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Abstract

A key goal in quantum chemistry methods,
whether ab initio or otherwise, is to achieve
size consistency. In this manuscript we for-
mulate the related idea of “Casimir-Polder size
consistency” that manifests in long-range dis-
persion energetics. We show that local ap-
proximations in time-dependent density func-
tional theory dispersion energy calculations vio-
late the consistency condition because of incor-
rect treatment of highly non-local “xc kernel”
physics, by up to 10% in our tests on closed-
shell atoms.

Quantum chemical approaches and electronic
structure theories more generally aim to re-
produce the key energetic physics of electrons
with the goal of calculating energies for sys-
tems of interest. To a leading approxima-
tion two infinitely-separated quantum systems
should have an energy that is given by the sum
of the energies of the two components calcu-
lated separately – a feature known as size con-
sistency. Thus, quantum chemistry methods
are generally expected to reproduce this im-
portant property of quantum mechanics. Al-
though its violation is sometimes tolerated (see
e.g. Nooijen et al 1) for greater accuracy or
lower cost, it is nonetheless broadly accepted

that size consistency is an important goal in
method development as it captures a fundamen-
tal property of electronic systems.

The size consistency concept does not just ap-
ply at leading order, however. As two systems
A and B approach each other, additional terms
contribute to the energy, and these terms de-
pend on properties of the isolated individual
systems and the distance D between them. As
D →∞, the energy may thus be written as

EAB(D) ∼EA + EB + UAB(D). (1)

where the potential energy

UAB(D) ∼
∑
p≥1

−Cp[{LA}, {LB}]
Dp

(2)

depends in some factorizable way only on lo-
cal properties LXp of the isolated systems X =
A,B. Thus, e.g. for systems with net local
charges QA and QB, we have a leading term
UAB(D)→ QAQB/D (i.e C1 = −QAQB).

Dipoles and higher multipoles yield similar
expressions but with larger exponents p > 1 and
thus decay more rapidly. These static and mul-
tipolar contributions, including the static in-
duction energy, are present at the electrostatic
level and are properly included, via the Hartree
energy, in all size consistent quantum chemi-

1



cal approximations the authors could think of.
Note that induction is sometimes considered to
be a correlation effect. Here we consider it to
be an electostatic effect as it is present at the
self-consistent Hartree level, unlike dispersion.

The leading beyond-electrostatic term is the
attractive London dispersion (van der Waals)
potential UAB

disp(D) = −C6D
−6, which is also

the dominant asymptotic term for finite neu-
tral systems without a permanent dipole or
quadrupole. The coefficient,

C6,CP =

∫ ∞
0

dω

π
3αA(iω)αB(iω), (3)

is obtained using an expression known as the
Casimir-Polder formula2 that is in the general
form of (2). Eq. (3) can also be obtained by
calculating CAB

6,CP = − limD→∞D
6UAB

CP (D) from

UAB
CP =−

∫ ∞
0

dω

2π
Tr
[
χ̂Av̂ABχ̂B v̂BA

]
, (4)

sometimes called the generalized Casimir-
Polder formula3 which applies to more gen-
eral geometries. In this form it involves the
anistropic density-density imaginary-frequency
linear response functions χ̂A/B ≡ χ̂A/B(iω) of
the isolated systems, and the Coulomb poten-
tial v̂AB/BA between them. Here and hence-
forth, products ĜĤ =

∫
drG(r1, r)H(r, r2) in-

dicate convolutions over space variables and the
trace Tr[Ĝ] ≡

∫
G(r, r)dr is similarly defined.

Here the local variable LX ≡ αX(iω) =
−1

3
Tr[(xx′+yy′+ zz′)χ̂], from (2), is the spher-

ically averaged imaginary-frequency dipole po-
larizability of the system X and depends only
on properties of X calculated in isolation.
Eq. (3) has proved to be exceedingly useful in
practical calculations of dispersion forces,4–15

which have been attracting much interest lately
(see e.g. refs. [16–19] and references therein)
because of their increasingly recognised role in
the behaviour of multiple chemical and material
science processes.

