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Abstract

A Gorling—Levy (GL)-based perturbation theory along the range-separated adia-
batic connection is assessed for the calculation of electronic excitation energies. In
comparison with the Rayleigh—Schrodinger (RS)-based perturbation theory intro-
duced in a previous work [E. Rebolini, J. Toulouse, A. M. Teale, T. Helgaker, A.
Savin, Mol. Phys. 113, 1740 (2015)], this GL-based perturbation theory keeps the
ground-state density constant at each order and thus gives the correct ionization
energy at each order. Excitation energies up to first order in the perturbation have
been calculated numerically for the helium and beryllium atoms and the hydrogen
molecule without introducing any density-functional approximations. In comparison
with the RS-based perturbation theory, the present GL-based perturbation theory
gives much more accurate excitation energies for Rydberg states but similar excita-
tion energies for valence states.

KEYWORDS
density-functional theory; range separation; adiabatic connection; perturbation
theory; excitation energies

1. Introduction

Within the framework of density-functional theory (DFT), the calculation of molec-
ular excitation energies is nowadays mostly performed using linear-response time-
dependent density-functional theory (TDDFT) (see, e.g., Refs. [1, 2]) within the adi-
abatic local or semi-local approximations. Despite its many successes, linear-response
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TDDFT within these approximations suffers from serious limitations, especially for
describing systems with static (or strong) correlation [3], double or multiple excita-
tions [4], and Rydberg and charge-transfer excitations [5l [6]. These deficiencies have
been attributed to the locality of the approximated exchange—correlation potential
and kernel either in space (local and semi-local approximations) or in time (adiabatic
approximation). While the former is directly linked to functional development in time-
independent DF'T, the latter is a problem specific to the time-dependent formulation.
However, time dependence is in principle not required to describe excited states since
by the Hohenberg-Kohn theorem [7] the time-independent ground-state density con-
tains all the information about the system including information about its excited
states.

Over the years, several time-independent DFT approaches for calculating excita-
tion energies have emerged and are still being developed: ensemble DFT [8H17], state-
specific self-consistent DFT and related methods [I8-39], hybrid DFT /configuration
interaction (CI) methods [40H44] and perturbation theory starting from the non-
interacting Kohn-Sham (KS) Hamiltonian [45-48]. In a previous work [49], we have
explored further this density-functional perturbation-theory approach with one key
modification: As a zeroth-order Hamiltonian, instead of using the non-interacting KS
Hamiltonian, we use a partially interacting Hamiltonian incorporating the long-range
part only of the Coulomb electron—electron interaction, corresponding to an interme-
diate point along a range-separated adiabatic connection [50-56]. The partially inter-
acting zeroth-order Hamiltonian is of course closer to the exact Hamiltonian than is
the non-interacting KS Hamiltonian, thereby putting less demand on the perturbation
theory.

In this previous work [49], a Rayleigh—-Schrodinger (RS)-based perturbation theory
was tested on a few atoms and molecules and it was found that the first-order excita-
tion energies are not overall improved in comparison with the zeroth-order excitation
energies. This finding was rationalized by the fact that this perturbation theory does
not keep the ground-state density constant at each order. In the present work, we ex-
plore an alternative approach, based on Gorling-Levy (GL) perturbation theory along
a range-separated adiabatic connection, which keeps the ground-state density constant
at each order and therefore should give more accurate excitation energies.

The paper is organized as follows. The main equations of our GL-based range-
separated perturbation theory are given in Section [2] The computational details for
the calculations carried out, involving no other approximations than the use of a finite
basis, can be found in Section [3] The results obtained for the He and Be atoms and for
the Hs molecule are discussed in Section 4} Finally, Section [5| contains our conclusions.

2. Theoretical background

This section consists of two parts. We first review range-separated DFT for ground
states in Subsection [2.1 and then GL-based perturbation theory for excited states in
Subsection 2.2

2.1. Range-separated ground-state density-functional theory

In range-separated DFT (see, e.g., Ref. [54]), the electron—electron interaction is par-
titioned into long-range and short-range contributions by means of the error function
and of a range-separation parameter p which controls the range of the separation. The



long-range (Ir) interaction operator is defined as
Wok =~ // #(r12)n2(ry, r2)dridry, (1)

and is written in terms of the error-function interaction wes”(r) =erf(ur)/r and the
pair-density operator fia(ry, r2), where r refers to the electron coordinates. The exact
ground-state energy of an N-electron system is then expressed as

