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C.M. Hull,a D. Israëlb,c and A. Sartid

aThe Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, U.K.
bLPTHE, UMR 7589, Sorbonne Universités, UPMC Univ. Paris 06,

4 place Jussieu, Paris, France
cCNRS, UMR 7589, LPTHE,

F-75005, Paris, France
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2.2 Berglund-Hübsch mirror symmetry 8

2.3 Non-symplectic automorphisms of prime order 10

3 Non-geometric automorphisms of K3 sigma-models 15

3.1 Mirrored automorphisms and isometries of the Γ4,20 lattice 15

3.2 Symmetries of Landau-Ginzburg mirror pairs 18

3.3 Worldsheet construction of non-geometric backgrounds: summary 21

4 N = 4 gauged supergravity from duality twists 22

4.1 Twisted reduction on T 2 23

4.2 Aspects of the low-energy N = 2 theory 29

4.2.1 Massless multiplets 29

4.2.2 Massive multiplets 30

4.2.3 Accidental massless multiplets 30

4.2.4 Further accidental massless multiplets from KK modes 31

5 Compactifications with non-geometric monodromies 32

5.1 Gravitini masses and supersymmetry 34

5.2 Moduli space 35

6 Conclusion 37

A Explicit lattice computations 38

1 Introduction

Geometric compactifications constitute only a subset of string backgrounds and have in-

teresting generalisations to non-geometric backgrounds. Examples arise from spaces with

local fibrations that have transition functions that include stringy duality symmetries.

Spaces with torus fibrations and T-duality or U-duality transition functions are T-folds or

U-folds [1], while those with Calabi-Yau fibrations and mirror symmetry transition func-

tions are mirror-folds [1]. Such non-geometric spaces often have fewer moduli than their

geometric counterparts, and the non-geometry typically breaks some of the symmetries,

including supersymmetries, and provide an interesting tool for probing quantum geome-

try. Solvable worldsheet conformal field theories (CFT’s) such as asymmetric orbifolds can
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arise at special points in the moduli space of a non-geometric background [2], allowing a

complete analysis and important checks on general arguments.

Our focus here will be on mirror-folds of the type IIA superstring constructed from K3

bundles over T 2 with transition functions involving the mirror involution of the K3 surface.

Previously Kawai et Sugawara have considered in [3] K3 mirror-folds with monodromies

that, at least when the fiber is compact, break all supersymmetry; in the present work, we

consider in contrast monodromies that preserve 8 supersymmetries, i.e. which preserve a

quarter of the 32 supersymmetries of the type IIA string, or a half of the 16 supersymmetries

of type IIA compactified on K3. As a result, we find interesting mirror-folds which give

D = 4, N = 2 Minkowski vacua of type IIA superstring theory. As we shall see, particular

examples give precisely the STU model of [4] at low energies.

Our constructions can be viewed as particular cases of reductions with a duality

twist [2]. In such a construction, a theory in D dimensions with discrete duality symmetry

G(Z) (e.g. T-duality or U-duality) is compactified on a d-torus with a G(Z) monodromy

around each of the d circles, giving a string-theory generalization of Scherk-Schwarz re-

duction [5]. In many cases, the theory in D dimensions has an action of the continuous

group G which is a symmetry of the low energy physics, but which is broken to a discrete

subgroup in the full string theory. For a field φ transforming under G as φ 7→ gφ the ansatz

is of the form

φ(xµ, yi) = g(y)φ̂(x) (1.1)

where yi, i = 1, . . . , d, are coordinates on T d and xµ, µ = 0, . . . , D−d−1, are the remaining

coordinates. With periodicities yi ∼ yi + 2πRi, the mondromies g(yi)
−1g(yi + 2πRi) must

be in G(Z) for each i.

Of particular interest are the special cases in which there are points in the moduli space

inD dimensions that happen to be fixed under the action of the monodromies. For example,

consider a theory where the moduli space in D dimensions contains the moduli space for

a 2-torus, i.e. SL(2,R)/U(1), identified under the action of the discrete group SL(2,Z).

There are special points in the moduli space which are invariant under finite subgroups of

SL(2,Z) isomorphic to Zr for r = 2, 3, 4, 6. If one considers reductions on a circle where the

monodromy is in one of these Zr subgroups, then at any point in the moduli space invariant

under the action of the monodromy, the reduction with a duality twist can be viewed as a

Zr orbifold by a Zr twist together with a shift around the circle by 2πR/r [2]. From the

effective field theory point of view, the moduli give scalar fields in D − 1 dimensions and

the reduction gives a potential for these fields. At each fixed point in moduli space (i.e. at

each point that is preserved by the monodromy) the potential has a minimum at which it

vanishes, giving a Minkowski compactification [2]. In these cases, at the special points in

moduli space there is both a stringy orbifold construction and a supergravity construction,

giving complementary pictures of the same reduction. This extends to a reduction on T d

to D − d dimensions with a duality twist on each of the d circles. The question of finding

reductions giving Minkowski space in D− d dimensions becomes related to that of finding

fixed points in moduli space preserved by a subgroup of G(Z).
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Our starting point will be the theory in six dimensions obtained from compactifying

IIA string theory on a K3 surface. The moduli space of metrics and B-fields on K3 gives

the moduli space of K3 CFT’s and is given by [6, 7]

O(4, 20)

O(4)×O(20)
,

identified under the discrete subgroup O(Γ4,20) ⊂ O(4, 20) preserving the lattice Γ4,20,

which is the lattice of total cohomology of the K3 surface as well as the lattice of D-

brane charges in type IIA. O(Γ4,20) is the perturbative duality group of two-dimensional

conformal field theories with K3 target spaces, which includes mirror symmetries. We then

reduce to four dimensions on T 2 with an O(Γ4,20) twist around each circle. Generically,

such reductions break all supersymmetry; we will focus here on a class of monodromies

admitting N = 2 vacua in four dimensions. From the string theory point of view, we

will find them by considering points in the moduli space of sigma-models with K3 target

spaces that are preserved by finite subgroups of O(Γ4,20), and taking orbifolds by such

automorphisms combined with shifts on the circles.

The particular automorphisms of K3 CFTs that we will use are inspired by a world-

sheet construction of asymmetric Gepner models presented in [8, 9], following earlier

works [10, 11] (see [12, 13] for later generalizations). They preserve only space-time su-

percharges from the worldsheet left-movers, and the asymmetry means that they are non-

geometric in general.

From the supergravity point of view, the conventional reduction on T 2 without twists

gives N = 4 supergravity coupled to twenty-two N = 4 abelian vector multiplets. The

twisted reduction gives a gauged version of this supergravity with a non-abelian gauge

group and a scalar potential. Vacua arise from minima of the potential, and of particular

interest are theories with non-negative potentials and minima that give zero vacuum energy

and a Minkowski vacuum. Our construction gives string theory compactifications whose

supergravity limits are of this type, and moreover preserve N = 2 supersymmetry.

The relation between the asymmetric Gepner models that underlie these compactifica-

tions and gauged supergravities was suggested by one of the authors in [8] and explored by

Blumenhagen et al. in [12] for a related but distinct class of models. In that work they con-

sidered quotients of Calabi-Yau compactifications by non-geometric automorphisms, rather

than the freely-acting quotients involving torus shifts giving rise to fibrations over tori that

we consider here. In the freely-acting quotient, the scale of (spontaneous) space-time su-

persymmetry breaking can be made arbitrarily small rather than being tied to the string

scale as it would be for quotients with fixed points. This means that for our constructions,

the gauged supergravity approach gives a good description of the low-energy physics. We

will identify the gauging directly from geometric considerations (rather than from iden-

tifying the massless spectra of the four-dimensional theories) and analyse the worldsheet

constructions of K3 mirror-folds with N = 2 supersymmetry from an algebraic geometry

viewpoint. This approach will provide a powerful mathematical framework – that applies

to Calabi-Yau three-folds as well – and give an explicit construction of the low-energy

four-dimensional gauged supergravity.
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We consider algebraic K3 surfaces defined as (the minimal resolution of) the zero-loci

of quasi-homogeneous polynomials in weighted projective spaces Pw1,...,wn . These surfaces

are characterized in particular by their Picard number ρ, the rank of their Picard lattice

S (X) = H2(X,Z) ∩H(1,1)(X) where 1 6 ρ 6 20. For the algebraic K3 surfaces of fixed ρ,

the moduli space of CFTs factorizes into

O(2, 20− ρ)

O(2)×O(20− ρ)
× O(2, ρ)

O(2)×O(ρ)
(1.2)

identified under a discrete subgroup, as we will review in section 2. The first factor is

interpreted as the complex structure moduli space of the algebraic surface and the second

as the complex Kähler moduli space.

The definition of mirror symmetry for K3 surfaces is more subtle than for Calabi-Yau

three-folds, as K3 is a hyperkähler manifold. For algebraic K3 surfaces, the notion of

lattice-polarized mirror symmetry (LP-mirror symmetry) was introduced around 40 years

ago by Pinkham [14] and independently by Dolgachev and Nikulin [15–17]; see the ar-

ticle by Dolgachev [18] for an introduction. In the special case considered by Aspinwall

and Morrison [7], this amounts to an O(Γ4,20) transformation that maps a K3 surface

of Picard number ρ to one with Picard number 20 − ρ, interchanging the two factors in

eq. (1.2). Another notion of mirror symmetry, perhaps more familiar to physicists, is the

Berglund-Hübsch construction [19] (BH mirror symmetry), generalizing the Greene-Plesser

construction of mirror Gepner models [20] to generic Landau-Ginzburg models with non-

degenerate invertible polynomials. These two constructions (BH and LP mirror symmetry)

overlap but do not always agree.

A key ingredient to reconcile these two approaches to K3 mirror symmetry, which will

also play a central role in the present study of non-geometric automorphisms, is to consider

non-symplectic automorphisms [21], which are automorphisms of the surface acting on the

holomorphic two-form ω as σ ⋆
p : ω 7→ ζp ω, where e.g. ζp = exp 2iπ/p. As we will review in

section 2, at least when p is a prime number, the lattice-polarized mirror symmetry w.r.t.

the invariant sublattice associated with the action of σp, coincides with the Berglund-

Hübsch mirror symmetry [22, 23]. An important corollary that we will obtain is that the

automorphism σp of the surface on the one-hand and the corresponding automorphism σT
p

of the (Berglund-Hübsch) mirror surface on the other hand act on sub-lattices of Γ4,20 that

are orthogonal to each other, denoted respectively T (σp) and T (σT
p ). It is expected that a

similar statement is true for automorphisms of non prime order, and we expect the physics

to work out in a similar fashion for such cases as well.

The non-geometric automorphisms of K3 CFTs that we study in this work correspond

each to an O(Γ4,20) transformation induced by a block-diagonal isometry in O(T (σp) ⊕
T (σp)), the first block giving the isometry associated with the action of the automorphism

σp on the K3 surface, and the second block giving the isometry associated with the action

of the automorphism σT
p on the mirror K3 surface. These isometries of the lattice Γ4,20 can

be thought of as mirrored automorphisms of K3 CFTs of order p. They can be decomposed

as follows:

σ̂p := µ−1 ◦ σT
p ◦ µ ◦ σp , (1.3)
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where µ denotes the Berglund-Hübsch/lattice mirror involution. Here σp is an order p large

diffeomorphism of K3, µ maps the K3 to its mirror, σT
p is an order p large diffeomorphism

of the mirror K3, and µ−1 maps the mirror K3 back to the original one.

Taking the quotient by two such automorphisms combined with shifts on the two

one-cycles of a two-torus, at special points in the K3 moduli space fixed under the two

automorphisms, gives the asymmetric Gepner models of [8]. We extend this construction

to all points in moduli space using a reduction with duality twists. It is in general a

difficult problem to find O(Γ4,20) transformations that have fixed points in the K3 moduli

space and so can lead to Minkowski vacua. We will show in section 3 that the fixed

points of the monodromies that we consider correspond indeed precisely to the Gepner

model construction of [8] on the worldsheet (which are Landau-Ginzburg points in the

moduli space of K3 CFTs with enhanced discrete symmetry) and lead to four-dimensional

theories with N = 2 Minkowski vacua.

The type IIA string theory compactified on K3 is non-perturbatively dual to the het-

erotic string compactified on T 4 [24]. The duality symmetry group O(Γ4,20) acts on the

heterotic side through isometries of the Narain lattice, containing T-duality transforma-

tions as well as diffeomorphisms and shifts of the B-field, and is often referred to as the

heterotic T-duality group. The reduction from 6-dimensions on T 2 with O(Γ4,20) mon-

odromies round each circle provides twisted reductions of precisely the type introduced

and studied in [2]. These reductions can be regarded in general as T-fold reductions of the

heterotic string, with transition functions involving the T-duality group O(Γ4,20) [1]. At

the special points of the moduli space that are fixed-points of the twists, the construction

reduces to a reduction of asymmetric orbifold type, with a quotient by elements of the

T-duality group O(Γ4,20) combined with shifts on T 2 [2]. Then the type IIA K3 mirror-

folds are dual to heterotic T-folds, and at special points in the moduli space these become

type IIA Gepner-type models and heterotic models of asymmetric orbifold type. Finding

automorphisms with interesting fixed points is in general a difficult problem; the novelty

here is that algebraic geometry leads us to a very interesting class of automorphisms that,

when used in either the type IIA or the heterotic description, gives a rich class of models

with N = 2 supersymmetry.