Alternatively, we can adopt a direct route to
calculating dispersion energies. We recognise
that dispersion forces are a purely correlation
effect – that is, they are absent in the Hartree
and exchange energy terms which capture all

electrostatic effects, at least for closed shell sys-
tems. Thus, UAB

disp(D) = EAB
c (D)−EA

c −EB
c →

−C6/D
6, giving

C6,Ec =− lim
D→∞

D6
[
EAB

c (D)− EA
c − EB

c

]
(5)

where we calculate EAB
c for the combined sys-

tem AB separated at distance D. Thus, any
method that can calculate correlation energies
can be used to determine C6 coefficients.

B

A We separate interactions
into those within (solid
lines) and between
(dashes) subsystems
A (white) and B (wavy)

 

uAA

vAB

vBA

uBB

Figure 1: Interactions occur within (uAA, uBB)
and between (vAB, vBA) systems A and B.
Switching off vAB/vBA isolates the two systems.

This work now proceeds to formulate the idea
of size consistency of dispersion forces, called
“Casimir-Polder size consistency”.20 Then, it
will show how time-dependent density func-
tional theory21 approximations can violate
Casimir-Polder size consistency. Next, it will
give some examples illustrating the magnitude
of the effect. Finally, some conclusions will be
drawn and impact discussed.

Let us first define Casimir-Polder size consis-
tency. Equations (3) and (5) are obtainable
from first principles and thus should give the
same result, i.e. coefficients obtained from the
Casimir-Polder formula should be the same as
those obtained from direct energy calculations.
Thus any theory for which (3) equals (5) is
Casimir-Polder size consistent. Any approxi-
mation where they are different is not Casimir-
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Polder size consistent and violates a fundamen-
tal property of well-separated systems.

We shall now proceed to show that, in time-
dependent density functional theory (TDDFT)
calculations of dispersion energies with a local
exchange kernel, the two approaches give dif-
ferent results, and thus such theories are not
Casimir-Polder size consistent. Furthermore,
other high-level quantum chemical approaches
based on screened response formalisms are also
unlikely to be Casimir-Polder size consistent.
Such approaches are attracting interest22–29 be-
cause of their seamless inclusion of correlation
physics, ability to deal with metals and gapped
systems, and moderate cost. Any inconsisten-
cies highlight a formal weakness of such ap-
proaches.

TDDFT offers two routes to dispersion ener-
gies. Firstly, it can be used to calculate dipole
polarizabilities for use in the Casimir-Polder
formula [Eq. (3)], or the density-density lin-
ear response functions for (4). Secondly, it can
be used to obtain correlation energies by us-
ing the adiabatic connection formula30 and fluc-
tuation dissipation theorem (ACFD). Energies
thus obtained include dispersion forces seam-
lessly18,31,32 [through Eq. (5)], making ACFD
very useful for systems where dispersion com-
petes with other effects, in stark contrast to
semi-local theories which do not include any
long-range dispersion.

It thus serves as a go-to approach for at-
tacking dispersion calculations when beyond-
empirical accuracy is required, but when more
advanced quantum mechanical methods are in-
feasible. For example, TDDFT has been used
to calculate C6 coefficients of open shell atoms
and ions, giving good agreement with experi-
ment and more advanced methods.14,33 A grow-
ing number of researchers are using TDDFT
and ACFD for increasingly complex calcula-
tions18,25–29,34,35 that are not yet feasible in
wavefunction methods.

The ACFD correlation energy,

EACFD
c =−

∫ 1

0

dλ

∫ ∞
0

dω

2π
Tr
[
(χ̂λ − χ̂0)v̂

]
(6)

of an electronic system is given in terms of χ̂0,

the linear response of its density to changes in
the effective potential v̂s; and χ̂λ, the equiva-
lent linear response to an external potential at
variable electron-electron interaction strength
λ. Notably, χ̂1 is the response of the real system
to the external potential, and is the density-
density linear response used in (4).