By = i { (U174 Vi £ WEH W) + Eilne] | ©

where the minimization is performed over normalized multi-determinantal wave func-
tions W. In Eq. (2! . we have introduced the kinetic-energy operator T, the nuclear—
electron attraction operator Vne f Une(r)n(r)dr written in terms of the density oper-
ator n(r), and the complement short- range (sr) Hartree—exchange—correlation density
functional Ef%[ny] evaluated at the density of ¥, ng(r) = (¥|n(r)|¥). The mini-
mizing wave functlon Ul in Eq. (2) is the ground-state wave function of the following
eigenvalue problem

H™MUG) = V), (3)

associated with the energy &/'. In Eq. , we have introduced the partially interacting
Hamiltonian

N = T Vo T+ T, (@)

which contains the operator

Vit = [ onatar, 6)

with  the short-range Hartree—exchange—correlation potential — op”:(r) =
SER o) /dn(r) evaluated at the exact ground-state density no(r). This is the poten-
tial that keeps the ground-state density constant for all u, i.e. (Uh|a(r)|¥)) = no(r).

At p = 0, the Hamiltonian H™H in Eq. {) reduces to the standard non-interacting
KS Hamiltonian, whereas for ;1 — oo it reduces to the physical Hamiltonian. The
Hamiltonian H™# therefore defines a range-separated adiabatic connection, linking
the KS and the physical systems when varying u, keeping the ground-state density
constant.

2.2. Excited states from GL-based perturbation theory

For a given value of u, the excited-state wave functions and energies of the long-range
interacting Hamiltonian

H™ 1Y) = L), (6)

can be used as zeroth-order approximations to the physical excited-state wave func-
tions and energies. It can then be improved upon by setting up perturbation theories



with H'™* as the zeroth-order Hamiltonian. As shown in Ref. [49], an RS-based pertur-
bation theory in which the ground-state density is not kept constant gives first-order
excitation energies that overall do not improve upon the zeroth-order excitation en-
ergies. Here we instead use a GL-based perturbation theory, with the ground-state
density kept constant.

To formulate such a GL-based perturbation theory, we define the following Hamil-
tonian depending on a coupling constant A

PN = T Vi o W+ N 4 Vi, (")

which contains the operator

Ve = [ o i) dr ®
where @f{r)’fé’)‘(r) is the A-dependent short-range Hartree—exchange—correlation poten-

tial that keeps the ground-state density constant for all u and all A — that is,
<\IJ’6”\\ﬁ(r)\\Ilg’A> = ng(r) where \Ilg’/\ is the ground-state wave function of the Hamilto-
nian A% in Eq. @ The Hamiltonian H** thus sets up a double adiabatic connection
with a constant ground-state density. To clearly separate the linear and non-linear de-

pendence in A\, we then rewrite Eq. as
BN = g Voo W 4 Vil AW 4 Vi — Vit ©
and we define the potential operator

PSS TSI ST
VHXC - VHXC VHXC ’ (10)

which can be decomposed into a linear contribution with respect to A and a term
containing all higher-order terms (see Ref. [49])

¥ SI'“U,,)\ — ¥ Sr, ¥ SI’,,LL,)\
Vch - )‘VHX,md +V ' (11)

c,md

The potential Vﬁi*ﬁn q is the short-range “multi-determinantal (md) Hartree-exchange”

potential operator, while V:fr’l’é’/\ is the short-range “multi-determinantal correlation”
potential operator [57]. For non-degenerate ground-state wave functions Ul, the ex-
pansion of VS;‘S}‘ in A around A = 0 begins at second order:

ST, LAy 2 Y7STL(2) 3 Y7sT,44,(3)

‘/c,md = A ch,md +A ‘/c,md +oee (12)

The partially interacting Hamiltonian can then be rewritten as

HHA = FH o \TSTR — 7ShkaA

c,md
= B 2 N 13

where the unperturbed Hamiltonian is the partially interacting Hamiltonian defined

in Eq. (@) and W = WaH — V5o | is the perturbation operator. More details on

x,md



this GL-based perturbation theory can be found in the Appendix of Ref. [49].
The excited-state wave functions and energies of the perturbed Hamiltonian are
thus expanded with respect to A as

,(1 ,(2 ,(3
W) = [0+ M)+ 2wl ®) 33w (14)
E’/:,)\ — glg _|_ )\E’/::(l) + >\2E£’:(2) + )\3E;€L’(3) + P (15)

where \IJZ (™ and E,‘: (") are the n-th order corrections to the wave function and energy
of the k-th state. In particular, the first-order energy correction is

b 1 T
B — (@l e ), (16)
and the corresponding zeroth+first order energy is

Byt = g+ B = (Wl 4 Vo ). (17)

c,md

Equation contains two contributions; the zeroth+first order energy in standard RS
perturbation theory, Eg:é?” = (WI|H|PY), and an additional term, (W Vo T),
which is only present in GL-based perturbation theory.

