the vibro-impact oscillators are responsible for wave
suppression in the two passbands on both sides of LR2
(Supplementary Note 3). As shown by NAM-N2, LR1 becomes
a passband and the resonances in the second and the third
passbands are substantially reduced because the linear resonances
are replaced by the nonlinear resonances with finite amplitude47.
The experimental results agree well with the theoretical findings
here and that from the discrete models47–49, supporting the
proposed mechanism for nonlinear wave propagation and the
band structure of NAMs.

Furthermore, to theoretically demonstrate the chaotic mechan-
isms of the double-ultra properties and analyze the bifurcations of

periodic solutions, a dimension-reduction algorithm combined
with other methods must be adopted (see Methods). As
illustrated in Fig. 3e, f, multiple branches are found with the
continuation algorithm49 (Supplementary Note 4). Under a
constant force, nonlinear resonances lower than LR1 lead to
larger ranges for stable periodic solutions. However, for nonlinear
resonances higher than LR1, only unstable branches or alternative
stable and unstable solutions are found near the bending
peaks. These unstable solutions and alternative properties
have been addressed to induce chaos49. Under 16.3 Hz
(see Fig. 3e), only a monotonous stable branch is found; its
amplitude is smaller than the linear solution and the
first derivative decreases with increasing force. For the other
two cases in Fig. 3e, the nonlinear solutions start along the
linear branch and remain stable for a small force; however, then
only unstable branches (or a small range of stable solutions),
whose amplitudes remain nearly constant, are present,
and consequently the transmission decreases. According to
these bifurcation properties, it can be predicted that the
NAM beam features a quasiperiodic or weakly chaotic response
with less ability to reduce the wave transmission near 16.3 Hz.
With regard to the waves in the second and the third passbands,
they become strongly chaotic and exhibit larger transmission
losses49. These phenomena are experimentally evidenced in
Fig. 4a–c.

To further understand the wave suppression in different bands
and to demonstrate the chaotic mechanism observed, we studied
the steady responses of the metamaterial at three representative
frequencies, 16 Hz, 82.5 Hz and 290 Hz, in the first, the second
and the third passbands, respectively. All are near (but not
coincident with) the linear eigenfrequencies (see Fig. 3a). In Fig. 4,
the transmission Tv= vrsp/vex, where vrsp and vex represent the
velocity amplitudes at points A and E, respectively. In contrast to
linear cases, here Tv rapidly decreases to a value less than 1,
whereas vrsp increases with the increasing vex. This behavior
demonstrates that a stronger nonlinearity corresponds to a larger
transmission loss47 in the studied nonlinear range. Furthermore,
Tv at 82.5 Hz and 290 Hz decrease more than at 16 Hz, in good
agreement with the results in Fig. 3. In Fig. 4c, these wave
reduction and suppression effects are further described by the
generalized wave fields along the beam.

Double-ultra 2D NAM plate. The results of the scanning
experiments (see Methods) on the 2D NAM plate are shown in
Fig. 5a, b. As with the beam, from cases i to iv, the average driving
displacement increases by 22 times and σ increases from σ≈ 0
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(linear) to σ= 3.21 (strongly nonlinear). The average transfer
function is HavðωÞ ¼

PN
i¼1 HiðωÞ=N , where N= 169.

As shown in Fig. 5c, two omnidirectional LR bandgaps open up
near flr1==34.65 Hz (34.5–38 Hz, γlr1= 0.1) and flr2= 230 Hz
(216–245 Hz, γlr2= 0.14) because of the transverse motion of mr

and the coupled vibro-impact system, respectively. The dashed
line in LR2 corresponds to the LR mode of the described torsional
motion. Both LR1 and LR2 are nonlinear bandgaps. In addition,
two directional Bragg bandgaps exist along ΓX and ΓM in the
interval 635–835 Hz (γΓX==0.32) and near 1,150 Hz, respectively.
However, γi<< 1 and ∑γi= 0.56; thereby, they are narrow. The
LR bandgaps are clearly visible in Hav(ω) and HA(ω), as displayed
in Fig. 5a, b. The directional bandgap along ΓX also helps
suppressing the average response. Because of the dense flexural
modes in this 2D LAM, the passbands feature dense resonances
that enhance the incident waves.