The relationship between these response func-
tions is χ̂λ = χ̂0 + χ̂0[λ(v̂+ f̂x) + f̂c,λ]χ̂λ, where
all terms depend a priori on r, r′ and iω, ex-
cept for the Coulomb potential v̂ = 1/|r − r′|
which does not depend on iω. f̂x is the ex-
change kernel,24,36–41 which is usually approxi-
mated. Finally, the correlation kernel f̂c,λ

21 is

defined similarly to f̂x, but shall be assumed to
be zero throughout this manuscript.

We have so far kept the ACFD general. Let
us now consider specifically the AB system, and
introduce the “locality” assumption that occurs
in most TDDFT approximations, i.e. that the
exchange kernel is short-ranged in |r − r′| and
depends only on the properties of the local sys-
tem. We first partition space, as illustrated
in Figure 1, between systems A and B to de-
fine û =

∑
X=A,B(v̂XX + f̂XXx ) ≡ ûAA + ûBB,

ûH =
∑

X=A,B v̂
XX and ŵ = v̂AB + v̂BA.

Here û captures all intra-system interactions
from both the Coulomb v̂XX (corresponding
to ûH) and exchange kernel f̂XXx terms, where
f̂XXx depends on properties of system X only.
ŵ includes just the long-ranged inter-system
Coulomb interactions v̂AB/v̂BA and thus con-
tains all dependencies on D. Then, we write
the bare response χ̂0 = χ̂A0 + χ̂B0 as a sum of
subsystem responses χ̂X0 calculated in isolation.

Note that for our present purposes we can
now see that TDDFT offers a conceptual ad-
vantage over wavefunction methods: both the
Casimir-Polder formula and the ACFD expres-
sion are well-defined for any given kernel. Thus
we can unequivocally talk about a subsystem
calculation of the polarizability, and a correla-
tion energy calcuation of the supersystem, at
the same level of theory i.e. for a given kernel
approximation.

Now that the details of the different response
functions and interactions have been estab-
lished, we shall next proceed to show that co-
efficients calculated using Eq. (3) [via (4)] are
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Table 1: C6 coefficients calculated using ALDAx in Eqs. (3) and (5). ∆C6 quantifies the Casimir-
Polder size consistency violation.

He Be Ne Mg Ar Ca Zn Kr
Eq. (3) 1.39 260 5.62 695 63.7 2420 349 132
Eq. (5) 1.37 235 5.59 635 63.0 2170 332 130
∆C6 1.0% 9.5% 0.5% 8.6% 1.1% 10.5% 4.9% 1.3%

inconsistent with coefficients obtained from (5)
[via (6)] in a common class of approximations,
which thus lack Casimir-Polder size consistency.

With the assumptions described above, the
TDDFT equation for the response χ̂λγ of the
combined system, with intra-system interac-
tion strength λ and inter-system interaction
strength γ, is

χ̂λγ =χ̂00 + χ̂00(λû+ γŵ)χ̂λγ , (7)

where the bare response is χ̂00 ≡ χ̂0 = χ̂A0 + χ̂B0 .
Let us start with λ = γ = 0 and first switch
on the intra-system interaction λ while keeping
γ = 0 (equivalent to D → ∞), to obtain the
isolated system response χ̂λ0 = χ̂Aλ0 + χ̂Bλ0 =∑

X [1− λχ̂X00ûX ]−1χ̂X00 from

χ̂λ0 =χ̂00 + λχ̂00ûχ̂λ0 . (8)

Then we switch on the inter-system interaction
γ to obtain

χ̂λγ =χ̂λ0 + γχ̂λ0ŵχ̂λγ . (9)

It is readily verified that (7) is reproduced by
substituting the solution of (8) into (9).

Next we use (6) to write

UAB =EAB
c − EA

c − EB
c = −

∫ ∞
0

dω

2π

∫ 1

0

dλΘλ ,

where the equivalence between γ = 0 and D →
∞ gives Θλ = Tr[χ̂λγ(ûH + ŵ)− χ̂λ0ûH]γ=λ. It-
eration of (9) to second order in γ (since inter-
system interactions ŵ are small) then gives
χ̂λγ ≈ χ̂λ0 + γχ̂λ0ŵχ̂λ0 + γ2χ̂λ0ŵχ̂λ0ŵχ̂λ0, and

Θλ =Tr
[
λχ̂λ0ŵχ̂λ0ŵ + λ2χ̂λ0ŵχ̂λ0ŵχ̂λ0ûH

]
(10)

to leading order. Here we dropped terms in-

volving odd powers of ŵ as these are exactly
zero in the trace.