This work is organized as follows. The first half of the paper, up to subsection 3.2,

is more algebraic-geometry oriented while the rest of the article deals with the physical

aspects. In detail, section 2 provides the necessary mathematical background about K3

surfaces, mirror symmetry and K3 automorphisms and section 3 presents the mirrored

automorphisms of mirror pairs of K3 surfaces and their relation with asymmetric Gepner

model constructions. In section 4, we will consider the Scherk-Schwarz compactification of

the 6-dimensional supergravity corresponding to type IIA compactified on K3 to obtain

a four-dimensional gauged N = 4 supergravity. We show that for suitable choices of the

twists, two gravitini become massive and two remain massless, giving vacua preserving

N = 2 supersymmetry. In the final section, we will translate the O(Γ4,20) monodromies

defined in section 3 into the gauged supergravity framework, and obtain the moduli space

of the low-energy theory.
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2 Mathematical background

The moduli space of two-dimensional conformal field theories defined by quantizing non-

linear sigma models on K3 surfaces is given by [6, 7]:

MΣ
∼= O(Γ4,20)\O(4, 20)/O(4)×O(20) , (2.1)

where O(Γ4,20) is the isometry group of the even and unimodular (i.e. self-dual) lattice

Γ4,20 of signature (4, 20):

Γ4,20
∼= Γ3,19 ⊕ U , (2.2)

and Γ3,19 is the K3 lattice

Γ3,19
∼= E8 ⊕ E8 ⊕ U ⊕ U ⊕ U , (2.3)

which is isometric to the second cohomology group H2(X,Z) of a K3 surface X endowed

with its cup product. Here U is the even unimodular lattice of signature (1, 1) and E8 is

the even unimodular lattice of signature (0, 8) associated with the Dynkin diagram E8.

Automorphisms of K3 CFT’s correspond to isometries of the Γ4,20 lattice. The geo-

metric automorphisms of the surface form a subgroup O(Γ3,19) ⋉ Z3,19 ⊂ O(Γ4,20), gener-

ated by large diffeomorphisms of the surface in O(Γ3,19) ⊂ O(Γ4,20) and transformations

Z3,19 corresponding to shifts of the B-field by representatives of integral cohomolgy classes.

Isometries that are not in O(Γ3,19)⋉ Z3,19 are ‘non-geometric’.

An important sublattice of the K3 lattice Γ3,19 of a K3 surface X is the Picard lattice1

which is defined to be:

S (X) = H2(X,Z) ∩H(1,1)(X) . (2.4)

The rank of this lattice (i.e. the rank of the corresponding Abelian group) ρ(X), or Picard

number, is at least one for any algebraic K3 surface, and its signature is (1, ρ − 1). The

transcendental lattice T (X) of an algebraic K3 surface X is defined to be the sub-lattice

of H2(X,Z) ∼= Γ3,19 orthogonal to the Picard lattice:

T (X) = H2(X,Z) ∩ S (X)⊥ →֒ Γ3,19 . (2.5)

This lattice has signature (2, 20− ρ).

For sigma-model CFTs on algebraic K3 surfaces, the Picard lattice can be enlarged to

the ‘quantum Picard lattice’:

SQ(X) ∼= S (X)⊕ U . (2.6)

with signature (2, ρ). The transcendental lattice can also be viewed as the orthogonal

complement of the quantum Picard lattice, i.e. T (X) = Γ4,20∩SQ(X)⊥. The moduli space

of non-linear sigma-model CFTs on algebraic K3 surfaces with a Picard lattice of Picard

number ρ then factorizes as [7]:

Mρ
Σ
∼= O(T (X))\O(2, 20−ρ)/(O(2)×O(20−ρ)) × O(SQ(X))\O(2, ρ)/(O(2)×O(ρ)). (2.7)

1The Picard group or Picard lattice is generated by algebraic curves of the surface, i.e. curves that are

holomorphically embedded in X.
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One may think of the first factor as corresponding to the complex structure moduli space

and the second one to the complex Kähler moduli space.

Mirror symmetry of Calabi-Yau three-folds exchanges their Hodge numbers h2,1 and

h1,1, and exchanges the complex structure and complex Kähler moduli spaces. For K3 sur-

faces the situation is different since (i) all K3 surfaces are diffeomorphic to each other and

so have the same Hodge numbers and topology, and (ii) as these manifolds are hyperkähler,

the complex structure and complex Kähler moduli are not unambiguously defined. For al-

gebraic K3 surfaces there are two different notions of mirror symmetry that we will review

in turn below, and these will both play a role in the construction of the non-geometric

automorphisms we use in this paper.

2.1 Lattice-polarized mirror symmetry

A first notion of mirror symmetry of algebraic K3 surfaces is the lattice-polarized (LP)

mirror symmetry discussed by Dolgachev in [18] and introduced by Pinkham [14], Nikulin

and Dolgachev [15–17]. This construction uses the embedding of a given lattice M as a

sub-lattice of the Picard lattice, which should be primitive. A primitive embedding of a

lattice M into a lattice N , ι : M →֒ N , is such that, viewing N as an Abelian group and

ι(M) as a subgroup, the quotient N/ι(M) is a torsion-free Abelian group.2

Definition 1. Let M be an even lattice of rank t + 1 and signature (1, t), with t 6 18,

admitting a primitive embedding in the K3 lattice, ι : M →֒ Γ3,19. Assuming that its

orthogonal complement ι(M)⊥ ⊂ Γ3,19 admits a primitive embedding ι′ : U →֒ ι(M)⊥,

the mirror lattice M∨ to M of rank 19− t and signature (1, 18− t) is defined through the

decomposition

ι(M)⊥ = ι′(U)⊕M∨ . (2.8)

If there exists a primitive embedding  : M →֒ S(X) of M in the Picard lattice of an

algebraic K3 surface X, then we say that X is an M -polarized K3 surface. Then two K3

surfaces X and X∨ form a lattice mirror pair if X is M -polarized and X∨ is M∨-polarized

with M∨ the mirror lattice to M .

In other words, the LP mirror construction associates each M -polarized K3 surface

with an M∨-polarized K3 surface, with rk (M∨) = 20 − rk (M). The moduli space of the

family of M -polarized K3 surfaces and the moduli space of the family of M∨-polarized K3

surfaces are called LP mirror moduli spaces.

Example 1. The Aspinwall-Morrison construction of mirror symmetry [7] is a particular

instance of LP mirror symmetry. The authors considered an algebraic K3 surface X

polarized by the whole Picard lattice, i.e. with M embedded primitively as ι(M) = S(X).

One has then

S(X)⊥ = T (X) = ι′(U)⊕M∨ , (2.9)

2As a counter-example, if (e1, e2) is a basis of N , and if ι(M) is spanned by {e1 + e2, e1 − e2}, the

embedding ι : M →֒ N is not primitive as N/ι(M) ∼= Z2.

– 7 –
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and M∨ is the Picard lattice of the mirror surface. In other words, mirror symmetry is

defined as the map

X 7→ X∨ , (2.10)

where

T (X) = SQ(X∨), SQ(X) = T (X∨) , (2.11)

which exchanges the quantum Picard lattice and the transcendental lattice. Hence both

factors in (2.7) are exchanged under this involution, which can be viewed as exchanging

the complex structure and the complex Kähler moduli spaces of sigma-model CFTs on the

surface.

2.2 Berglund-Hübsch mirror symmetry

The second notion of mirror symmetry, Berglund-Hübsch (BH) mirror symmetry, is not

specific to K3 surfaces. It follows from the Greene-Plesser construction [20] of mirror

Gepner models [25] discovered in physics, exchanging the vector and axial R-currents of

the worldsheet (2, 2) superconformal field theories. It was generalized by Berglund and

Hübsch [19] and Krawitz [26]; later Chiodo and Ruan proved in [27] that it coincides with

cohomological mirror symmetry.

Let us consider a K3 surface realized as the minimal resolution of a hypersurface in a

weighted projective space P[w1w2w3w4] with gcd (w1, . . . , w4) = 1. A polynomial W : C4 →
C is quasi-homogeneous of degree d if

∀λ ∈ C∗ , W (λw1x1, . . . , λ
w4x4) = λdW (x1, . . . , x4) . (2.12)

It is non-degenerate if the origin x1 = · · · = x4 = 0 is the only critical point and if

the fractional weights w1/d, . . . , w4/d are uniquely determined by W . If furthermore the

number of monomials equals the number of variables the polynomial is said to be invertible.

By rescaling one can then put an invertible polynomial W in the form

W =
4∑

i=1

4∏

j=1

xj
aij , (2.13)

where the square matrix AW := (aij) is invertible. If
∑4

ℓ=1wℓ = d, the hypersurface

{W = 0} in P[w1w2w3w4] admits a minimal resolution XW which is a smooth K3 surface.

We denote by GW the Abelian group of all diagonal scaling transformations preserving

the polynomial W :

GW = {(µ1, . . . , µ4) ∈ (C⋆)4 | W (µ1x1, . . . µ4x4) = W (x1, . . . x4)} , (2.14)

and SLW its subgroup containing elements of the form

(µ1, . . . , µ4) =
(
e2iπg1 , . . . , e2iπg4

)
,

4∑

ℓ=1

gℓ ∈ Z , (2.15)
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which corresponds in physics to the group of supersymmetry-preserving symmetries. The

group GW always contains the element jW with (g1 = w1/d, . . . , g4 = w4/d) generating a

cyclic group JW of order d.

Let us consider a subgroup G ⊂ GW such that JW ⊆ G ⊆ SLW , and the quotient

group G̃ = G/JW . The minimal resolution of the orbifold XW /G̃, denoted XW,G, is also

a K3 surface, that we associate with the pair (W,G). In physics, an orbifold of a K3

sigma-model (or Landau-Ginzburg model) by a discrete group G satisfying the condition

JW ⊆ G ⊆ SLW preserves all space-time supersymmetry.

We now introduce the Berglund-Hübsch mirror symmetry, which follows in the physical

context from the isomorphism between the superconformal field theories associated with

a pair of Landau-Ginzburg orbifolds, generalizing the original Greene-Plesser construction

of mirror Gepner model orbifolds.

Definition 2. Let (W,G) be associated with the minimal resolution of XW /G̃, a smooth

K3 surface. The pair (W T , GT ) is obtained as follows:

• W T is specified by the matrix AWT := (AW )T .

• GT = {g ∈ GWT , gAWhT ∈ Z , ∀h ∈ G}.

The Berglund-Hübsch mirror surface of XW,G is then given by XWT ,GT , the minimal reso-

lution of the orbifold XWT /G̃T .

Here XWT is the surface W T (x̃1, . . . x̃4) = 0 and g = (g1, . . . , g4) is an automorphism

of XWT acting on the coordinates x̃ℓ as x̃ℓ 7→ exp (2πi gℓ) x̃
ℓ for ℓ = 1, 2, 3, 4 while h =

(h1, . . . , h4) specifies an automorphism of XW under which the coordinates scale as xℓ 7→
exp (2πi hℓ)x

ℓ. It is straightforward to check that, if the pair (W,G) is associated with

a smooth K3 surface obtained as the minimal resolution of XW /G̃, then the mirror pair

(W T , GT ) is associated with a smooth K3 surface obtained as the minimal resolution of

XWT /G̃T , as JWT ⊆ GT ⊆ SLWT .

Example 2. A Fermat-type K3 surface in a weighted projective space is defined by the

polynomial

W = x
d/w1

1 + x
d/w2

2 + x
d/w3

3 + x
d/w4

4 , (2.16)

where d = lcm (w1, . . . , w4). This polynomial is preserved by the symmetries under which

any of the coordinates scales as xℓ 7→ exp (2πiwℓ/d)x
ℓ and the other coordinates are

invariant. They generate the group of diagonal symmetries GW
∼= Zd/w1

×Zd/w2
×Zd/w3

×
Zd/w4

. Consider the case in which we choose the group G to be JW = 〈(w1/d, . . . , w4/d)〉.
Then G̃ is the trivial group and XW,G = XW . The mirror surface is characterized by the

same polynomial as W T = W , and the dual group GT is given by the elements

g = (g1, . . . , g4) ∈ GWT = GW

satisfying the condition

r
4∑

ℓ=1

gℓ ∈ Z , ∀r ∈ {0, . . . , d− 1} . (2.17)
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As gℓ = nℓ
wℓ

d for some integer nℓ, we get the condition

4∑

ℓ=1

wℓ

d
nℓ ∈ Z . (2.18)

This means that GT = SLW in this case.

2.3 Non-symplectic automorphisms of prime order

The two notions of mirror symmetry of algebraic K3 surfaces do not necessarily agree. In

particular, as was shown in [28], the LP mirror of a surface polarized by its whole Picard

lattice is not always identical to the BH mirror of the same surface. There exists nev-

ertheless a class of lattice-polarized mirror symmetries, in which the surface is polarized

by a sub-lattice of the Picard lattice, that gives the same results as the Berglund-Hübsch

construction, and that will be instrumental in our construction of non-geometric automor-

phisms.

Let us first define a non-symplectic automorphism of order p of a K3 surface X as a

diffeomorphism σp : X → X of the surface acting on the holomorphic two-form ω(X) as

σ ⋆
p : ω(X) 7→ ζp ω(X) , (2.19)

where ζp is a primitive p-th root of unity, i.e. such that ζp generates a cyclic group isomor-

phic to Z/pZ, e.g. ζp = exp(2iπ/p).3 If p is a prime number then it is straightforward to

see that 2 ≤ p ≤ 19 (see [21], Theorem 0.1).

The automorphism σp : X → X acts on 2-forms through σ ⋆
p . Let S(σp) be the sub-

lattice of H2(X,Z) invariant under the action of the isometry σ ⋆
p and T (σp) its orthogonal

complement. The rank of the lattice S(σp) will be denoted by ρp. As was shown by

Nikulin [21], the invariant sublattice S(σp) is a subset of the Picard lattice,

S(σp) ⊆ S(X) (2.20)

and both S(σp) and T (σp) are primitive sub-lattices of the K3 lattice. The following lemma

was also proved in [21]:

Lemma 1. Let σp be an order p non-symplectic automorphism of a K3 surface X. There

exists a positive integer q such that the action σ⋆
p on the vector space T (σp) ⊗ C can be

diagonalized as 


ζpIq 0 · · · · · · · · · 0

0
. . .

