S. Wang, U. Choi, J. Gong, X. Yang, Y. Li et al., Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis, The EMBO Journal, vol.36, issue.6, pp.816-845, 2017.
DOI : 10.15252/embj.201695775

A. Engel, X. Shen, D. Selcen, and S. Sine, What Have We Learned from the Congenital Myasthenic Syndromes, Journal of Molecular Neuroscience, vol.116, issue.Suppl. 1, pp.143-53, 2010.
DOI : 10.1001/jama.1937.02780090027008

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050586/pdf

J. Arredondo, M. Lara, S. Gospe, J. Mazia, C. Vaccarezza et al., Choline Acetyltransferase Mutations Causing Congenital Myasthenic Syndrome: Molecular Findings and Genotype-Phenotype Correlations, Human Mutation, vol.270, issue.1, pp.881-93, 2015.
DOI : 10.1074/jbc.270.49.29111

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537391/pdf

V. Salpietro, W. Lin, D. Vedove, A. Storbeck, M. Liu et al., cause a presynaptic congenital myasthenic syndrome, Annals of Neurology, vol.17, issue.pt 7, pp.597-603, 2017.
DOI : 10.1038/nrn.2015.16

S. Nicole, A. Chaouch, T. Torbergsen, S. Bauche, E. De-bruyckere et al., Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy, Brain, vol.137, issue.9, pp.2429-2472, 2014.
DOI : 10.1093/brain/awu160

URL : https://academic.oup.com/brain/article-pdf/137/9/2429/13797931/awu160.pdf

E. Horstick, J. Linsley, J. Dowling, M. Hauser, K. Mcdonald et al., Stac3 is a component of the excitation???contraction coupling machinery and mutated in Native American myopathy, Nature Communications, vol.8, issue.4, 1952.
DOI : 10.1371/journal.pgen.1000372

K. Ohno, D. Hutchinson, M. Milone, J. Brengman, C. Bouzat et al., Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit., Proceedings of the National Academy of Sciences, vol.92, issue.3, pp.758-62, 1995.
DOI : 10.1073/pnas.92.3.758

A. Abicht, M. Dusl, C. Gallenmuller, V. Guergueltcheva, U. Schara et al., Congenital myasthenic syndromes: Achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: A study of 680 patients, Human Mutation, vol.16, issue.202, pp.1474-84, 2012.
DOI : 10.1016/j.nmd.2005.10.001

D. Beeson, Congenital myasthenic syndromes: Recent advances. Current opinion in neurology, pp.565-71, 2016.
DOI : 10.1097/wco.0000000000000370

A. Engel, X. Shen, D. Selcen, and S. Sine, Congenital myasthenic syndromes: Pathogenesis, diagnosis, and treatment. The Lancet Neurology, p.461, 2015.
DOI : 10.1016/s1474-4422(14)70201-7

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520251/pdf

G. Mcmacken, A. Abicht, T. Evangelista, S. Spendiff, and H. Lochmuller, The Increasing Genetic and Phenotypical Diversity of Congenital Myasthenic Syndromes, Neuropediatrics, vol.48, issue.4, pp.294-308, 2017.

C. Slater, Chapter 2 Reliability of neuromuscular transmission and how it is maintained, Handb Clin Neurol, vol.91, pp.27-101, 2008.
DOI : 10.1016/S0072-9752(07)01502-3

R. Whittaker, D. Herrmann, B. Bansagi, B. Hasan, R. Lofra et al., mutations causing a treatable neuromuscular syndrome, Neurology, vol.85, issue.22, pp.1964-71, 2015.
DOI : 10.1212/WNL.0000000000002185

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664120/pdf

X. Shen, D. Selcen, J. Brengman, and A. Engel, Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability, Neurology, vol.83, issue.24, pp.2247-55, 2014.
DOI : 10.1212/WNL.0000000000001079

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277673/pdf

A. Chaouch, J. Muller, V. Guergueltcheva, M. Dusl, U. Schara et al., A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome, Journal of Neurology, vol.18, issue.202, pp.474-81, 2012.
DOI : 10.1016/0896-6273(95)90080-2