For the 2D NAM plate, the perturbation result shows that the
first dispersion curve gets significantly distorted because of the
occurrence of the strong nonlinearity. In contrast to the linear
case i, the strengthened nonlinearity suppresses the broadband
resonances. In fact, a moderate nonlinearity in case ii enables
suppression of the resonances between 30 and 1,200 Hz,
especially in the range 200–1,200 Hz. Further enhancing the
nonlinearity, as in case iv, leads to reductions both of Hav(ω) by
20–40 dB in the range 50–1200 Hz and of the resonances by 10 dB
in the range 30–50 Hz. We obtain a subwavelength property
with a= λf/10 at 30 Hz here. Resonances in the first passband
are minimally reduced. This behavior is the same as that observed
in the NAM beam. Therefore, between 30 and 1,200 Hz this
2D NAM features the double-ultra property that the wave
transmission is significantly reduced. The generalized width
γ= 39 is nearly double the width of the NAM beam.

To further describe the double-ultra properties, we measured
the steady responses at points A and B after a monochromatic
excitation at point E (see Fig. 6). As expected, the 2D nonlinear

flexural mode depends on both the frequency and the position,
and the transmission does not vary monotonically. At 26 Hz
(Fig. 6a, e), although vrsp increases with the increasing driving
amplitude, Tv reaches the maximum value at vex= 0.8 mm s−1 but
then decreases by a factor of 2.7 at vex= 9. A similar behavior is
observed at 48.75 Hz (Fig. 6b, f). In contrast, vrsp at 280 Hz
(Fig. 6c, g) and 325 Hz (Fig. 6d, h) first increase monotonically
against vex and then remain nearly constant, while the
transmission decreases substantially. Moreover, in the four cases
except for a small region near vex= 0.9 mm s−1 at 325 Hz, the
amplitude and transmission at A and B vary synchronously.

As shown in Fig. 5a, b, H(ω) along ΓX for frequencies in the
directional bandgap near 760 Hz increases with σ. Different
experiments were conducted at 760 Hz to illustrate this effect. As
shown in Fig. 7a, when increasing vex from zero, the waves are
first suppressed so the responses vary along a low-energy orbit
corresponding to the bounded state. The responses then jump up
to a high-energy orbit at a critical point, that is, the excited state.
With decreasing excitation, the responses jump down to the
bounded state at a smaller critical point: a hysteresis loop
is observed between the two states. The jump is relevant to
saddle-node bifurcations49, 55. In Fig. 7b, the contour plot of ΔTv
illustrates that elastic energy is transferred from the central area
to the boundaries in the excited state, which breaks the bandgap
effect. Therefore, the bandgaps in NAMs feature multi-state
behavior switching from one state to the other by jumps49.
High-dimensional acoustic devices based on such behavior are
conceivable.

Confirmation of chaotic waves in experiments. The double-
ultra properties are relevant to the propagation states of the
waves: periodic, quasiperiodic or chaotic. To understand the
transition between periodic and chaotic states, and to further
clarify the chaotic features and band structures, we analyzed the
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spectra and the largest Lyapunov exponents (LLEs, λm)50, 56–58

(see Methods) of the steady waves.
Theoretical investigations47–49 have revealed that the

resonances are suppressed by the chaos induced by periodic-
doubling bifurcations. The power spectra PA(ω) at 290 Hz in the
NAM beam (see Fig. 8a) clearly illustrate the period-doubling
route to chaos. In the linear regime (vrsp= 3.137 mm s−1), the
energy is localized at the driving frequency fd; increasing vrsp to
9.77 mm s−1 generates period-doubling frequencies that divides
the elastic energy; further increasing the amplitude redistributes
the wave energy in a broad, higher band, which is chaotic. This
phenomenon has been termed energy dispersion47.