...
... ζnp Iq

...
...

. . . 0

0 · · · · · · · · · 0 ζp−1
p Iq




(2.21)

3These autormorphisms are often called in the literature purely non-symplectic but for simplicity well

call them just non-symplectic. When the order p is a primer number, as it is the case in the present work,

each non-symplectic automorphism is purely non-symplectic.
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where Iq is the identity matrix in q dimensions and all integers n ∈ {1, p − 1} with

gcd (n, p) = 1 appear once, i.e. all primitive p-roots of unity are eigenvalues and the corre-

sponding eigenspaces are all of dimension q.

Remark 1. From ([29], Proposition 9.3) and [21] the action of the non-symplectic auto-

morphism on the K3 lattice is unique up to conjugation with isometries.

We will consider a particular type of hypersurface in weighted projective space ad-

mitting a non-symplectic automorphism of prime order p, whose non-degenerate invertible

polynomial is of the form

W = x p
1 + f(x2, x3, x4) . (2.22)

We will call such surfaces p-cyclic, following [23]. They admit the obvious order p non-

symplectic automorphism σp : x1 7→ ζp x1. By construction, the BH mirror of a p-cyclic

surface has its defining polynomial of the form W T = x̃ p
1 + f̃(x̃2, x̃3, x̃4), therefore it also

admits an order p automorphism σ T
p : x̃ 7→ ζp x̃.

The following theorem was proved for p = 2 by Artebani et al. [22] and for p ∈
{3, 5, 7, 13} by Comparin et al. [23].4

Theorem 1. Let XW,G be a p-cyclic S(σp)-polarized K3 surface, where S(σp) ⊆ S(X) is

the sub-lattice of the Picard lattice invariant under the action of the non-symplectic auto-

morphism σp of prime order, with p ∈ {2, 3, 5, 7, 13}. Let XWT ,GT be its Berglund-Hübsch

mirror, polarized by the invariant sublattice S(σ T
p ) associated with the non-symplectic au-

tomorphism σ T
p . Then XW,G and XWT ,GT belong to mirror families of K3 surfaces in the

sense of lattice-polarized mirror symmetry.

We obtain from this theorem a simple corollary which will play an important role in

the construction of non-geometric compactifications. We first define the quantum invariant

sublattice as the orthogonal complement of T (σp) in the Γ4,20 lattice, namely

SQ(σp) ∼= S(σp)⊕ U , (2.23)

which has signature (2, ρp) with ρp 6 ρ(X). For a lattice L we denote by LR the real vector

space L⊗ R generated by its basis vectors.

Corollary 1. Let XW,G be a p-cyclic S(σp)-polarized K3 surface, where S(σp) is the in-

variant sublattice under the σp action, with p ∈ {2, 3, 5, 7, 13}. and XWT ,GT its LP mirror,

regarded as an S(σT
p )-polarized K3 surface, which is also its Berglund-Hübsch mirror fol-

lowing Theorem 1.

From the theorem we have T (σp) = S(σp)
⊥∩Γ3,19 = U ⊕S(σT

p ) and similarly T (σT
p ) =

S(σT
p )

⊥∩Γ3,19 = U⊕S(σp). Hence T (σ
T
p ) is the orthogonal complement5 of T (σp) in Γ4,20 :

T (σ T
p ) ∼= T (σp)

⊥ ∩ Γ4,20 . (2.24)

4As shown by Nikulin [21], K3 surfaces admitting non-symplectic automorphisms of prime order up to

p = 19 exist; however for the values p ∈ {11, 17, 19} one cannot present the surface in a p-cyclic form, as

was noticed in [23].
5The embedding of T (σp) may not be unique in Γ4,20 but we tacitly choose the embedding such that

T (σT
p ) is the orthogonal complement.
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We obtain then the orthogonal decomposition over R:

ΓR
4,20

∼= T (σT
p )

R ⊕ T (σp)
R . (2.25)

Example 3. In order to illustrate this general construction, we consider first the self-mirror

K3 surface X given by the hypersurface

w2 + x3 + y7 + z42 = 0 (2.26)

in the weighted projective space P[21,14,6,1]. It inherits the orbifold singularities of the

ambient space, and these should be minimally resolved in order to obtain a smooth K3

surface. This K3 surface admits a non–symplectic automorphism of order 42, acting on

z by

z 7→ e2iπ/42z

and leaving the other coordinates invariant. Then this implies, by ([21], Theorem 0.1), that

the rank of the transcendental lattice is a multiple of the Euler function of 42, which is 12.

Since the rank is necessarily less than 22, which is the rank of the K3 lattice, the rank is

necessarily equal to 12 and the rank of the Picard lattice is then 10. Interestingly, by [28]

the generic K3 surface in the weighted projective space P[21,14,6,1] has Picard lattice of rank

10, which is the same as the rank of the Picard lattice of the surface (2.26) of Fermat type.

The Picard lattice S(X) is isometric to a self dual lattice of signature (1, 9), which is

S(X) ∼= E8 ⊕ U . (2.27)

Thus this surface is its own mirror in the sense of Aspinwall-Morrison, as we have

SQ(X) ∼= T (X) ∼= E8 ⊕ U ⊕ U . (2.28)

The moduli space of complex structures associated with this surface corresponds to

the set of space-like two-planes in R3,19 orthogonal to the basis vectors of S(X), quotiented

by O(T (X)), the group of isometries of the transcendental lattice:

Mcs
∼= O(T (X))\O(2, 10)/O(2)×O(10) (2.29)

of real dimension 20.

The hypersurface (2.26) admits several non-symplectic automorphisms of prime order.

The hypersurface is p-cyclic for p = 2, 3, 7 and the corresponding automorphisms σ2, σ3, σ7
are of order 2, 3 and 7. Their action is

σ2 : w 7→ −w ,

σ3 : x 7→ e2iπ/3x ,

σ7 : y 7→ e2iπ/7y . (2.30)

In all cases, the invariant sublattice S(σp) ⊂ Γ3,19 is identified with the Picard lattice S(X)

(see [23, 29]), and SQ(σp) ∼= SQ(X). Its orthogonal complement in Γ4,20 is naturally the

transcendental lattice of the surface, hence T (σp) ∼= T (X).
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The action of σ3 on the transcendental lattice (2.28) of the surface (2.26) is given,

in the appropriate basis over C, by six copies of the companion matrix of the cyclotomic

polynomial Φ3 =
∏2

n=1(z − e2iπn/3), using Lemma 1.6

Recall that by Remark 1 the action can be given in a unique way on the transcendental

lattice. It splits into an action onto the U ⊕ U lattice and onto the E8 lattice. For U ⊕ U

we choose a lattice basis in which the lattice metric (or Gram matrix) is




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 .

The action of the isometry σ3 on U ⊕U is then given by the following matrix in O(U ⊕U):

MU⊕U
3 =




1 0 1 0

0 −2 0 3

−3 0 −2 0

0 −1 0 1


 . (2.31)

For the E8 lattice, choosing a lattice basis in which the lattice metric is

Est
8 :=




−2 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

0 0 1 −2 1 0 0 0

0 0 0 1 −2 1 1 0

0 0 0 0 1 −2 0 0

0 0 0 0 1 0 −2 1

0 0 0 0 0 0 1 −2




, (2.32)

the action of σ3 on E8 is given by the following matrix in O(E8):

ME8

3 :=




0 0 0 0 0 −1 1 −1

1 −1 1 −1 0 −1 2 −2

2 −1 1 −1 0 −1 2 −3

2 −1 2 −1 −1 −1 3 −4

3 −2 2 0 −2 −1 4 −5

2 −1 1 0 −1 −1 2 −2

2 −2 2 0 −1 −1 2 −3

1 −1 1 0 0 −1 1 −2




. (2.33)

6The companion matrix of a polynomial of the form P (x) = a0+a1x+ · · ·+an−1x
n−1+xn is the matrix

















0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 · · · 1 −a
n−1

















, whose characteristic polynomial is P .
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Likewise, the action of σ7 is given in the appropriate basis over C by two copies of the

companion matrix of the cyclotomic polynomial Φ7 =
∏6

n=1(z − e2iπn/7), and finally the

action of σ2 on T (X) is simply given by minus the identity matrix in twelve dimensions.

For this surface |SLW /JW | = 1 hence JWT = JW . Therefore, using either of the

non-symplectic automorphisms of prime order, one finds that the surface XW,JW is its own

Berglund-Hübsch mirror and, polarized by S(σp) ∼= S(X), is also its own mirror in the

sense of LP mirror symmetry.

Example 4. Let us consider the hypersurface

w 2 + x 3 + y 8 + z 24 = 0 (2.34)

in the weighted projective space P[12,8,3,1]. In this case |SLW /JW | = 2 and there are two

choices of G with JW ⊆ G ⊆ SLW , either G = JW or G = SLW . Berglund-Hübsch mirror

symmetry provides then the mirror pair (W,JW ) and (W,SLW ).

The surface defined by eq. (2.34) admits a non-symplectic automorphism of order 3

acting as σ3 : x 7→ e2iπ/3x, while keeping the other variables fixed. As was shown in [23],

the surface XW,JW is polarized by the invariant lattice S(σ3) = E6 ⊕ U and the transcen-

dental lattice is contained in the lattice T (σ3) = E8 ⊕ A2 ⊕ U ⊕ U . Then rankS(X) ≥ 8.

On the other hand, the surface also admits a non–symplectic automorphism of order 24

acting by z 7→ e2iπ/24z that gives (see Lemma 1) rankT (X) = 8 or 16. The second case

contradicts the previous inequality so that ρX = rankS(X) = 14.

It was shown in [23] that the S(σ3)-polarized XW,JW and the S(σT
3 )-polarized surface

XW,SLW
form a LP mirror pair. Indeed we have:

• For (W,JW ), the invariant sublattice is S(σ3) = E6⊕U while T (σ3) = E8⊕A2⊕U⊕U .

• For (W,SLW ), the invariant sublattice is S(σT
3 ) = E8 ⊕ A2 ⊕ U and T (σT

3 ) = E6 ⊕
U ⊕ U .

First, for the surface (W,JW ), the action of σ3 on T (σ3), is given as follows (by

Remark 1 the action is unique up to conjugation by isometries). On the A2 lattice, by

taking the lattice metric (Gram matrix)

Ast
2 :=

(
−2 1

1 −2

)
, (2.35)

one gets

MA2

3 :=

(
0 −1

1 −1

)
, (2.36)

while on E8⊕U ⊕U it is the same as for the previous surface, see equation (2.31). Second,

for the mirror surface (W,SLW ), the action of σT
3 on T (σT

3 ) is given as follows. On U ⊕U ,

it is given by the matrix MU⊕U
3 defined in (2.31) and on E6 the action is given by (see the
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appendix)

ME6

3 :=




0 −1 0 1 0 0

1 −1 −1 2 0 0

0 0 −2 3 0 0

0 0 −1 1 0 0

0 0 −1 2 0 −1

0 0 −1 1 1 −1




(2.37)

in a lattice basis in which the lattice metric is

Est
6 :=




−2 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 1 1 0

0 0 1 −2 0 0

0 0 1 0 −2 1

0 0 0 0 1 −2




.

The surface (2.34) admits also a non-symplectic automorphism of order 2, acting as

σ2 : w 7→ −w. Following [22], the invariant lattice of σ2 is of rank six and isometric

to S(σ2) ∼= D4 ⊕ U ⊂ T (X), hence T (σ2) ∼= E8 ⊕ D4 ⊕ U ⊕ U . The previous theorem

indicates that the S(σ2)-polarized surface XW,JW and the S(σT
2 )-polarized surface XW,SLW

form a LP mirror pair. One can check that (W,SLW ) admits an order two non-symplectic

automorphism σT
2 of the invariant lattice S(σT

2 )
∼= E8 ⊕D4 ⊕ U .

3 Non-geometric automorphisms of K3 sigma-models

In this section we define mirrored automorphisms of sigma-model CFTs with K3 target

spaces, combining the action of non-symplectic automorphisms of a surface and of its

mirror, and study the corresponding isometries of the lattice Γ4,20. This construction is

inspired by the non-geometric string theory compactifications that were obtained in [8] as

asymmetric orbifolds of Gepner models.

3.1 Mirrored automorphisms and isometries of the Γ4,20 lattice

We consider a p-cyclic K3-surface X, associated with a given non-symplectic automor-

phism σp of prime order. The BH mirror of this surface admits also a non-symplectic

automorphism σT
p of the same order; by the theorem 1, these two surfaces, polarized by

the invariant sublattices with respect to σp and σT
p respectively, are also LP mirrors. The

automorphism σp has an action on the vector space T (σp)
R while the automorphism σT

p

acts on the vector space T (σT
p )

R. By the corollary 1 these vector spaces are orthogonal to

each other in ΓR
4,20.

Inspired by physical considerations that will be illustrated in the next subsection, we

will consider a mirrored automorphism that combines σp and σT
p into a non-geometrical

automorphism σ̂p of the CFT defined by quantizing the non-linear sigma model with a

p-cyclic K3 surface target space. To prove that its action on the lattice Γ4,20 is well-defined

we will need the following proposition:
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Proposition 1. Let XW,G be a p-cyclic S(σp)-polarized K3 surface, where S(σp) is the

invariant sublattice under the σp action, with p prime, and XWT ,GT its LP mirror, regarded

as an S(σT
p )-polarized K3 surface.