A local-density approximation has been developed for the short-range multideter-
minant correlation energy functional (and the associated potential in V:f;’é) b7 5.
In the present study, we will test the GL-based perturbation theory without intro-
ducing any density-functional approximations, providing benchmark data for future
approximations.

3. Computational details

Calculations were performed for the He and Be atoms and the Hs molecule with a
development version of the DALTON program [59] [60]; see Refs. [55] [61, 62]. Following
the same procedure as in Ref. [56], a full CI (FCI) calculation was first carried out to
obtain the exact ground-state density in the chosen basis set. Next, for several values
of p and A, a Lieb optimization [61], [63], [64] was carried out to obtain the short-range
potential 534 (r) = vpe (1) + 051 (r) needed in Eq. (7) to reproduce this FCI ground-
state density with the partial electron—electron interaction wis” (r12) + Mwee™ (r12).
Then, an FCI calculation was performed with the partially-interacting Hamiltonian
constructed from wge’”(ng) + Mwee? (r12) and 7%7#(r) to obtain, for a few states, the
energies E}’ A and wave functions \I/Z’A, for each values of p and .

For each system, each excited state, and each value of u, a third-degree polynomial
fit in A was performed on the excitation energy AE} A = EY A EY A for values of
A ranging from 0 to 0.3 and the first-order correction in the GL-based perturbation
theory was obtained as the first-order derivative with respect to A. The zeroth-order
excitation energies and the first-order excitation energies in the RS-based perturbation
theory were already available from Refs. [56] and [49], respectively.

The basis sets used were uncontracted t-aug-cc-pV5Z for He, uncontracted d-aug-
cc-pVDZ for Be, and uncontracted d-aug-cc-pVTZ for Ha.



4. Results and discussion

4.1. First Rydberg excitation energies of the helium atom

The first singlet and triplet excitation energies of the helium atom correct to zeroth and
first orders along the range-separated adiabatic connection in the GL- and RS-based
perturbation theories are shown in Figure[l]

In the KS limit, at 4 = 0, the zeroth-order singlet and triplet excitation energies are
degenerate. When increasing u, this degeneracy is lifted and the zeroth-order singlet
and triplet excitation energies eventually converge to their physical excitation energies
for ;1 — oco. With the introduction of the perturbation, the singlet/triplet degeneracy
is lifted already at p = 0. As found in Ref. [49], the first-order RS-based perturbative
correction globally deteriorates the zeroth-order excitation energies, leading to large
errors that do not decrease monotonically with p.

Interestingly, the zeroth+first order excitation energies obtained from the GL-based
perturbation theory have much smaller errors than those obtained by the RS-based
perturbation theory. In particular, the first-order GL correction systematically im-
proves the zeroth-order excitation energies for sufficiently large p, accelerating the
convergence with respect to the range separation parameter to the physical excitation
energies: a 1 millihartree accuracy is reached for x larger than 1.2 bohr—!, while values
of 3 to 4 bohr~! are necessary for the zeroth-order curves. However, near u = 0, the
first-order GL correction does not always improve the zeroth-order excitation energy
(see the 1'S — 1'P transition).

These comparisons show that the GL-based perturbation theory (which keeps the
ground-state density constant, ensuring a correct ionization energy) is a much better
strategy for calculating Rydberg excitation energies than the RS-based perturbation
theory. This was expected since these Rydberg excitation energies are close to the
ionization threshold.

4.2. Valence excitation energies of the beryllium atom

The valence excitation energies of the beryllium atom correct to zeroth and first orders
in the GL-based and RS-based perturbation theories are plotted in Figure[2] For these
excitations, the two approaches give very similar first-order corrections. This behaviour
can be rationalized from the fact that these valence excited states are far from the
ionization threshold so that imposing the correct ionization energy (by keeping the
ground-state density constant) has much less impact than for the Rydberg excitation
energies.

We note that the first-order correction systematically improves the singlet excitation
energy but not the triplet excitation energy, which is overestimated at zeroth order
and underestimated by about the same amount at first order.