First, we analyzed the LLEs of the NAM beam at the three
frequencies in Fig. 4. As shown in Fig. 8b, LLE of the driving
velocity fluctuates near 0 (see Methods) over a large amplitude

range. The maximum value <0.05 is positive but small, ensuring
that noises in the driving forces have a negligible influence, even if
the forces are large. By considering the errors, λmc= 0.05 is
chosen as the critical value of LLE where switching from
the quasi-period to chaos occurs. In Fig. 8b, c, λm fluctuates in
a non-monotonic way but still exhibits an increasing trend on the
whole; when vex is very small, λm< λmc, indicating that
the responses are periodic (or quasiperiodic). Further increasing
vex causes λm to rapidly pass though zero and λmc to satisfy
λmc≤ λm<∞, which indicates that the waves become chaotic. In
the chaotic regime λm>> 0, at 82.5 and 290 Hz, which implies
that chaotic behaviors are strong and that the trajectories
in the chaotic attractors quickly become separated. By contrast,
λm< 0.1 at 16 Hz denotes the weak chaos that is approximate to
a quasiperiodic orbit; therefore, the material has a weaker ability
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to suppress the waves in frequency ranges below LR149. These
results confirm the predictions made after the bifurcation
analyses in Fig. 3e, f.

Next, we calculated λm of the NAM plate under the three
frequencies in Fig. 6. The results obtained at 26 Hz are similar to
those obtained at 48.75 Hz; therefore, only the latter are
presented. At 48.75 Hz (see Fig. 8d), λm fluctuates near 0 and
λm< 0.1 in the explored amplitude range at the three points E, A
and B. Therefore, we deduce that low-frequency waves are
periodic, quasiperiodic or weakly chaotic. At 280 Hz (Fig. 8e), λm
at point E still fluctuates near 0; in contrast, λm at A and B
increases to 4.5 so that strong chaos occurs, which suppresses the
waves, and a periodic window appears at vex= 11.89. In the case
of 325 Hz (Fig. 8f), the signal undergoes low-frequency noise
therefore λm at point E has a large value. Fortunately, λm at points
A and B are much larger, and λm> 20 at A, which corresponds to
a strong chaos. Moreover, although the amplitudes measured at
A and B are approximately equal (see Fig. 6), their LLEs differ
substantially in some intervals, which indicates that although the
amplitudes may vary synchronously at different points, one
response may be strongly chaotic while the other is periodic.

The aforementioned quantitative statements experimentally
establish that the passbands of the NAMs become chaotic, which
agrees with the bifurcation analysis. Moreover, the regularities of
the LLEs are mutually consistent with the theoretical findings
outlined in the discrete model49. Therefore, the experiments
demonstrate the chaotic mechanism and the features of chaos in
the NAMs.

Discussion
We designed a NAM beam and a plate with a strongly nonlinear
meta-cell consisting of a Duffing oscillator and a linear torsional
oscillator coupled to a vibro-impact oscillator. Our proof-of-

concept experimental results with the NAMs demonstrated that
these metamaterials overcome the bandwidth limit (γ< 1) of
conventional LAMs by at least two orders of magnitude: with
subwavelength (~λf/10) cells, the generalized width reaches an
exciting value γ= 21 in the 1D NAM and it increases to γ= 39 in
the 2D NAM. In these broad bands (which consist of bandgaps
and chaotic bands), the transmission of waves is reduced by as
much as 20–40 dB. We demonstrated both theoretically and
experimentally that the double-ultra effect is attributable to
strong chaos, because the propagating elastic waves become
chaotic under periodic incidents. The band structures and
features of chaos are also consistent with the theoretical results.
Moreover, bandgaps in the NAM exhibit a multi-state behavior;
switching from one state to the other arises by jumps.

