Supporting Information

Implication of water molecules at the silica – ibuprofen interface in silica-based drug delivery systems obtained through incipient wetness impregnation

Thierry Azaïs,^a* Guillaume Laurent,^a Kuldeep Panesar,^a Andreï Nossov,^a Flavien Guenneau,^a Cristina Sanfeliu Cano,^a Corine Tourné-Péteilh,^b Jean-Marie Devoisselle^b and Florence Babonneau^a

^a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris, France

^b UMR 5253 CNRS ENSCM UM, MACS, Institut Charles Gerhardt Montpellier, 1701 Place Eugene Bataillon, F-34095 Montpellier, France

Figure S1: TGA measurements of Ibu@MCM, and BA-D5@MCM.

Figure S2

Figure S2: 13 C CP MAS spectra of a) Ibu@MCM and b) BA@MCM after one night of equilibration in a 75% humidity controlled atmosphere. Red arrows indicate the typical 13 C resonances of CH₃ from isopropyl group of crystalline ibuprofen (see Azaïs et al. Chem. Mater. 2006, 18, 6382-6390).

Figure S3

Figure S3: Variable temperature ²H static NMR spectra of a) BA-D5@MCM and b) bulk deuterated benzoic acid BA-D5 and the corresponding fittings in red; c) evolution of the proportion of solid (blue) and liquid (red) benzoic acid BA-D5 as a function of the temperature obtained through the fitting.