4.3. First valence excitation energies of the hydrogen molecule

In Figure [3] we have plotted the first valence excitation energies of hydrogen molecule
at its equilibrium internuclear distance Req and at 3Rcq. As for the valence excitation
energies in beryllium, the first-order RS- and GL-based corrections are overall quite
similar, but with a discernible faster p-convergence of the GL-based zeroth+first order
excitation energies to the physical excitation energies at the equilibrium distance.

At the equilibrium distance, the GL-based first-order perturbation theory overshoots
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Figure 1. Zeroth-order excitation energies AEY = £ — &' (plain line) and zeroth+first order excitation
energies AE,‘CL’(O+1> = E}‘:’(OJFI) — Eg’(0+1> (dashed line) in the GL-based perturbation theory for the helium
atom as a function of p. For comparison, the zeroth+first order excitation energies AE‘:’F({OS+1) = Eg’r({OS_H) —

EY ’F({()SJrl) (dotted line) in the RS-based perturbation theory of Ref. [49] are also shown. The excitation energies
of the physical system AFE, = E, — Eg are plotted as thin horizontal dot-dashed lines.
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Figure 2. Zeroth-order excitation energies AS,‘: = 5,‘: — 5(‘; (plain line) and zeroth+first order excitation
energies AE“’(OJH) E”’(0+1) E“’<0+1> (dashed line) in the GL-based perturbation theory for the beryllium
atom as a function of u. For comparison, the zeroth+first order excitation energies AEM (0+1) E;: 1%0;1)

EY I%OS_H) (dotted line) in the RS-based perturbation theory of Ref. [49] are also shown. The excitation energies
of the physical system AFE, = Ej — Eg are plotted as thin horizontal dot-dashed lines.

the correction to both the singlet and triplet zeroth-order excitation energies for small
values of i, but nevertheless improves upon the zero-order correction for all p values.
When the bond is stretched, the first-order correction no longer systematically im-
proves on the zeroth-order excitation energies for small p. In particular, the excitation
energy of the first transition 112g — 13%F becomes negative for small y and the
error with respect to the physical excitation energy is higher than in the zeroth-order
case. Moreover, the ordering of the two excitation energies for the transitions to the
two singlet states is incorrect at small p. For values of ; greater than about 1 bohr™!,
the first-order correction does provide a systematic improvement over the zeroth-order
excitation energies, particularly for the transition to the two singlet states.

5. Conclusion

We have applied a GL-based perturbation theory along a range-separated adiabatic
connection for the calculation of electronic excitation energies. Unlike the RS-based
perturbation theory that we explored in a previous work, the GL-based perturbation
theory keeps the ground-state density (and thus the ionization energy) constant at each
order. Excitation energies up to first order in the perturbation have been calculated
numerically for the helium and beryllium atoms and the hydrogen molecule without
introducing any density-functional approximations.

In comparison with the RS-based perturbation theory, the GL-based perturbation
theory gives much more accurate excitation energies for the Rydberg states of the
helium atom but similar excitation energies for the valence states of the beryllium
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Figure 3. Zeroth-order excitation energies AEY = £ — £ (plain line) and zeroth+first order excitation

energies AE:’«HU = E}‘:’(OJFI) — Eg’(OJrl) (dashed line) in the GL-based perturbation theory for the hydrogen
molecule at the equilibrium distance (top) and three times the equilibrium distance (bottom) as a function of
p. For comparison, the zeroth+first order excitation energies AE,?”F({DS_H) = Eﬁy}({os-‘rl) - Eg’ 7IELOS+1) (dotted line)
in the RS-based perturbation theory of Ref. [49] are also shown. The excitation energies of the physical system

AFEy = Ex — Ep are plotted as thin horizontal dot-dashed lines.

atom and of the hydrogen molecule. This can be rationalized by observing that the
Rydberg states are close to the ionization threshold and therefore sensitive to having
the correct ionization energy.

This first-order GL-based perturbation theory works reasonably well for calculating



the first valence excitation energies of the hydrogen molecule at its equilibrium dis-
tance. However, results are less satisfactory for the valence excitation energies of the
beryllium atom and stretched hydrogen molecule at small range-separation parameter.
For such systems, with small HOMO-LUMO gaps, it may be necessary to go beyond
single-reference first-order perturbation theory for small range-separated parameters.

One possible extension of this work would be to test density-functional approxima-
tions for the short-range exchange—correlation potential and approximations for the
wave-function part of the calculation and perform more extensive benchmarking with
a more practical implementation in a range-separated DFT code.
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