In conclusion, this study demonstrates the chaotic band in
NAMs, which can significantly reduce the wave transmission in
an ultra-low and ultra-broad band. Our work unveils the physical
effects of NAMs and enables further progress in understanding
NAMs. We envision that the chaotic band induced double-ultra
wave suppression will open new opportunities for vibration and
noise control, acoustic energy transfer and dissipation and elastic
wave manipulation. The multi-state behavior presents an
advantage in controlling the state of acoustic devices.

Methods
Metamaterial samples. The parameters of the NAM samples shown in Fig. 2 are
listed in Table 1. The permanent magnet is made of the neodymium–iron–boron
alloy. Its outer diameter, inner diameter and the thickness are 15, 5 and 4 mm,
respectively. The oscillator mr consists of two magnets. A magnet is fixed on both
the beam and the bolt, respectively, that is the installation scheme of the magnets is
one–two–one. In Fig. 2a, ρs (rs) denotes the density (the radius) of the strut; mJ

denotes the total mass of the upper magnet and its bolt.
The flexural wavelength of the primary structure is

λf ¼ 2π EI=ρbhð Þ1=4ω�1=2; ð3Þ
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where E is elastic modulus and I= bh3/12. The flexural wavelength in the pure
plate is

λf ¼ 2π D0=ρhð Þ1=4ω�1=2; ð4Þ

where ω denotes the angle frequencies; D0= Eh2/12(1−μ2); ρ and μ are the density
and the Poisson’s ratio of the material, respectively. The beam, the plate and the
struts are all made of aluminum. It’s E= 70 GPa, μ= 0.3 and ρ= 2,780 kg m−3.

Equivalent motions. The magnetostatic repulsion force between the
permanent magnets can be expressed as F(Δ)= C·Δ−p+ C0, p> 0, where C
and C0 are constants. C0 is introduced to better fit the measured data and
in theory C0= 0. Therefore, the transverse force (along z axis) on mr reads54

F(x)= C[(Δ−x)−p − (Δ + x)−p]≈ k1x + k2x3, i.e., Eq. (1). We measured the nonlinear
repulsive force-clearance relation F(Δ) between two identical magnets, as illustrated
in Fig. 2d. The stiffness coefficients k1 and k2 derived from the measurements are
listed in Table 2. Because of the cubic nonlinear term k2x3 in Eq. (1), the transverse
attached oscillators can be treated as the Duffing system51 represented in Fig. 2a. Its
transverse motion equations read

mO €w1 ¼ F1 tð Þ þ k1 wr � w1ð Þ þ k2 wr � w1ð Þ3; ð5Þ

mr€wr ¼ �k1 wr � w1ð Þ � k2 wr � w1ð Þ3; ð6Þ

where w1 and wr are transverse displacements of mO and mr, respectively; F1(t) is
the node force applied onmO, which is generated by the shearing stress in the beam
or plate; the double overdot denotes a second-order time derivative. The linearized
natural frequency of this Duffing oscillator is fr≈ 35 Hz.

Moreover, the bending moment causes the entire attachment undergoing
flexural oscillations (see Fig. 2b). This part is modeled as a small beam attached
with a concentrated masse mJ at the location lJ, which induces a considerable
moment of inertia. Therefore an entire attachment in low frequency is equivalent
to the linear torsional system JO−kT−Jr.

In fact, the collision occurs in the small clearance δ when the torsional
amplitude is not small, which provides the other strongly nonlinear source in our
NAMs. The elastic impact interaction force follows the power law53 α(x/δ)n= kcxn,
kc= αδ−n, where n> 1 is an odd number and α depends on the estimated peak
force (or acceleration) in the collision. The value of δ−n is so large that the influence
of α becomes weak, here α≈ 1. The function becomes rectangular if n→∞.
Therefore, the motion of mr along the longitudinal direction is a vibro-impact
oscillator that couples with Jr through the nonlinear force P(x) in Eq. (2). For the
NAM beam, the torsion motion of the entire attachment occurs in the xz plane
only and the complete equivalent system of a cell is shown in Fig. 2c. The motion
equations of this coupling nonlinear system are

JO€θO ¼ kT θr � θOð Þ þMO tð Þ; ð7Þ

Jr€θr þmrlr€ur ¼ �kT θr � θOð Þ; ð8Þ

mr€ur ¼ �k3 ur � lrθrð Þ � kc ur � lrθrð Þn; ð9Þ

where θO and θ are torsional angles of JO and Jr, respectively; MO(t) is the bending
moment generated by the primary beam and ur is the longitudinal displacement of

mr. Other nonlinear factors are analyzed and can be neglected (see Supplementary
Figs. 4, 6).