Observe that Γ4,20 is an over-lattice of finite index7 of the lattice T (σT
p )⊕ T (σp), with

index given by | detT (σp)| = | detT (σT
p )|, where for a lattice L, detL is the determinant

of the lattice metric.

The equality of the determinants follows from the fact that the lattice Γ4,20 is unimodu-

lar (see [30], Corollary 2.6). By properties of K3 surfaces (see [21], Theorem 0.1 and [30],

Lemma 2.5) the automorphisms σp and σT
p act trivially on the discriminant groups of

T (σT
p ) and of T (σp) so that we can extend the diagonal action by σp and σT

p to the whole

lattice Γ4,20.

Corollary 1 and Proposition 1 allow us to define ‘mirrored automorphisms’ of CFTs

with p-cyclic K3 surfaces target spaces in the following way:

Definition 3. Let (XW,G, ) be a p-cyclic K3 surface polarized by the invariant sublattice

S(σp) and (XWT ,GT , T ), polarized by S(σ T
p ), its LP mirror, with p ∈ {2, 3, 5, 7, 13}.

By Corollary 1 and Proposition 1 the diagonal action by (σp, σ
T
p ) on the lattice T (σT

p )⊕
T (σp) can be extended to an isometry of the lattice Γ4,20, that we associate with the action

of a CFT automorphism denoted σ̂p, that we name mirrored automorphism.

The action of the mirrored automorphism σ̂p on the vector space ΓR
4,20

∼= T (σp)
R ⊕

T (σT
p )

R, is then given by

σ̂⋆
p

∣∣
T (σp)R

= σ⋆
p (3.1a)

σ̂⋆
p

∣∣
T (σT

p )R
= (σT

p )
⋆ (3.1b)

For other values of p, including the non-prime cases, the physical construction suggests

that similar non-geometric automorphisms acting as in eq. (3.1) can be defined. However

the mathematical classification of these automorphisms is not yet complete (see [31]).

The isometry of the lattice Γ4,20 induced by σ̂p is not in the geometric group O(Γ3,19)⋉

Z3,19 and so is non-geometrical. The automorphism σ̂p acts as

σ̂p := µ−1 ◦ σT
p ◦ µ ◦ σp , (3.2)

where µ denotes the BH/LP mirror involution which maps the K3 to its mirror; µ−1 maps

the mirror K3 back to the original one, σp is a diffeomporphism of the original K3 and σT
p

is a diffeomorphism of its mirror.

Due to Proposition 1 the lattice isometry induced by σ̂p generates the order p isometry

subgroup

O(σ̂p) := 〈σ̂ ⋆
p 〉 ⊂ O(Γ4,20) . (3.3)

7A lattice L is an over-lattice of a lattice M if M is a sub-lattice of L and if M has finite index [L : M ]

in L (viewing M as a sub-group of the Abelian group L), such that both lattices have the same rank. The

dual lattice M∨ of a lattice M is a free Z-module that contains M . The quotient M∨/M is called the

discriminant group of the lattice.
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Being of finite order, it is conjugate to a subgroup of the maximal compact subgroup

[
O(2)×O(20− ρp)

]
×
[
O(2)×O(ρp)

]
⊂ O(2, 20− ρp)×O(2, ρp)

Explicitly, the action of the non-geometric automorphism σ̂p on Γ4,20, hence on the

CFT with a K3 target space, is obtained by considering the geometrical action of σp on

T (σp) and, for the BH mirror surface, the action of σT
p on T (σT

p ). The lattice Γ4,20 is an

over-lattice of index pk := | detT (σp)|, k a non-negative integer, of the sum T (σp)⊕ T (σT
p )

(recall that T (σp) and T (σT
p ) are p-elementary lattices i.e. the discriminant groups are sums

(Z/pZ)⊕k, k as before). Then to construct Γ4,20 one should add to the generators of the

lattice T (σp)⊕ T (σT
p ) exactly k classes of the form (a+ b)/p with a/p in the discriminant

group of T (σp) and b/p in the discriminant group T (σT
p ), and we ask also that ((a+b)/k)2 ∈

Z. The action of the isometry (σp, σ
T
p ) on these classes is then obtained by linearity (over

the rationals). We get in this way a set of generators of Γ4,20 on which we have an isometry

σ̂p of order p which is induced by the isometry (σp, σ
T
p ) on T (σp)⊕T (σT

p ), i.e. the restriction

of σ̂p to that lattice is equal to (σp, σ
T
p ).

8

Given that, for any given p-cyclic K3 surface, all the relevant sublattices T (σp) and

T (σT
p ) have been tabulated in [22, 23], explicit forms of the Γ4,20 isometries can be deter-

mined from lattice theory for any given example, see e.g. [32]. The corresponding matrices

can be diagonalized on C according to Lemma 1 and are characterized respectively by a

set of rank(T (σp)) angles and a set of rank(T (σT
p )) angles; these angles will be discussed

further in the following sections.

Example 5. We consider the self-mirror surface (2.26) already discussed in example 3.

The action of the geometrical automorphism σ3 on the K3 lattice Γ3,19 has been described

there, see eqs. (2.31), (2.33). The lattice Γ4,20 admits an orthogonal decomposition into the

invariant quantum lattices SQ(σp) and SQ(σT
p ) – or equivalently into T (σT

p ) and T (σp) –

corresponding respectively to the quantum Picard lattice SQ(X) and the transcendental

lattice T (X) of this surface.

As the surface and its mirror are isomorphic to each other, it is straightforward to

define the action of the mirrored CFT automorphism σ̂3. It has a diagonal action on

Γ4,20
∼=

(
E8 ⊕ U ⊕ U

)
⊕
(
E8 ⊕ U ⊕ U

)
, (3.4)

duplicating the action of σ3 on the transcendental lattice that was studied in subsection 2.3.

The action of σ̂3 on the sigma-model CFT associated with the surface (2.26) is therefore

8To make the situation more clear we consider a concrete example. This is in fact a more general

situation in lattice theory. We consider the hyperbolic lattice U with generators e, f such that e2 = f2 = 0

and ef = 1. One can primitively embed the lattice 〈2〉 ⊕ 〈−2〉 into U by sending the two generators to

a := e + f and b := e − f , in this way the lattice 〈2〉 ⊕ 〈−2〉 has index two in U . One takes now the

isometric involution on 〈2〉 ⊕ 〈−2〉 which acts as ι := (id,− id). The discriminant group of 〈2〉, resp. 〈−2〉,

is generated by a/2, resp. b/2. One considers now the class w := (a+ b)/2, which has square w2 = 0 ∈ Z;

the lattice generated by a and (a+ b)/2 has determinant 1 and it is in fact isometric to U . To see this one

takes the generators w and v := (a− (a+ b))/2 = (a− b)/2 and the induced involution ι̂ acts exchanging v

and w; in particular it cannot be put in a diagonal form over Z.
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given by the block-diagonal 24× 24 integer matrix:

M̂3 :=




ME8

3 0 0 0

0 MU⊕U
3 0 0

0 0 ME8

3 0

0 0 0 MU⊕U
3


 ∈ O(Γ4,20) , (3.5)

where ME8

3 is given by eq. (2.33) and MU⊕U
3 by eq. (2.31).

Example 6. By considering the K3 surface given by equation (2.34) and its mirror we

have the orthogonal decomposition of the vector space ΓR
4,20:

ΓR
4,20

∼=
(
U ⊕ U ⊕ E6

)R

⊕
(
U ⊕ U ⊕A2 ⊕ E8

)R

. (3.6)

The action of σ̂3 is then induced from the block-diagonal 24× 24 integer matrix




MU⊕U
3 0 0 0 0

0 ME6

3 0 0 0

0 0 MU⊕U
3 0 0

0 0 0 MA2

3 0

0 0 0 0 ME8

3




∈ O
(
T (σp)⊕ T (σT

p )
)
. (3.7)

where the various matrices MU⊕U
3 , ME6

3 , MU⊕U
3 , MA2

3 and ME8

3 are given respectively in

eqs. (2.31), (2.33), (2.35), (2.37).

This matrix is an isometry of the lattice T (σp)⊕T (σT
p )

∼= U⊕U⊕E6⊕U⊕U⊕A2⊕E8.

The latter is a sublattice of index 3 of Γ4,20 (see Proposition 1) and more precisely the lattice

E6 ⊕ A2 is a sublattice of index 3 of E8. Now the isometries of order three σ⋆
3 and (σT

3 )
⋆

have no fixed vectors on A2, respectively E6 and act trivially on the discriminant groups.

They can be then combined (see Definition 3) to give an isometry of order three on E8

without fixed vectors, but up to isometry there is only one such isometry on E8 which is

given by equation (2.33). So the action of σ̂3 on the sigma-model CFT associated with this

surface is given by the matrix M̂3 in eq. (3.5), as for the previous example.

3.2 Symmetries of Landau-Ginzburg mirror pairs

The Gepner models arise at special points in the moduli space (2.1) of sigma-model CFTs

on K3 surfaces. These Gepner points play a special role in the present context as some

of them are fixed under the action of the mirrored automorphisms defined in the previous

subsection.

A Gepner model for a K3 surface [25] is a (4, 4) superconformal field theory obtained

as the infrared fixed point of a (2,2) Landau-Ginzburg orbifold [11, 33] with Fermat type

superpotential

W = Zk1
1 + Zk2

2 + Zk3
3 + Zk4

4 , (3.8)

quotiented by the order K = gcd(k1, . . . , k3) diagonal ZK symmetry jW , acting on the

chiral superfields as

jW : Zℓ 7→ e2iπ/kℓZℓ (3.9)
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and realizing the projection onto integral R-charges. We will refer to this orbifold as the

diagonal ZK orbifold. The twisted sectors of this orbifold are labelled by γ ∈ {0, . . . ,K−1}
and will be referred to as γ-twisted sectors.

The Landau-Ginzburg orbifold/Gepner model with superpotential (3.8) has a quantum

Abelian symmetry [34] which is not present in the large-volume limit of the sigma-model.

In the diagonal ZK orbifold theory, the quantum symmetry acts on a field in the γ-twisted

sector of the model as:

σq : φγ 7→ e
2iπ
42

γφγ . (3.10)

At the infrared fixed point, the superconformal field theory obtained from this

model is an orbifold of a product of N = 2 minimal model CFTs, as every single-

field Landau-Ginzburg model with superpotential W = Xkℓ flows to a super-coset CFT

SU(2)kℓ/U(1)kℓ [35]. These Gepner models lead to IIA superstring theory compactifica-

tions in six dimensions with N = (1, 1) supersymmetry, or, compactifying further on a

two-torus, to N = 4 supersymmetry in four-dimensions.

Asymmetric orbifolds. We will now explain the relation between the mirrored auto-

morphisms introduced in subsection 3.1 and the non-geometric orbifolds of Gepner models

presented in [8, 9], following earlier works [10, 11].

We consider the Gepner model corresponding to the Landau-Ginzburg orbifold of su-

perpotential (3.8) and assume that p := k1 is a prime number. The theory admits the

order p symmetry

σp : Z1 7→ e2iπ/pZ1 . (3.11)

Quotienting the Gepner model by this automorphism alone would break all space-time

supersymmetry. Indeed one can see that in the corresponding orbifold theory (see [8] for

details):

• all the worldsheet operators corresponding to space-time supercharges are charged

under the Zp symmetry hence are projected out of the spectrum,

• the b-twisted sectors of the Zp orbifold by the symmetry (3.11) contain states with

non-integer left and right U(1)R-charges whenever b 6= 0.

One observes that one can define a subgroup of the quantum symmetry group of the

model (3.8), isomorphic to Zp, generated by:

σq
p := (σq)K/p . (3.12)

One can then modify the orbifold of the LG orbifold/Gepner model (3.8) by the sym-

metry (3.11) that we described above by adding a specific discrete torsion keeping the

space-time supercharges coming from the left-moving sector in the spectrum.

Starting from the Gepner model, one defines the Zp orbifold projection by assigning

to every state in the theory a charge

Q̂p ≡ Qp +Qq
p mod 1 ≡ Qp +

γ

p
mod 1 , (3.13)
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where Qp is the charge of the given state under the action of σp and Qq
p is the charge under

the quantum symmetry σq
3 , and by projecting onto states with Q̂p ∈ Z. This discrete

torsion has also an effect in the twisted sectors b 6= 0 of the new Zp orbifold. In those

sectors the diagonal ZK orbifold projection is modified, as one projects onto states with

Q̂K ∈ Z, where

Q̂K ≡ QK − b

p
mod 1 . (3.14)

The charge assignments (3.13) and (3.14) are related to each other by modular invariance.

One can check, by inspecting the one-loop partition function, that the Zp orbifold

projection w.r.t. the charge Q̂p keeps all space-time supercharges from the left-movers,

while none of the space-time supercharges from the right-movers is invariant. Furthermore

the diagonal ZK projection w.r.t. the charge Q̂K keeps only states with integer left R-charge.

Hence space-time supersymmetry from the left-movers on the worldsheet is preserved by

this orbifold with discrete torsion. Notice that one could have used the charge Qp − Qq
p

instead, in which case the invariant space-time supercharges come from the right-movers.

Under mirror symmetry, the right R-charges in everyN = 2 minimal model are mapped

to minus themselves. As a consequence, mirror symmetry exchanges the geometrical au-

tomorphism σp with its quantum counterpart σq
p . In view of the discussion in section 2, a

generator σq
p of an order p subgroup of the quantum symmetry of a Landau-Ginzburg orb-

ifold superconformal field theory is identified with a non-symplectic automorphism σT
p of

the corresponding BH mirror K3 surface. Hence, the mirrored automorphisms introduced

in subsection 3.1 correspond precisely, at the Gepner points in the moduli space, to the

orbifolds with discrete torsion described here.