Let us now digress from the general for-
mula to consider the direct random-phase ap-
proximation (dRPA) which is the most pop-
ular, albeit flawed, approach to the seam-
less calculation of molecular and material
properties using ACFD.18,35,42–47 The dRPA
consists of totally neglecting the exchange-
correlation kernel (fxc = 0), giving û =
v̂AA + v̂BB ≡ ûH. Taking the total deriva-
tive of (8) gives ∂λχ̂λ0 = χ̂λ0ûHχ̂λ0 so that
(10) becomes ΘdRPA

λ = 1
2
∂λTr

[
λ2χ̂λ0ŵχ̂λ0ŵ

]
=

∂λ(λ
2Tr[χ̂Aλ0ŵ

ABχ̂Bλ0ŵ
BA]), since ŵ cannot cou-

ple points in the same subsystem. The occur-
rence of a perfect λ derivative can be derived
as follows: i) recognise that the explicit O(λ)
term can be expanded as λTr[χ̂Aλ0ŵ

ABχ̂Bλ0ŵ
BA+

B ⇔ A] = 2λTr[χ̂Aλ0ŵ
ABχ̂Bλ0ŵ

BA]; ii) then use
∂λχ̂

X
λ0 = χ̂Xλ0v̂

XX χ̂Xλ0 in the explicit O(λ2)
term to get λ2Tr[χ̂Aλ0ŵ

ABχ̂Bλ0v̂
BBχ̂Bλ0ŵ

BA +
B ⇔ A] = λ2Tr[χ̂Aλ0ŵ

AB[∂λχ̂
B
λ0]ŵ

BA + B ⇔ A],
which can be written using the cyclic proper-
ties of the trace as λ2∂λTr[χ̂Aλ0ŵ

ABχ̂Bλ0ŵ
BA];

iii) add the two terms to get ΘdRPA
λ =

∂λ(λ
2Tr[χ̂Aλ0ŵ

ABχ̂Bλ0ŵ
BA]), as desired.

Integrating over λ then gives,48

UAB
dRPA =−

∫ ∞
0

dω

2π
Tr
[
χ̂AdRPAv̂

ABχ̂BdRPAv̂
BA
]
,

(11)

to second order in ŵ, which is Eq. (4) calcu-
lated using χ̂XdRPA ≡ [1 − χ̂X00v̂

XX ]−1χ̂X00, the
dRPA response of the isolated system with full-
strength (λ = 1) internal Coulomb interaction
v̂XX . Thus the energy calculated using the
dRPA on the total system [Eq. (5)] is the same
as that calculated using the Casimir-Polder for-
mula [Eq. (11) or (3)] with the dRPA response
functions. The dRPA is Casimir-Polder size
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consistent.20

However, the dRPA is crude and relies on
a cancellation of short-range errors32 for its
successes. Thus, work is ongoing to im-
prove on the dRPA by modelling the ker-
nel.22–29 Let us now consider an exchange
term fx in our intra-system interactions to
get û = ûH + f̂x. Now, ∂λχ̂λ0 = χ̂λ0(ûH +
f̂x)χ̂λ0 and we get Θx

λ = 1
2
∂λTr

[
λ2χ̂λ0ŵχ̂λ0w

]
−

λ2Tr
[
χ̂λ0ŵχ̂λ0wχ̂λ0f̂x

]
via a similar set of steps

exhibited above for the dRPA.
Thus, in contrast to the dRPA, local TDDFT

theories have an additional term Θλ that can-
not be written as a derivative. After integra-
tion, the derivative term gives the expected
Casimir-Polder formula of Eq. (3) calculated
with the appropriate response χ̂x

10 = [1 −
χ̂00(ûH + f̂x)]

−1χ̂00 including the exchange ker-
nel. The other term thus quantifies the viola-
tion of Casimir-Polder size consistency by the
approximation, which we can express as