For the uncoupled 2DoF torsional system, by equations €θO ¼ �ω2θO,
€θ ¼ �ω2θ, we can solve θ in terms of θO, so that, in terms of the angle θO, one
yields

MO ¼ J ωð Þ€θO; ð10Þ

JðωÞ ¼ JO þ kT=ðω2
0T � ω2Þ; ð11Þ

where ω2
0T ¼ kT=Jr and JðωÞ symbolizes the equivalent dynamic inertia of the

whole attachment at frequency ω. This expression is similar to the LR oscillator in
an AM3. JðωÞ indicates that the moment of inertia can also generate a negative
index and introduces another LR bandgap in the metamaterial near the natural
frequency fT1==ω0T/2π. The three equivalent parameters, JO, Jr and kT, can be
determined based on the FEM59, as detailed in Supplementary Note 1. Their values
are listed in Table 2, and fT1==226 Hz (Supplementary Fig. 1).

In the NAM plate, the bending moment in the plate drives the attachment to
generate flexure motion in the 3D space (see Fig. 2e) but not in a 2D plane as the
AM beam does. Therefore, the equivalent system has six DoFs and the motion
equation of this part reads

JO€θOi ¼ kT θri � θOið Þ þMOi tð Þ; ð12Þ

Jr€θri þmrlr€uri ¼ �kT θri � θOið Þ; ð13Þ

mr€uri ¼ �k3 uri � lrθrið Þ � kc uri � lrθrið Þn; ð14Þ

where θ and M denote the torsional angle and bending moment, respectively;
i= x,y; subscripts x and y symbolize the coordinates x and y; the subscripts r (O)
represents the variables of the resonator (the fix point O on the plate). As the two
systems are identical, by considering the oscillation in the xz plane only, we can
obtain the equivalent parameters, which is same with the 1D beam. The results are
listed in Table 2, and fT1= 260 Hz, fT2= 1,484 Hz.

The strength of nonlinearity is defined by

σ ¼ nkcA
n�1=k3; ð15Þ

where A stands for the response amplitude used to estimate the nonlinear
strength47, 49. σ is a relative indicator. A larger σ is the stronger is the nonlinearity.

Experiment apparatuses and measurements. The experimental configuration
and testing scheme for the NAM beam and plate are shown in Fig. 2. The
metamaterial beam and plate were fixed to an electromagnetic exciter at point E.
The output driving velocities and displacements were adjusted by modulating the
voltage of the amplifier.

For the NAM beam, the other end was free; two test points on the primary
beam, A and B, were set on the symmetrical sides of the 12th attachment (see
Fig. 2f). Two types of experiments were implemented with the NAM beam:
broadband frequency responses and responses under monochromatic excitations.
For the broadband responses, the random broadband white noise acted as the
driving force and the response velocities at points A, B and E, were directly
measured. In the other experiment, monochromatic sinusoidal waves were
employed to drive the beam, and the responses in the time domain at points A and
E were measured. In both experiments, the response velocities at the three points
were measured synchronously using three laser Doppler vibrometers. In addition,
for the measurement of the wave shapes of the whole beam, a vibrometer was used
to scan points along the primary beam.