The two-fold choice of discrete torsion in the definition of the Landau-Ginzburg model

symmetries Q̂p := Qp ± Qq
p that we have noticed above corresponds, in the language of

subsection 3.1, to the possibility of pairing the action of σp either with the action of σT
p or

of its inverse.

Fractional mirror symmetry. We have described in the previous subsection orbifolds

of Gepner models with discrete torsion, that preserve all space-time supersymmetry from

the left-movers, and none from the right-movers at first sight. As discussed in [9], they

belong to a more general family of quotients of Gepner models by non-symplectic auto-

morphisms of the corresponding K3 surfaces with discrete torsion. This construction leads

generically to non-geometric compactifications, i.e. that do not belong to the moduli space

of compactifications on smooth manifolds, preserving N = 2 supersymmetry in four di-

mensions (after further compactification on T 2). Similar constructions exist for Calabi-Yau

three-folds, leading to N = 1 in four dimensions.

However, in the specific case of an orbifold of a p-cyclic K3 surface (or more generically

of a p-cyclic CY manifold) by a non-symplectic automorphism of order p as considered in the

present work, the twisted sectors b 6= 0 contain right-moving operators that, despite having

non-integral right R-charge, have the properties of generators of space-time supersymmetry.

Interestingly, the worldsheet model for the non-geometric compactification is actually iso-

morphic as a (2, 2) superconformal field theory to the original Calabi-Yau model in this case.
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This isomorphism implies the existence of quantum symmetries, called fractional mir-

ror symmetries in [9], between geometric and non-geometric compactifications in the

Landau-Ginzburg regime. Outside of the Gepner point such symmetry extends to a map

between a (2, 2) non-linear sigma-model on a Calabi-Yau manifold and a non-geometric

worldsheet model. A linear-sigma model description [36] was proposed in [9], generalizing

the ideas of [37].

In the following, we will focus on freely-acting orbifolds combining this type of K3

non-geometrical orbifold with a shift along a circle; in this case the accidental isomorphism

and corresponding restoration of N = 4 space-time supersymmetry do not play a role,

as the b-twisted sectors with b 6= 0 will only contain massive states from the space-time

point of view.

3.3 Worldsheet construction of non-geometric backgrounds: summary

The mirrored automorphisms described in subsections 3.1 for the geometry and 3.2 for

the field theory are the building blocks of non-geometric compactifications of type IIA

superstring theory, whose vacua correspond to the non-geometric freely-acting orbifolds

of [8] that we will now summarize briefly.

The starting point is a Gepner model for a K3 surface as described in subsection 3.2.

Consider the tensor product of this superconformal field theory with the free c = 3 su-

perconformal theory with a two-torus target space of coordinates Y1, Y2. We consider a

freely-acting supersymmetry-breaking Zk1 × Zk2 orbifold of this K3 × T 2 superconformal

model generated by

g1 : Z1 7→ e2iπ/k1Z1 , Y1 7→ Y1 + 2π/k1 (3.15a)

g2 : Z2 7→ e2iπ/k1Z2 , Y2 7→ Y2 + 2π/k2 (3.15b)

As it is, this orbifold breaks all space-time supersymmetry for the reasons given in the

previous subsection.

We add to each of these two freely-acting orbifold actions a discrete torsion of the same

type as in eqs. (3.13), (3.14) above. As described there the discrete torsion is such that all

these models have integral left-moving R-charges but non-integral right-moving ones, hence

a type IIA superstring theory built upon one of these models will have a four-dimensional

Minkowski vacuum with N = 2 space-time supersymmetry, all space-time supercharges

being obtained from the left-moving Ramond ground states.

The two gravitini obtained from the right-moving Ramond sector are indeed massive

in the Zk1 × Zk2 orbifold theory. Because of the freely-acting nature of this orbifold, no

massless states could possibly arise from the corresponding twisted sectors. If one chooses

an orthogonal two-torus of radii R1 and R2, the masses squared of the two massive gravitini

of broken N = 4 supersymmetry are [8]:

m2 =

(
1

k1R1

)2

+

(
1

k2R2

)2

. (3.16)
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The massless spectra of all these models were computed in [9].9 It was found there that

the massless states are identified with a subset of the chiral rings of the K3 SCFT, con-

taining states built out of the identity operator in the SU(2)k1/U(1)k1 and SU(2)k2/U(1)k2
minimal models; we will consider the corresponding moduli spaces in subsection 5.2 from

another perspective.

In about half of the possible constructions, this subset is empty and hence all the moduli

of the original K3 SCFT have become massive; the only remaining massless moduli are the

T and U moduli of the two-torus and the axio-dilaton modulus S, that are part of space-

time vector multiplets. It gives theN = 2 four-dimensional STU supergravity model at low

energies (compared to the inverse size of the torus). In the remaining constructions, some

of the K3 moduli survive and appear in the low energy theory in massless hypermultiplets.

We now turn to the second part of this article, where we analyse these constructions from

the low-energy four-dimensional viewpoint.

4 N = 4 gauged supergravity from duality twists

In this section we study the supergravity dimensional reduction that corresponds to the

stringy construction considered in the previous sections. We have considered type IIA su-

perstring theory compactified on K3 × T 2 identified under certain automorphisms. This

requires being at a point in the K3 moduli space which is a fixed point under the au-

tomorphisms. (These fixed points were found in the last section from Landau-Ginzburg

orbifolds.) This construction is extended to general points in moduli space by a compact-

ification with duality twists [2]. We will here discuss the supergravity limit of this, which

is a dimensional reduction of Scherk-Schwarz type [5].

We consider then type IIA superstring theory compactified on K3 to 6 dimensions and

then further compactified on T 2 with duality twists with non-geometric monodromy. In the

supergravity limit, compactifying IIA supergravity on K3 gives N = (1, 1) supergravity in

six dimensions coupled to 20 vector multiplets, and this has a duality symmetry O(4, 20)×
R. Then further compactifying on T 2 with an O(4, 20) monodromy round each circle gives

a Scherk-Schwarz reduction of the supergravity, resulting in a gauged N = 4 supergravity

in four dimensions. This construction has been discussed extensively in the supergravity

literature; see e.g. [5, 38–40] and references therein. For our string theory constructions,

the monodromies are required to be in the duality group O(Γ4,20), i.e. the isometry group

of the lattice of total cohomology of the K3 surface as was discussed in section 2; in the

physics literature it is often refered to as O(4, 20;Z).

We will focus here on the case with monodromies that are in the O(4)×O(20) subgroup

of O(4, 20) as it is for these compact monodromies that fixed points in the moduli space

corresponding to Minkowski minima of theD = 4 supergravity scalar potential are possible.

As we shall see, some interesting features arise for these special cases, and will give some

vacua that break the N = 4 supersymmetry in four dimensions to N = 2. We will

summarize the supergravity results here, and give more details elsewhere.

9In [9] all pair of purely non-symplectic automorphisms were considered, for prime and non-prime order p.
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In this section we will consider the supergravity reduction with monodromies in the

continuous group O(4, 20) and in the following section we will consider the consistent

type IIA superstring theory compactifications that arise from the discrete monodromies

constructed in section 3.

4.1 Twisted reduction on T 2

The starting point in six dimensions is N = (1, 1) supergravity coupled to 20 vector mul-

tiplets, and this has a rigid duality symmetry G = O(4, 20) (and a further rigid symmetry

consisting of constant shifts of the dilaton). There is also a local symmetry which in the

bosonic sector is H = O(4) × O(20). In extending to the fermionic sector, the local sym-

metry is actually a double cover of this, Hs = Pin(4) × O(20). The 24 vector fields AI
m

(I = 1, . . . , 24) transform as the 24 of G = O(4, 20) and are invariant under H. The

fermions are invariant under G = O(4, 20) but transform under Hs. The scalars consist

of a dilaton φ and scalars taking values in the coset G/H and can be represented by a

G-valued vielbein field V̂ transforming as V̂ → gV̂h−1 under the action of h ∈ H, g ∈ G.

The vielbein V̂ represents dim(G) = 276+1 degrees of freedom, but dim(H) = 196 of these

can be removed by local H transformations.

We now turn to dimensional reduction on T 2 with twists in G, giving rise to a gauged

supergravity in four dimensions. Consider first the untwisted case. Simple dimensional

reduction (with no twists) on T 2 gives rise to N = 4 supergravity coupled to 22 vector

multiplets in four dimensions. The massless Abelian theory has G = SL(2)×O(6, 22) global

symmetry, and a local symmetry Pin(6) × O(22), acting on the bosonic sector through

O(6) × O(22). The N = 4 supergravity multiplet contains the vielbein, four gravitini

ψi
µ, six graviphotons Am

µ , four spin-half fermions χi and a complex scalar τ , which takes

value in SL(2)/SO(2). The SL(2) acts as usual through fractional linear transformations

τ 7→ (aτ + b)/(cτ + d).

The 22 vector multiplets in four dimensions each contain a vector Aa, four gaugini λai

and six real scalars. 132 scalars parameterize the coset space O(6, 22)/O(6)×O(22) while

the remaining two parameterize the coset space SL(2)/U(1). The scalars in O(6, 22)/O(6)×
O(22) can be conveniently expressed in terms of a vielbein V ∈ O(6, 22), such that they

transform under global G = O(6, 22) and local O(6) × O(22) as V 7→ h−1Vg. From the

vielbein V , one can construct a metric M on the coset space given by M = VtV which is

invariant under H and transforms tensorially under G: M 7→ gtMg. The group O(6, 22)

preserves a metric ηMN of signature (6, 22) and for the supergravity theory we can choose

a basis in which this is the diagonal metric (I6,−I22). However, in the next section when

we apply the supergravity analysis to string theory, we will take ηMN to be a lattice metric

on Γ4,20 ⊕ U ⊕ U .

A gauged version of this supergravity (with electric gauge group) can be obtained by

choosing a subgroup K of the rigid G = O(6, 22) symmetry (of dimension 28 at most)

and promoting it to a local symmetry, using a minimal coupling to the 28 vector fields

already in the theory.10 For this to work, the vector representation of O(6, 22) must be the

10Note that this is not the most general gauging of the supergravity, but we will restrict ourselves to this

class of gaugings here.
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adjoint representation of K ⊂ O(6, 22). The gauging of the four-dimensional supergravity

is completely specified by the structure constants tMN
P of the gauge group K (M,N =

1, . . . 28) which satisfy the Jacobi identity and the constraint that K preserves the O(6, 22)

invariant metric ηMN which is the condition that

tMNP = ηMQtNP
Q

is completely antisymmetric. Supersymmetry then requires the addition of a scalar poten-

tial V , together with fermion mass terms given by

e−1L3/2 =
1

3
Aij

1 ψ̄µiΓ
µνψνj +

1

3
Aij

2 ψ̄µiΓ
µχj −A2ai

jψ̄i
µΓ

µλa
j + h.c. (4.1)

and

e−1L1/2 = −A j
2ai χ̄

i(λa)j +
1

2
Aij

2 λ̄
a
i λaj +A ij

ab λ̄a
i λ

b
j + h.c. (4.2)

in terms of certain scalar-dependent tensors Aij
1 , A

ij
2 , A

j
2ai, A

ij
ab . Here i, j = 1, . . . 4 are

SU(4) indices. Supersymmetry and gauge invariance put strong restrictions on the sub-

groups K that can be gauged, and fixes the form of the scalar potential and the tensors

Aij
1 , A

ij
2 , A

j
2ai, A

ij
ab ; see [41–43] and references therein. In particular, the scalar potential is

V =
1

48ℑ(τ) tMNP tQRS

(
MMQMNRMPS − 3MMQLNRLPS

)
+

1

24ℑ(τ) tMNP t
MNP (4.3)

where ℑ(τ) denotes the imaginary part of τ , the scalar in SL(2)/U(1) and MMQ is the

metric on O(6, 22)/O(6)×O(22) discussed above.

We now turn to the twisted reduction of the six-dimensional supergravity on T 2 to

obtain a gauged N = 4 supergravity. We consider a rectangular torus for simplicity, with

coordinates yi, i = 1, 2, with y1 ∼ y1 + 2πR1 and y2 ∼ y2 + 2πR2. Then the complex

Kähler modulus is T = iR1R2 and complex structure modulus is U = iR2/R1.

We introduce twists around each of the two circles as described in the introduction.

A field ψ(xµ, yi) (where yi are coordinates on T 2 and xµ, µ = 0, . . . , 3, are the coordinates

of the four-dimensional space-time) is taken to depend on y through G transformations.

Specifically, suppose ψ(xµ, yi) transforms in a representation of G, ψ 7→ R[g]ψ under a

rigid transformation h ∈ HR. Then the Scherk-Schwarz ansatz is

ψ(xµ, yi) = R[g1(y
1)]R[g2(y

2)]ψ0(x) , (4.4)

giving the D = 6 field ψ(xµ, yi) as the transformation of a D = 4 field ψ0(x) under a

y-dependent G transformation g1(y
1) around the first cycle and a y-dependent G trans-

formation g2(y
2) around the second cycle. The two G transformations are required to

commute,

g1(y
1)g2(y

2) = g2(y
2)g1(y

1) ,

and the y-dependence is taken to be exponential, so that

g1(y
1) = eN1y1 , g2(y

2) = eN2y2 . (4.5)
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Then the monodromies are

(g1(0))
−1g1(2πR1) = e2πR1 N1 , (g2(0))

−1g2(2πR2) = e2πR2 N2 (4.6)

for two commuting elements N1, N2 of the Lie algebra of G, [N1, N2] = 0. In the six-

dimensional supergravity, the only fields transforming under G are the vector fields A and

the scalar fields, represented by the vielbein V̂. These then get non-trivial y dependence,

while the fermions and graviton do not, as they are singlets under G. This picture de-

pends on using the formalism in which the local H symmetry is not fixed. Choosing a

physical gauge for the local H symmetry would mean that a G transformation must be

accompanied by a compensating H transformation that act on the fermions through an Hs

transformation, so that in this gauge the fermions also get y dependence, and this requires

the choice of a lift of the twist in H to one in the double cover Hs.