∆UAB
x =

∫ ∞
0

dω

2π

∫ 1

0

dλλ2
∑

X=A,B

× Tr
[
χ̂Xλ0v̂

XY χ̂Yλ0f̂
Y Y
x χ̂Yλ0v̂

Y X
]
, (12)

where Y 6= X indicates the other system.
Eq. (12) represents the key theoretical result

of this work, either directly or via its contri-
bution ∆Cx

6 = − limD→∞D
6∆UAB

x (D) to the
C6 coefficient. It illustrates that ACFD meth-
ods with beyond-Coulomb kernels acting within
systems A or B, but only Coulomb interactions
acting between systems A and B can give rise
to a difference in energies calculated using the
Casimir-Polder formula versus a full correlation
energy calculation of the AB system. Such ap-
proaches are not Casimir-Polder size consistent
and thus violate a fundamental quantum me-
chanical constraint.

We now investigate the magnitude of Eq. (12)
on a selection of atomic systems using an adia-
batic local density approximation49 for the ex-
change kernel only (ALDAx). Thus, fx(r, r

′) ≡
δ(r − r′)fALDA

x (n(r)) where fALDA
x (n) is the

second-order derivative of the exchange energy
density of the homogeneous electron gas with
respect to the density n. This kernel is cho-

sen not for its accuracy, but because it, like all
semi-local kernels, is obviously consistent with
the assumptions we made about ûXX depending
only on properties of system X, and ŵ neglect-
ing kernel terms entirely.

It is worth noting that the local kernel used
here produces a divergent on-top correlation
hole but a finite correlation energy. Our gen-
eral form (12) is not restricted to such local
kernels and can accommodate more accurate
short-range physics. The size-consistency issue
is related to the long-range physics, however,
and is unlikely to be systematically improved
through better short-range physics.

Table 1 reports C6 values calculated (see
Gould and Bučko14 for numerical details) us-
ing Eqs. (3) and (5) within ALDAx, and shows
the difference as a percent. In some cases the
difference between the C6 coefficients derived
from the Casimir-Polder formula and the en-
ergy of the system as a whole is substantial.
For the highly polarizable alkaline earth metals
it can be as much as 10% of the total coefficient,
a difference similar to the predicted accuracy of
TDDFT-derived coefficients.14 By contrast, for
noble gases the difference is ∼ 1%, similar to
numerical errors.

In conclusion, we have shown that local ap-
proximations to TDDFT kernels violate a con-
straint we call “Casimir-Polder size consis-
tency”, because the dispersion C6 coefficient
calculated from properties of the two systems
A and B [Eq. (3)] differs from that calculated,
within the same approximations, from the two
systems studied together [Eq. (5)]. This re-
sult is inconsistent with ideas of separability
as manifested in Eqs. (1) and (2). In the
worst cases tested here, alkaline earth atoms,
we find significant deviations of ∼ 10% using
an exchange-only adiabatic local density ap-
proximation. Worryingly, the deviation seems
to affect the most polarizable atoms the most,
suggesting its importance is amplified in the
very systems where dispersion contributes most
greatly to energetics.

Generalization of our results suggests that
even sophisticated “local” correlation kernels
(e.g. rALDA25) cannot resolve the issue.
We believe that similar problems will mani-
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fest in some time-dependent generalized Kohn-
Sham schemes involving four-point kernels, al-
though notably it was observed by Szabo and
Ostlund50 that a variant of RPA with a non-
local Hartree-Fock exchange kernel is Casimir-
Polder size consistent (see also the discussion
in Ref. 51). Work is ongoing to elucidate more
general cases, including important wavefunc-
tion methods.

Caution is thus advised when comparing long-
range forces calculated using polarizabilities, or
via systems as a whole. Such approaches in-
clude range-separated approaches.51–55 Guaran-
teeing Casimir-Polder size consistency should
be a goal for new kernel approximations.3 Sim-
ilarly, one might look for response models that
can reproduce by construction quantum chemi-
cal theories of supersystems and thus automat-
ically avoid Casimir-Polder size consistency is-
sues.
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