For the NAM plate, the excitation point E was near but not coincident with the
center point of the plate. Other boundaries of the plate were free. This driving
method can excite the non-symmetrical modes of flexural waves in the plate. The
positions of measurement for points A, B and E are shown in Fig. 2g. The two types
of experiments were also implemented on the 2D NAM plate. However, in the
broadband frequency responses experiment, 13 × 13 scanning points were set on
the primary plate, and a vibrometer was used to measure their velocities one by
one. In addition, we used a varying-amplitude monochromatic experiment to
measure multiple states in the bandgap. Here the driving amplitude was A(t)sin
(2πfdt), where fd is constant but the amplitude A(t) changes linearly with time.
Moreover, to measure the wave fields in the bounded state and excited state under
760 Hz, 19 × 19 scanning points were set on the primary plate. In the scanning
experiments, the measured points were distributed uniformly in a square region
from the coordinate (−400, 400) to (400, −400).

Signal processing. Nonlinear time series analysis methods were employed to
analyze signals under monochromatic excitations. Under periodic incidents, the
propagated waves in the NAM beam follow periodic, quasiperiodic or chaotic
trajectories51. The chaotic trajectories in its attractor diverge, on average, at an
exponential rate over the time evolution characterized by the largest Lyapunov
exponent (LLE) λm56. Therefore, the LLE can quantitatively identify whether the

Table 1 Parameters of the NAMs

Para. a (mm) b (mm) h (mm) mO (g) mr (g) mJ (g)

1D 120 20 3.8 15 10 9
2D 80 – 2 8 10 9

Para. Δ (mm) lr (mm) lJ (mm) ls (mm) rs (mm) λf (m)

1D 12.5 20.5 45 70 1.9 1.074
2D 12 20 40 70 1.9 0.805

Here λf denotes the flexural wavelength at 30 Hz

Table 2 Equivalent parameters of the attached structure

Para. k1(N m−1) k2(N m−3) JO (kg m2) Jr(kg m2) kT(N m rad−1)

1D 448.67 3.276e6 5.750e-7 2.225e-5 44.874
2D 473.92 2.93e6 5.820e-7 1.838e-5 49.045
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signal is chaotic. In theory, if λm< 0, the motion is periodic having a stable fixed
point; if λm= 0, it is a quasiperiodic response having a stable limit cycle; and if
0< λm<∞, it is chaotic. However, errors and noises from the algorithm and
experiment make using a single value λm= 0 to identify the quasiperiodic state in
experiments almost impossible.

We employed an algorithm for the LLE derived by Kantz et al.56–58 because of
its robustness to the noise; this algorithm is based on the phase space
reconstruction technique. The proper embedding dimension dE and time delay τ
should be determined to reconstruct the phase space56; the autocorrelation
function was calculated to determine the optimal lag τ, and the false nearest
neighbors method was used to determine the optimal dE.

Dispersion theories. We established the finite element models of the meta-cells of
both the NAM beam and plate. For NAM-N1, perturbation approach (PA) was used
to calculate the approximate dispersion solutions. For NAM-N2, only the HBM could
be used and the analytical solutions of the dispersion equations were solved. However,
for the NAM plate-N2, the high dimensions of equations made finding analytical
solutions difficult. Therefore, only the dispersion solution solved by PA of the NAM
plate N1 is presented (see Supplementary Note 2 for more details).

Periodic solutions and bifurcations. A periodic solution is also a steady frequency
response. To calculate the frequency responses, we used a standard finite element
procedure59 to obtain the motion equations for the whole NAM beam. Then, we
used HBM to solve the approximate solutions. The numerical Newton method
helps finding the solutions (Supplementary Note 3).

In the case NAM beam-N2, the finite element model has 90 dimensions.
However, to analyze the stabilities and bifurcations of the periodic solutions, we
need to reduce the dimensions of the whole model. We adopted the post-processed
Galerkin algorithm in the frequency domain to reduce the dimensions of the NAM
beam-N2 (Supplementary Note 4). A picking dimension-reduction procedure
reduced the dimensions from 90 to 23. With the reduced system, we analyzed the
periodic solutions and their bifurcations using the harmonic average method
(Supplementary Figs. 8, 9).

Data availability. The experimental data that support the findings of this study are
available in Dryad Digital Repository (http://datadryad.org/) with the identifier
DOI:10.5061/dryad.6m8nt60.
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