Full details of the reduction for the bosonic sector are given in [44], and here we will

just quote the results needed, mostly following the notation of [44]. The O(4, 20) invariant

metric is ηIJ where I, J = 1, . . . 24; for the supergravity theory we can choose a basis in

which this is the diagonal metric (I4,−I20). However, in the next section when we apply

the supergravity analysis to string theory, we will take ηIJ to be the metric on the lattice

Γ4,20. The generators of the gauge group K can be combined into a O(6, 22) vector TM as

TM =




Zi

Xi

TI


 . (4.7)

The Lie algebra of K is then [44]

[TM , TN ] = tMN
PTP ,

where the structure constants of the gauge group are

tiI
J = NiI

J , NIJi = LJKfiI
K , (4.8)

and all other structure constants are zero. Then the only non-vanishing commutators are

[Zi, TI ] = NiI
JTJ , [TI , TJ ] = NIJiX

i . (4.9)

Suppose now that there is a point V̂ = V̂0 in the moduli space O(4, 20)/O(4)×O(20)

that is fixed under both the monodromies. From the arguments of [2], the fixed point gives a

minimum of the scalar potential where the potential vanishes, giving a Minkowski vacuum.

Then we can perform an O(4, 20) transformation with g = (V̂0)
−1 to bring the fixed point

to the origin, V̂0 = 1. The subgroup of O(4, 20) preserving V̂0 = 1 is O(4)×O(20) so both

monodromies (4.6) must be in this subgroup.

The supergravity reduction is then specified by two commuting monodromies N1 and

N2 in the Lie algebra of O(4)×O(20). These are then in a Cartan subalgebra SO(2)12 and
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we can choose a basis (by O(4)×O(20) conjugation) in which they are both diagonal and

each specified by 12 angles:

2πR1N1 =

(
0 θ1

−θ1 0

)
⊗
(

0 θ2
−θ2 0

)
⊗ · · · ⊗

(
0 θ12

−θ12 0

)
,

2πR2N2 =

(
0 θ̃1

−θ̃1 0

)
⊗
(

0 θ̃2
−θ̃2 0

)
⊗ · · · ⊗

(
0 θ̃12

−θ̃12 0

)
. (4.10)

The monodromies in O(4)×O(20) are then

e2πR1 N1 =

(
cos θ1 sin θ1
− sin θ1 cos θ1

)
⊗ · · · ⊗

(
cos θ12 sin θ12
− sin θ12 cos θ12

)
,

e2πR2 N2 =

(
cos θ̃1 sin θ̃1
− sin θ̃1 cos θ̃1

)
⊗ · · · ⊗

(
cos θ̃12 sin θ̃12
− sin θ̃12 cos θ̃12

)
. (4.11)

We choose a basis in which the angles θ1, θ2 and θ̃1, θ̃2 specify monodromies in the O(4)

factor and the remaining angles specify monodromies in O(20).

These twists will in general give masses to fields that are charged under U(1)12 ⊂
O(4) × O(20). For a state with charges qi (i, j = 1, . . . 12) under U(1)12, the mass m will

be given by

m2 =

(
12∑

i=1

qiθi
2πR1

)2

+

(
12∑

i=1

qiθ̃i
2πR2

)2

. (4.12)

Using this formula, the masses of all fields can be found by finding the charges qi.

The 28 vector fields are in the 28 of O(6, 22) and this decomposes into (4,1) + (1,24)

under O(2, 2)×O(4, 20). A twist with all angles non-zero makes the vectors in the (1,24)

representation massive and leaves the (4,1) vectors massless. The 24 vector fields in the

(1,24) representation can be written as 12 complex vector fields Ai, where Ai has charge

qi = 1 and qj = 0 for j 6= i. Then Ai has mass m given by

m2 =

(
qiθi
2πR1

)2

+

(
qiθ̃i
2πR2

)2

. (4.13)

If the angles θi, θ̃i are both zero for some i, then the vector Ai will remain massless.

The scalars in O(6, 22)/O(6) × O(22) can be parameterized by fields transforming as

the (6,22) under O(6) × O(22) ⊂ O(6, 22). Under O(2) × O(2) × O(4) × O(20) these

decompose as11

(2,2,1,1) + (2,1,1,20) + (1,2,4,1) + (1,1,4,20) . (4.14)

Of these, only those in the (2,2,1,1) representation are singlets under O(4) ×O(20) and

hence invariant under the U(1)12 twist. These scalars parameterize

O(2, 2)

O(2)×O(2)
⊂ O(6, 22)

O(4)×O(22)
.

11Here O(2)×O(4)× ⊂ O(6) and O(2)×O(20) ⊂ O(22).
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The axion and dilaton in SL(2)/U(1) are also uncharged and remain massless, so the

scalars in
SL(2)

U(1)
× O(2, 2)

O(2)×O(2)
∼

[
SL(2)

U(1)

]3

remain massless.

All other scalars become generically massive, with masses given by eq. (4.12). This

formula indicates also that, for a given set of charges {qi, i = 1, . . . , 12}, some values of the

angles θi, θ̃i can lead to accidentally massless scalars.

It will be useful to decompose the indices i = 1, . . . 12 = (M,A) into indices M =

1, 2 labeling the Cartan subalgebra of O(4) and indices A = 3, . . . 12 labeling the Cartan

subalgebra of O(20), so that the charges are qi = (qM , qA). Then, for example, the 80 real

scalars in the (1,1,4,20) representation take values in the coset O(4, 20)/O(4)×O(20) and

can be written in terms of complex scalars φMA, ρMA where the scalar φNB has charges

qi = (qM , qA) where qM = δMN and qA = δAB while ρNB has charges qi = (qM , qA) where

qM = δMN and qA = −δAB. Then φMA has mass squared

m2 =

(
θM + θA
2πR1

)2

+

(
θ̃M + θ̃A
2πR2

)2

, (4.15)

and ρMA has mass squared

m2 =

(
θM − θA
2πR1

)2

+

(
θ̃M − θ̃A
2πR2

)2

. (4.16)

Then for generic twists with all angles non-zero, the massless bosonic fields consist of

the graviton, 4 vector fields in the 4 of O(2, 2) and 6 scalars in the coset space [SL(2)/U(1)]3;

this is precisely the bosonic sector of the STU model [4].

We now turn to the fermion mass terms (4.1), (4.2). At the origin, V = I28, the mass

matrices of the model simplify considerably to give [45]

Aij
1 = Aij

2 =
1

8
√
τ2
([Gm]ik)

⋆[Gn]kl([Gp]lj)
⋆tmnp , A j

2ai = − 1

4
√
τ2
[Gm]ik([Gn]kj)

⋆tamn ,

A ij
ab = − 1

2
√
τ2
[Gm]ijtabm (4.17)

where Gm are the ’t Hooft matrices used to convert an SO(6) vector index to an anti-

symmetric pair of Spin(6) = SU(4) indices. The first matrix A1 gives direct access to the

fraction of supersymmetry preserved by the vacuum, as it provides the mass term for the

gravitini given by
1

3
Aij

1 ψ̄µiΓ
µνψνj + h.c. (4.18)

where Aij
1 is a complex symmetric matrix. The mass matrix for ψµi is

(M2)i
j = A1ikA

kj
1 (4.19)
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where A1ij = (Aij
1 )

∗. This is a Hermitian matrix whose eigenvalues are (after a calculation

using formulæ from [45]) (m1)
2 and (m2)

2, both with degeneracy two, where

(m1)
2 =

(
θ1 − θ2
4πR1

)2

+

(
θ̃1 − θ̃2
4πR2

)2

(4.20)

and

(m2)
2 =

(
θ1 + θ2
4πR1

)2

+

(
θ̃1 + θ̃2
4πR2

)2

. (4.21)

These formulæ can be understood as follows. The D = 6 supergravity has a local

Hs = Pin(4)×O(20) symmetry and a global O(4, 20) symmetry. The fermions transform

under Spin(4) × O(20) = SU(2) × SU(2) × O(20) ⊂ Hs, but do not transform under the

global O(4, 20) symmetry. If the local Hs symmetry is fixed, O(4, 20) transformations must

be accompanied by compensatingHs transformations. As a result, reductions with O(4, 20)

twists result in twists of the fermions by compensating Hs transformations. The gravitini

transform as (2,1,1)+(1,2,1) under SU(2)×SU(2)×O(20), and as a result they become,

after gauge fixing, twisted under the U(1)2 ⊂ O(4) but not under the U(1)10 ⊂ O(20). The

charges of the gravitini in the (2,1,1) representation under U(1)2 ⊂ O(4) are (q1, q2) =

(1/2, 1/2) while those of the gravitini in the (1,2,1) representation under U(1)2 ⊂ O(4) are

(q1, q2) = (1/2,−1/2). This then results in the mass formulæ (4.20), (4.21) on using (4.12).

Similarly, the masses of the spin-1/2 fields can be found by calculating the tensors

appearing in the mass formulæ (4.2), or by finding the twists in the gauge-fixed theory.

Here we do the latter. Under SU(2)× SU(2)×O(20), the spin-1/2 fields transform as

3× (2,1,1) + 3× (1,2,1) + (2,1,20) + (1,2,20) .

The fermions in the 3× (2,1,1) representation will all get mass m1 given by (4.20) while

those in the 3× (1,2,1) representation will all get mass m2 given by (4.21). The remaining

fermions will all be massive for generic angles.

We see that something special happens if θ1 = θ2 and θ̃1 = θ̃2 so that m2 is zero or

θ1 = −θ2 and θ̃1 = −θ̃2 so that m1 is zero. In either case, there are 2 massless gravitini and

six massless spin-half fields. In this case the vacuum breaks the N = 4 local supersymmetry

to N = 2 supersymmetry, and the massless fields fit into the N = 2 supergravity multiplet

with three massless vector multiplets, which is just the spectrum of the STU model. Unlike

most occurrences of the STU model in string theory, in the present case it does not occur

as a truncation of a richer theory, but describes the whole low-energy sector of the theory.

For generic angles, both m1 and m2 are non-zero therefore all the fermions become

massive and all supersymmetry is broken.

For the ungauged N = 4 theory, there is a local Hs symmetry and a global O(6, 22)

symmetry. A monodromy in O(4) × O(20) ⊂ O(6, 22) will break the global O(6, 22) to

O(2, 2). However, O(4) has a subgroup SO(3)1 × SO(3)2, and if the O(4) monodromy is

restricted to be in SO(3)2, then SO(3)1 survives as a symmetry in the gauged supergravity.

This corresponds to the case m1 = 0 above. Similarly, m2 = 0 corresponds to a monodromy

in SO(3)1 with SO(3)2 surviving as a symmetry. In the formalism with the local Hs
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fixed, there is an SU(4) × O(22) global symmetry, of which SU(4) is an R-symmetry.

The monodromies are in SU(2)1 × SU(2)2 × O(20) ⊂ SU(4) × O(20). If m1 = 0, then the

monodromies lie in SU(2)2×SO(20) ⊂ SU(2)1×SU(2)2×SO(20) and hence SU(2)1 survives

as an R-symmetry in the low-energy theory, and similarly if m2 = 0 then the monodromies

lie in SU(2)1 × SO(20) ⊂ SU(2)1 × SU(2)2 × SO(20) and hence SU(2)2 survives as an

R-symmetry in the low-energy theory. The surviving SU(2) is the R-symmetry for the

unbroken N = 2 supersymmetry.

4.2 Aspects of the low-energy N = 2 theory

In this subsection we give further details of how the N = 4 multiplets of the D = 4

supergravity decompose into massless and massive multiplets of N = 2 supersymmetry for

the cases in which m1 is zero or m2 is zero, and study aspects of the effective N = 2 theory

valid at energies much less than the supersymmetry breaking scale set by the gravitini

masses.

4.2.1 Massless multiplets

The fields in the D = 4 supergravity theory fit into an N = 4 supergravity supermulti-

plet and 22 N = 4 vector supermultiplets. Once the local SU(4) × O(22) symmetry has

been fixed, all fields transform under rigid SU(4)× SO(22) transformations. We now give

the representations of the component fields under this global SU(4) × SO(22), and the

decomposition of these representations into SU(2)1 × SU(2)2 × SO(20) ⊂ SU(4) × SO(2))

representations, which will be useful for studying the N = 2 multiplet structure. The

N = 4 supergravity multiplet is

SU(4)× SO(22) SU(2)1 × SU(2)2 × SO(20)

2 (1,1) (1,1,1)

3/2 (4,1) (2,1,1) + (1,2,1)

1 (6,1) 2× (1,1,1) + (2,2,1)

1/2 (4′,1) (2,1,1) + (1,2,1)

0 2× (1,1) 2× (1,1,1)

(4.22)

while for the 22 vector multiplets we have

SU(4)× SO(22) SU(2)1 × SU(2)2 × SO(20)

1 (1,22) (1,1,20) + 2× (1,1,1)

1/2 (4,22) (2,1,20) + (1,2,20) + 2× (2,1,1) + 2× (1,2,1)

0 (6,22) (2,2,20) + 2× (1,1,20) + 2× (2,2,1) + 4× (1,1,1)

(4.23)

For the gravitini and spin-1/2 fields, the representation 4 corresponds to left-handed

fermions transforming in the 4 and right handed ones transforming in the 4̄, i.e. 4 ∼ 4̄R+4L.

Similarly, 4′ ∼ 4̄L + 4R.