K. Barwick, J. Wright, S. Al-turki, M. Mcentagart, A. Nair et al., Defective Presynaptic Choline Transport Underlies Hereditary Motor Neuropathy, The American Journal of Human Genetics, vol.91, issue.6, pp.1103-1110, 2012.
DOI : 10.1016/j.ajhg.2012.09.019

URL : https://doi.org/10.1016/j.ajhg.2012.09.019

S. Bauche, S. O-'regan, Y. Azuma, F. Laffargue, G. Mcmacken et al., Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea, The American Journal of Human Genetics, vol.99, issue.3, pp.753-61, 2016.
DOI : 10.1016/j.ajhg.2016.06.033

A. Aran, R. Segel, K. Kaneshige, S. Gulsuner, P. Renbaum et al., Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome, Neurology, vol.88, issue.11, pp.1021-1029, 2017.
DOI : 10.1212/WNL.0000000000003720

O. Grady, G. Verschuuren, C. Yuen, M. Webster, R. Menezes et al., , vesicular acetylcholine transporter, cause congenital myasthenic syndrome, Neurology, vol.87, issue.14, pp.1442-1450, 2016.
DOI : 10.1212/WNL.0000000000003179

J. Changeux, P. Corringer, and U. Maskos, The nicotinic acetylcholine receptor: From molecular biology to cognition, Neuropharmacology, vol.96, pp.135-141, 2015.
DOI : 10.1016/j.neuropharm.2015.03.024

A. Haji, R. Takeda, and M. Okazaki, Neuropharmacology of control of respiratory rhythm and pattern in mature mammals, Pharmacology & Therapeutics, vol.86, issue.3, pp.277-304, 2000.
DOI : 10.1016/S0163-7258(00)00059-0

X. Shao and J. Feldman, Cholinergic neurotransmission in the preB??tzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm, Neuroscience, vol.130, issue.4, pp.1069-81, 2005.
DOI : 10.1016/j.neuroscience.2004.10.028

D. Herrmann, R. Horvath, J. Sowden, M. Gonzalez, A. Sanchez-mejias et al., Synaptotagmin 2 Mutations Cause an Autosomal-Dominant Form of Lambert-Eaton Myasthenic Syndrome and Nonprogressive Motor Neuropathy, The American Journal of Human Genetics, vol.95, issue.3, pp.332-341, 2014.
DOI : 10.1016/j.ajhg.2014.08.007

URL : https://doi.org/10.1016/j.ajhg.2014.08.007

A. Engel, D. Selcen, X. Shen, M. Milone, and C. Harper, Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia, Neurology Genetics, vol.2, issue.5, p.105, 2016.
DOI : 10.1212/NXG.0000000000000105

URL : https://doi.org/10.1212/nxg.0000000000000105

N. Lipstein, N. Verhoeven-duif, F. Michelassi, N. Calloway, P. Van-hasselt et al., Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder, Journal of Clinical Investigation, vol.127, issue.3, pp.1005-1023, 2017.
DOI : 10.1172/JCI90259DS2

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330740/pdf

R. Maselli, J. Arredondo, J. Vazquez, J. Chong, M. Bamshad et al., combines myopia, facial tics, and failure of neuromuscular transmission, American Journal of Medical Genetics Part A, vol.53, issue.8, pp.2240-2245, 2017.
DOI : 10.1136/jmedgenet-2015-103416

K. Carss, E. Stevens, A. Foley, S. Cirak, M. Riemersma et al., Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of ??-Dystroglycan, The American Journal of Human Genetics, vol.93, issue.1, pp.29-41, 2013.
DOI : 10.1016/j.ajhg.2013.05.009

K. Belaya, R. Cruz, P. Liu, W. Maxwell, S. Mcgowan et al., cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies, Brain, vol.138, issue.9, pp.2493-504, 2015.
DOI : 10.1093/brain/awv185

URL : https://academic.oup.com/brain/article-pdf/138/9/2493/13800333/awv185.pdf

S. Luo, S. Cai, S. Maxwell, D. Yue, W. Zhu et al., Novel mutations in the C-terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome, Neuromuscular Disorders, vol.27, issue.6, pp.557-64, 2017.
DOI : 10.1016/j.nmd.2017.03.004