If m1 = 0, then the monodromies lie in SU(2)2 × SO(20) ⊂ SU(2)1 × SU(2)2 × SO(20)

and SU(2)1 survives as an R-symmetry in the low-energy theory. The massless states are
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the ones that are singlets under SU(2)2 × SO(20), i.e.

2 (1,1,1)

3/2 (2,1,1)

1 4× (1,1,1)

1/2 3× (2,1,1)

0 6× (1,1,1)

(4.24)

This gives N = 2 supergravity with three massless N = 2 vector multiplets, which is

precisely the content of the STU model.

4.2.2 Massive multiplets

In generic models, the remaining states now organize themselves in massive multiplets.

The massive states that are singlets under SO(20) are:

3/2 (1,2,1)

1 (2,2,1)

1/2 3× (1,2,1)

0 2× (2,2,1)

(4.25)

This gives a BPS gravitino multiplet and two BPS hypermultiplets.

The remaining fields from the original N = 4 ungauged theory are all in a 20 of

SO(20), namely:

1 (1,1,20)

1/2 (2,1,20) + (1,2,20)

0 (2,2,20) + 2× (1,1,20)

(4.26)

States in the (2,20) of SU(2)2 × SO(20) form a BPS hypermultiplet and states in the

(1,20) give a BPS massive vector multiplet (one scalar gets eaten by the vector).

4.2.3 Accidental massless multiplets

In certain models, a fraction of the BPS hypermultiplets are neutral under the monodromy

and are therefore massless. From the mass formula (4.12), a supergravity field with charges

qi (i, j = 1, . . . 12) under U(1)12 will be massless if

12∑

i=1

qiθi = 0 (4.27)

and
12∑

i=1

qiθ̃i = 0 . (4.28)

For example, for the scalars with mass (4.15) this will be the case if θM = −θA and

θ̃M = −θ̃A.
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4.2.4 Further accidental massless multiplets from KK modes

There can be further accidental massless multiplets from Kaluza-Klein modes [2]. For a

trivial reduction without monodromy on the two circles with coordinates y1, y2, each field

has a mode expansion of the form

φ(xµ, y1, y2) =
∑

n1,n2

ein1y1/R1+in2y2/R2φn1,n2
(x) (4.29)

with a sum over integers n1, n2. The mode φn1,n2
(x) then has mass m with

m2 =

(
n1

R1

)2

+

(
n2

R2

)2

. (4.30)

For a reduction with duality twists of the type discussed above, this formula is modified

for fields that are charged under U(1)12 ⊂ O(4)×O(20). For a mode φn1,n2
(x) with charges

qi (i, j = 1, . . . 12) under U(1)12, the mass m will be given by the following modification

of (4.12):

m2 =

(
2πn1 +

∑12
i=1 qiθi

2πR1

)2

+

(
2πn2 +

∑12
i=1 qiθ̃i

2πR2

)2

. (4.31)

In the truncated supergravity theory, the condition for massless states were (4.27)

and (4.28). Now we see that the condition that the full Kaluza-Klein spectrum contains

massless modes is that
12∑

i=1

qiθi = 0 mod 2π (4.32)

and
12∑

i=1

qiθ̃i = 0 mod 2π . (4.33)

For the hypermultiplets φMA, the condition that there be a massless KK mode is that

θM + θA = 0 mod 2π (4.34)

and

θ̃M + θ̃A = 0 mod 2π , (4.35)

while for ρMA the condition is

θM − θA = 0 mod 2π (4.36)

and

θ̃M − θ̃A = 0 mod 2π . (4.37)

For the gravitini, there is a similar modification of the mass formulæ. The gravitini

KK modes will include massless spin-3/2 fields if

θ1 + θ2 = 0 mod 4π
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and

θ̃1 + θ̃2 = 0 mod 4π ,

or

θ1 − θ2 = 0 mod 4π

and

θ̃1 − θ̃2 = 0 mod 4π .

These are for gravitini modes that are periodic in y1, y2; the conditions for anti-periodic

ones would be slightly different.

5 Compactifications with non-geometric monodromies

We will now apply the supergravity framework developed in the last section to the non-

geometric compactifications analysed in sections 2 and 3 from the algebraic geometry and

string theory viewpoints. In string theory, the non-compact symmetry groups O(4, 20)

and O(6, 22) are broken to the discrete subgroups preserving the charge lattice [2]. In

particular, O(4, 20) is broken to the group O(Γ4,20) preserving the lattice Γ4,20, and we

choose the natural basis in which the metric ηIJ is the metric on the lattice Γ4,20 given

in section 2. As a result, the mass parameters introduced in the twisted reduction now

take discrete values. Our aim here is to find the non-geometric type IIA compactifications,

consisting of K3 fibrations over two-tori with non-geometric twists, in the sense of [2],

that at fixed points of the twist reproduce the orbifold constructions of [8] summarized in

section 3.

We start with a (p1, p2)−cyclic K3 surface, i.e. a hypersurface in a weighted projective

space defined by a polynomial of the form

W = x p1
1 + x p2

2 + f(x3, x4) , (5.1)

where p1 and p2 are prime numbers. As we have seen, such surface admits two non-

symplectic automorphisms σp1 and σp2 generating an automorphism group isomorphic to

Zp1 × Zp2 . Using Definition 3 one can associate to them non-geometric automorphisms

σ̂p1 , σ̂p2 generating a subgroup O(σ̂p1) × O(σ̂p2) of the duality group O(Γ4,20), isomorphic

to Zp1 × Zp2 ; see eqs. (3.1), (3.3).

In subsection 3.3 we defined orbifold compactifications consisting of identifying the IIA

superstring theory on K3 × T 2 under the action of σ̂p1 combined with a shift of 2πR1/p1
for the first one-cycle of the torus, and σ̂p2 combined with a shift of 2πR2/p2 for the second

one-cycle of the torus. This is all defined at a particular point in the moduli space of CFTs

on K3 that is a fixed point under these transformations, corresponding to the (p1, p2)-cyclic

K3 surface at a Landau-Ginzburg point.

The reduction with a duality twist construction gives a way to extend this to all points

in moduli space, and then the supergravity analysis of section 4 gives the resulting low

energy effective field theory. The twisted reduction gives a fibration of K3 surfaces over

T 2 with two non-geometric monodromies in O(Γ4,20) associated with the one-cycles of

the torus:
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• An order p1 monodromy belonging to O(σ̂p1), associated with the non-geometric

automorphism σ̂p1 , for the first one-cycle of the torus.

• An order p2 monodromy belonging to O(σ̂p2), associated with the non-geometric

automorphism σ̂p2 , for the second one-cycle of the torus.

The action of σ̂p is deduced from the action of the geometrical automorphism σp on the

vector space generated by T (σp) and from the action of the automorphism σT
p of the mirror

surface on the vector space generated by T (σT
p ), see eqs. (3.1). These give the monodromies

and hence the structure constants of the associated gauged supergravity.

Example 7. In example 3 we constructed an explicit example of an order three non-

geometric automorphism that leaves invariant the self-mirror K3 surface (2.26) at the

Gepner point. From (3.5), the corresponding O(Γ4,20) element is given by the 24 × 24

matrix M̂3

M̂3 :=




ME8

3 0 0 0

0 MU⊕U
3 0 0

0 0 ME8

3 0

0 0 0 MU⊕U
3


 , (5.2)

where ME8

3 is given by eq. (2.33) and MU⊕U
3 by eq. (2.31). The matrix MU⊕U

3 has eigen-

values exp 2iπ
3 and exp 4iπ

3 with degeneracy two for each, and the matrix ME8

3 has the

eigenvalues exp 2iπ
3 and exp 4iπ

3 each with degeneracy four.

The corresponding twisted reduction on K3 × T 2 is obtained using the formalism

presented in subsection 4.1. Suppose we reduce on the y1 circle with monodromy

e2πR1N1 = M̂3 (5.3)

This can be put in the form (4.11) by a change of basis, with the twelve angles θi given by

2π/3 with degeneracy 16 and 4π/3 with degeneracy 8. From this, one can find N1 which in

this basis takes the form (4.10). Then from (4.8) the structure constants tiI
J are given by

tiI
J = NiI

J . (5.4)

Similarly, the order seven non-geometric automorphism would give a monodromy ma-

trix M̂7 which can be brought to the diagonal form (4.11) with the twelve angles θi given

by exp(2irπ/7), for r = 1, . . . , 6, each with degeneracy 4.

To specify the reduction, we choose the monodromy e2πN2 for the other circle from

another automorphism, e.g. that resulting from σ3 or σ7, and this gives the structure

constants t2I
J .

In full generality, using Lemma 1 in section 2, the GL(24;Z) matrices associated with

the non-geometric automorphisms can be diagonalized over C, or equivalently can be writ-

ten as elements of O(4, 20), the group preserving the Minkowski metric diag (14,−120), by

a change of basis. The monodromies in Zp1 ⊂ O(4)×O(20) ⊂ O(4, 20) can be brought to
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the standard form (4.11) specified by 12 angles θi which satisfy exp(iθip1) = 1.12 In the

same way the monodromies in Zp2 ⊂ O(4)×O(20) ⊂ O(4, 20) are specified by 12 angles θ̃i
which satisfy exp(iθ̃ip2) = 1.

From these angles, the full structure of the effective supergravity theory can be read

off, as seen in section 4. The scalar potential of the supergravity admits minima at the

fixed points of the automorphisms that reproduce the four-dimensional physics obtained

from the asymmetric Gepner models considered in section 3.

The stringy compactifications discussed in this work have Minkowski vacua that pre-

serve N = 2 supersymmetry as we will show below, and have three massless vector multi-

plets S,T and U associated respectively to the axion-dilaton and to the T 2 moduli. About

half of the corresponding asymmetric Gepner models, for instance the self-mirror sur-

face (2.26) with σ̂3 and σ̂7 monodromies, give just N = 2 STU supergravity at low energies,

while in the other cases the low-energy theory contains some additional massless hyper-

multiplets, depending of the choice of K3 surfaces and of automorphisms; the associated

moduli space will be discussed in subsection 5.2.

5.1 Gravitini masses and supersymmetry

As we have seen, the isometry induced by the action of the non-geometrical automorphism

σ̂p generates a finite order subgroup conjugate to a subgroup of [O(2) × O(20 − ρp)] ×
[O(2) × O(ρp)]. As far as gravitini masses are concerned, only the space-like subgroup

O(2) × O(2) ⊂ O(4) ⊂ O(4, 20) plays a role, where the first O(2) factor acts as an order

p rotation in the space-like two-plane in the vector space generated by T (σp) while the

second O(2) factor acts as an order p rotation in the space-like two-plane in the vector

space generated by T (σT
p ).

13

The parts of the monodromies in O(2)×O(2) ⊂ O(4) transformations are specified by

the angles θ1, θ2 and θ̃1, θ̃2. These are then

θ1 =
2π

p1
, θ2 = ε1

2π

p1
(5.5)

and

θ̃1 =
2π

p2
, θ̃2 = ε2

2π

p2
. (5.6)

Here εi = 0 if there is no discrete torsion. If there is discrete torsion, then εi ∈ {−1, 1}
corresponding to the two possible choices of discrete torsion for each cycle, as seen from

the corresponding worldsheet description in subsection 3.2.

As explained in section 4, N = 2 supersymmetry is preserved only if θ1 = θ2 and

θ̃1 = θ̃2 or θ1 = −θ2 and θ̃1 = −θ̃2. This requires ε1 = ε2 = 1 or ε1 = ε2 = −1. Otherwise

all supersymmetry is broken. Note that accidental supersymmetry from KK modes cannot

arise here if p1 > 2 or p2 > 2.

12More explicitly, there exists a positive integer q such that the complex numbers {exp iθi, i = 1, . . . , 12}

are given by the primitive p roots of unity, q times each.
13For instance, for the order three automorphism studied in example 3, each O(2) generator comes from

the O(2, 2;Z) generator given by eq. (2.31) after O(2, 2;R) conjugation.
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We then draw the following conclusions which are in accord with the Gepner model

description of the vacua that was obtained in [8] (see in particular around eq. (4.3) in [8]):

• For ‘geometric’ non-symplectic automorphisms of K3 surfaces, which have vanish-

ing discrete torsion εi = 0, all gravitini become massive and so all the spacetime

supersymmetry is broken.

• The two non-geometric twists preserve the same N = 2 ⊂ N = 4 space-time super-

symmetry if ε1 = ε2 = ±1. Then two of the gravitini remain massless, while the

other two acquire an equal mass. In the worldsheet description, ε1 = ε2 means that

the same choice of discrete torsion was made for both of the corresponding Gepner

model freely acting orbifolds, so that they both preserve space-time supercharges

from either the left-movers or the right-movers.

• Whenever ε1 = ε2 = ±1 the isometry preserves SO(3) ⊂ SO(4) and hence an

SU(2)R ⊂ SU(4)R of the space-time R-symmetry is preserved.

Then only the non-geometric twists with discrete torsion that pair the non-symplectic

automorphisms with the corresponding automorphisms acting on the mirror K3 surfaces

can be compatible with N = 2 vacua in four dimensions.

To conclude, there is a perfect agreement between the gauged N = 4 supergravity

and the worldsheet construction. Note finally that the mass scale of the spontaneous

supersymmetry breaking N = 4 → N = 2 is set by the (inverse of the) volume of the two-

torus [8] and can be taken to be much smaller than the string mass scale. Therefore it makes

sense to analyse the model within the four-dimensional supergravity framework (while ten-

dimensional supergravity would be inappropriate for these non-geometric constructions).

5.2 Moduli space

The mathematical formulation of the non-geometric automorphisms that we have given in

section 3 provides precise predictions for the scalar manifolds arising from the moduli space

of our models, parametrized by the vacuum expectation values of the accidental massless

hypermultiplets discussed in subsection 4.2 from a supergravity viewpoint.

From the general construction of compactifications with duality twists [2], the minima

of the effective four-dimensional potential (4.3) correspond to the intersection of the fixed-

point loci of the two monodromies used in the reduction. Hence the remaining massless

hypermultiplets, if any, correspond to K3 moduli that are invariant under both automor-

phisms σ̂p used in a particular compactification.

For a given non-geometric automorphism σ̂p, these moduli arise first as deformations of

the algebraic surface that preserve its p-cyclic form (2.22), i.e. such that the surface admits

the action of the non-symplectic automorphism σp. The global structure of these moduli

spaces was studied in [46] and can be summarized briefly as follows (for the details see [46]).

The complex vector space T (σp)
C := T (σp)⊗ C, generated by the orthogonal complement

of the invariant lattice S(σp), admits a decomposition in terms of the eigenspaces of σ⋆
p,

see Lemma 1. One has from (2.21)

T (σp)
C = Tζp ⊕ Tζ 2

p
· · · ⊕ T

ζ p−1
p

. (5.7)
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Following [46], let us define

Bp = {z ∈ P(Tζp) , (z, z) = 0, (z, z̄) > 0} , (5.8)

where P(Tζp) denotes the projective space associated with the complex vector space Tζp

and (−,−) denotes the bilinear form on the K3 lattice Γ3,19 that induces in a natural way

a bilinear form on T (σp).
14 We define also

Γp = {γ ∈ O(T (σp)) , γ ◦ σ⋆
p = σ⋆

p ◦ γ} , (5.9)

the subgroup of the isometry group O(T (σp)) commuting with the action of σp.

Then the K3 surface with non-symplectic automorphism σp has period (i.e. holomor-

phic two form ω(X)) lying in the following space:

Mp
cs ,Fix

∼= Γp\Bp . (5.10)

For p > 2, Bp is of complex dimension rank(T (σp))/(p − 1) − 1 and is isomorphic to a

complex ball.15 For p = 2 one gets a Hermitian symmetric space of complex dimension

rank(T (σp))− 2.

We now consider the non-geometric automorphism σ̂p constructed from σp as defined

in section 3. To understand its action on the CFT moduli space one has to look also at

the mirror surface XWT ,GT which admits an action of the non-symplectic automorphism

σT
p . In the same way as before, we define16

T (σT
p )⊗ C = T T

ζp ⊕ T T
ζ 2
p
· · · ⊕ T T

ζ p−1
p

, (5.11)

BT
p = {z ∈ P(T T

ζp) , (z, z) = 0, (z, z̄) > 0} , (5.12)

and

ΓT
p = {γ ∈ O(T (σT

p )) , γ ◦ (σT
p )

⋆ = (σT
p )

⋆ ◦ γ} . (5.13)

The moduli space of K3 surfaces with non-symplectic action by σT
p is then given by ΓT

p \BT
p .

To summarize, by using the description of the period map for K3 surfaces, the K3

surface with non-symplectic automorphism σp has period in Γp\Bp, and the mirror K3

surface has period in ΓT
p \BT

p . By using the definition of σ̂p (see Definition 3), we expect that

14Recall that given a K3 surface X, a marking is the choice of an isometry φ : H2(X,Z) −→ Γ3,19 and

this extends in a natural way to φC : H2(X,C) −→ Γ3,19 ⊗ C. Then if ω(X) is the holomorphic 2-form we

have H2,0(X) = Cω(X) and φC(H
2,0(X) is a point of

ΩK3 = {[σ] ∈ P(Γ3,19 ⊗ C)|(σ, σ) = 0, (σ, σ̄) > 0}

which is an open (analytic) subset in a 20-dimensional quadric of the 21-dimensional projective space

P(Γ3,19 ⊗ C). The point φC(H
2,0(X) is called period point of the marked K3 surface and the moduli space

of marked K3 surfaces is a quotient of ΩK3.
15For the self-mirror surface, for instance, local coordinates on the moduli space Γp\Bp are given by the

monomial deformations of (2.26) that are invariant under the action of σp. For the automorphism σ3 one

gets the monomials {ynz42−6n, n = 1, . . . , 5}, generating a space of complex dimension five.
16Recall that SQ(σp) ∼= T (σT

p ).
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the hypermultiplet moduli space of CFTs invariant under the action of the non-geometric

automorphism σ̂p is obtained by the direct product of these two spaces:

M̂p
Σ ,Fix

∼= Γp\Bp × ΓT
p \BT

p , (5.14)

and is of complex dimension (recall that we are considering here p ∈ {3, 5, 7, 13}):

dimC

(
M̂p

Σ ,Fix

)
=

{
24
p−1 − 2 , p > 2 ,

20 , p = 2 .
(5.15)

Interestingly, this dimension is the same for every automorphism σp of a given prime order

p, regardless of the rank of the corresponding invariant lattice S(σp). We have checked this

result against some of the string theory spectra computed in [8] and found agreement.

With two monodromy twists associated with the two one-cycles of the two-torus, one

should consider the intersection of the corresponding moduli spaces, which is easier to

do case by case. For instance, for the self-mirror K3 surface (2.26) twisted by the non-

geometric monodromies σ̂3 and σ̂7, this intersection is just a point17 and so there are no

massless hypermultiplets in the low energy supergravity and we obtain just the N = 2

STU supergravity model (provided that ε1 = ε2 so that the two automorphisms preserve

the same half of the supersymmetry).

6 Conclusion

In this work we have constructed a new class of N = 2 four-dimensional non-geometric

compactifications of type IIA superstring theories, that consist of K3 fibrations over two-tori

with non-geometric monodromies which lead in most cases to pureN = 2 STU supergravity

with no hypermultiplets at low energies.

The monodromies correspond to non-geometric automorphisms that we have obtained

by pairing a non-symplectic automorphism of a K3 surface with a non-symplectic auto-

morphism of the mirror surface. We have demonstrated that the action of such an auto-

morphism can be lifted to an isometry of the lattice Γ4,20, i.e. an element of the duality

group O(Γ4,20) of CFTs on K3 surfaces, and hence leads to a well-defined string theory

compactification. We have shown that the fixed loci of these automorphisms are given

by asymmetric Gepner model orbifolds, considered recently in [8]. The new understand-

ing of these non-geometric backgrounds in terms of mirrored automorphisms should apply

to non-geometric automorphisms of Calabi-Yau three-folds as well (except naturally the

lattice-related aspects).

We have analysed the models from the four-dimensional N = 4 gauged supergravity

perspective valid at low energies. The matrices corresponding to the Γ4,20 isometries that

we have constructed provide directly the structure constants which parametrise the gauged

17In fact the moduli space of K3 surfaces with an action by σ7 is one-dimensional, and the K3 surfaces

of the family carry an elliptic fibration ([29], Example 6.1, 1)). One can check that only one K3 surface

of the family admits also a non-symplectic automorphism of order three, this is then the K3 surface in

example (2.26). This explains why the intersection is only one point.
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supergravities obtained from twisted reductions of K3 × T 2, and we have showed that

the minima of the superpotential preserve N = 2 supersymmetry in four dimensions, as

expected from the string theory constructions of such vacua. In some cases, hypermultiplets

remain massless in the four dimensional theories; we have obtained, using results from the

mathematical literature, the corresponding hypermultiplet moduli space, whose dimension

agrees with the string theory predictions.

We plan to provide more details on the four-dimensional gauged supergravity con-

struction in a companion paper. In particular we will analyse the scalar manifold of the

low-energy theory in order to show explicitly that the hypermultiplet moduli space predic-

tions from algebraic geometry are verified, and check that all the consistency conditions of

gauged supergravity are met for these particular gaugings.

The duality between the type IIA string theory compactified on K3 and the heterotic

string compactified on T 4 [24] gives a heterotic dual to our constructions consisting of a

toroidal reduction of the heterotic string with monodromy twists, that gives an asymmetric

orbifold construction at fixed points; such models were introduced in [2]. Particular exam-

ples of heterotic asymmetric orbifolds are given by CHL compactifications [47]; the latter

correspond, on the type IIA side, to symplectic automorphisms of K3 surfaces. Here, alge-

braic geometry leads us to a particularly interesting class of constructions that correspond

to non-symplectic K3 automorphisms on the type IIA side and preserve N = 2 supersym-

metry. The corresponding heterotic orbifolds will be discussed further in a forthcoming

publication.
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A Explicit lattice computations

To get the action of the isometry on the lattice E8, respectively E6, with the standard

bilinear form Est
i , i = 6, 8 as given in Examples 3, 4 we use the fact that thanks to the

automorphism σ3 of order three these two lattices have the structure of a Z[ζ]-module,

where ζ is a primitive third root of unity (recall that the ring Z[ζ] is called the ring of

Eisenstein integers). Lattices with this property are very much investigated in number

theory, see [48] for a precise introduction of the basic tools needed in this section and a

general introduction on the subject.
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Recall that the multiplication of an element a + bζ ∈ Z[ζ] with an element x in the

lattice, is defined as

(a+ ζb) · x := ax+ bσ ⋆
3 (x).

Since σ ⋆
3 by construction does not fix any vector on E8, resp. E6, and Z[ζ] is a principal

ideal domain then these two lattices are free over Z[ζ] of rank 4, respectively 3.

Let e1, e2, e3, e4 be a set of generators of the Z[ζ]-module E8 so that E8 = Z[ζ]e1 ⊕
Z[ζ]e2⊕Z[ζ]e3⊕Z[ζ]e4 and clearly B8 = {e1, e2, e3, e4, ζe1, ζe2, ζe3, ζe4} is a set of generators
of E8 as an integral lattice. One can consider a similar set of generators for E6 as Z[ζ]-

module and a set of generators B6 for E6 as a lattice over the integers. Following ([49],

Chapter 1), consider the hermitian forms on E8, respectively E6 (as Z[ζ]-lattices)

hE8
=




3 θ 0 0

θ̄ 3 θ 0

0 θ̄ 3 θ

0 0 θ̄ 3


 , hE6

=




3 θ 0

θ̄ 3 θ

0 θ̄ 3




where θ = ζ − ζ̄. One can then define a bilinear form

bEi
(α, β) := −1

3
(hEi

(α, β) + ρ(hEi
(α, β))), (α, β) ∈ Ei × Ei

on the lattices Ei with the set of generators Bi, i = 6, 8, where ρ denotes the Q-

automorphism of Q(ζ) that sends ζ to ζ̄ (see [32]). Observe that the element (α, β) is

considered on the left hand side as an element of the rank i integral lattice and on the right

hand side as an element of the rank i/2 module over Z[ζ].

With the help of MAGMA one can find a base change matrix TEi
with integer coeffi-

cients such that

Est
i = T t

Ei
bEi

TEi
, i = 6, 8.

where recall that Est
i is the standard lattice metric as given in the Examples 3, 4 and by

abuse of notation we identify the bilinear form bEi
with its symmetric i × i matrix. The

action of the isometry in the above given set of generators Bi of Ei, i = 6, 8 (as an integral

lattice) is easy to write, since this is a block matrix with 4, respectively 3, blocks of the form
(
0 −1

1 −1

)
.

We call these two matrices HEi
, i = 6, 8. Then the action of the isometry in the set of

generators with the standard lattice metric is given by

JEi

3 = T−1
Ei

HEi
TEi

, i = 6, 8.

These are the matrices given in the equations (2.33), (2.37).

In a similar way one can compute the action of the automorphism σ ⋆
3 on A2 and on

U ⊕ U . In this case the matrices of the hermitian forms have a very easy form

hA2
= (3) hU⊕U =

(
0 θ

θ̄ 0

)
.
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With the same notation as above we find that in these two cases TA2
= TU⊕U = id, which

is not necessarily the case in general (e.g. one can check in the previous computation that

TEi
6= id since bEi

6= Est
i , for i = 6, 8).

As an example we do the explicit computations for A2. Here recall

bA2
(α, β) := −1

3
(hA2

(α, β) + ρ(hA2
(α, β))), (α, β) ∈ A2 ×A2.

As a Z[ζ]-lattice we have that A2 = Z[ζ]e1 for a generator e1 so that {e1, ζe1} is a basis of

A2 as an integral lattice. Now with hA2
= (3) we have

bA2
(e1, e1) = −1

3
(hA2

(e1, e1) + ρ(hA2
(e1, e1))) = −1

3
(3 + 3) = −2,

bA2
(ζe1, ζe1) = −1

3
(ζ3ζ̄ + ζ̄3ζ) = −2,

bA2
(e1, ζe1) = bA2

(ζe1, e1) = −1

3
(3ζ + 3ζ̄) = 1,

and we get bA2
= Ast

2 . Now the action of the automorphism σ ⋆
3 on the basis e := e1,

f := ζe1 of the integral lattice A2 corresponds by definition of the structure of Z[ζ]-module

to the multiplication by ζ. So we have that the automorphism sends e to f and since

ζ2e1 = −e1 − ζe1 we get that the image of f is −e − f as given in Example 4. In the

case of Ei, i = 6, 8 we determine with MAGMA a matrix TEi
that changes the basis Bi

to the basis for the standard action and we use then this matrix to get the action of the

automorphism on the basis of the standard action.

Observe that one could use a similar method to determine the action of the automor-

phism σ ⋆
7 of Example 3 on the lattice U ⊕ U ⊕ E8. This is a Z[ζ7]-module of rank 2 (ζ7

denotes a primitive seventh root of unity) but we do not know the explicit matrix of the

hermitian form hU⊕U⊕E8
which is a 2× 2-hermitian matrix (to determine such forms is in

general a difficult problem; see [48]). As seen above this would allow us to find the matrix

of the base change TU⊕U⊕E8
that can then be used to give the action of σ ⋆

7 on U ⊕U ⊕E8

with the standard bilinear form.
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