F. Montagnese, E. Klupp, D. Karampinos, S. Biskup, D. Glaser et al., mutation: The overlapping phenotypes of limb-girdle myasthenic syndrome and limb-girdle muscular dystrophy dystroglycanopathy, Muscle & Nerve, vol.82, issue.2, pp.334-374, 2017.
DOI : 10.1007/s004210050662

R. Cruz, P. Belaya, K. Basiri, K. Sedghi, M. Farrugia et al., Clinical features of the myasthenic syndrome arising from mutations in GMPPB, Journal of Neurology, Neurosurgery & Psychiatry, vol.34, issue.202, pp.802-811, 2016.
DOI : 10.1016/j.braindev.2011.06.002

M. Taniguchi, H. Kurahashi, S. Noguchi, T. Fukudome, T. Okinaga et al., Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in ??-dystroglycanopathies, Human Molecular Genetics, vol.15, issue.8, pp.1279-89, 2006.
DOI : 10.1093/hmg/ddl045

URL : https://academic.oup.com/hmg/article-pdf/15/8/1279/13934042/ddl045.pdf

S. Bauche, G. Vellieux, D. Sternberg, M. Fontenille, D. Bruyckere et al., Mutations in GFPT1-related congenital myasthenic syndromes are associated with synaptic morphological defects and underlie a tubular aggregate myopathy with synaptopathy, Journal of Neurology, vol.2, issue.8, pp.1791-803, 2017.
DOI : 10.3233/JND-150074

URL : https://hal.archives-ouvertes.fr/hal-01653176

H. Wu, W. Xiong, and L. Mei, To build a synapse: signaling pathways in neuromuscular junction assembly, Development, vol.137, issue.7, pp.1017-1050, 2010.
DOI : 10.1242/dev.038711

R. Cruz, P. Palace, J. Beeson, and D. , Congenital myasthenic syndromes and the neuromuscular junction, Current Opinion in Neurology, vol.27, issue.5, pp.566-75, 2014.
DOI : 10.1097/WCO.0000000000000134

K. Claeys, T. Maisonobe, J. Bohm, J. Laporte, M. Hezode et al., PHENOTYPE OF A PATIENT WITH RECESSIVE CENTRONUCLEAR MYOPATHY AND A NOVEL BIN1 MUTATION, Neurology, vol.74, issue.6, pp.519-540, 2010.
DOI : 10.1212/WNL.0b013e3181cef7f9

E. Gibbs, N. Clarke, K. Rose, E. Oates, R. Webster et al., Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy, Journal of Molecular Medicine, vol.276, issue.6, pp.727-764, 2013.
DOI : 10.1074/jbc.M104927200

T. Liewluck, X. Shen, M. Milone, and A. Engel, Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia, Neuromuscular Disorders, vol.21, issue.6, pp.387-95, 2011.
DOI : 10.1016/j.nmd.2011.03.002

P. Munot, D. Lashley, H. Jungbluth, L. Feng, M. Pitt et al., Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia, Neuromuscular Disorders, vol.20, issue.12, pp.796-800, 2010.
DOI : 10.1016/j.nmd.2010.07.274

M. Illingworth, M. Main, M. Pitt, L. Feng, C. Sewry et al., RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine, Neuromuscular Disorders, vol.24, issue.8, pp.707-719, 2014.
DOI : 10.1016/j.nmd.2014.05.003

E. Stalberg and J. Trontelj, The study of normal and abnormal neuromuscular transmission with single fibre electromyography, Journal of Neuroscience Methods, vol.74, issue.2, pp.145-54, 1997.
DOI : 10.1016/S0165-0270(97)02245-0

J. Plomp, M. Morsch, W. Phillips, and J. Verschuuren, Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models, Experimental Neurology, vol.270, pp.41-54, 2015.
DOI : 10.1016/j.expneurol.2015.01.007

C. Slater, P. Lyons, T. Walls, P. Fawcett, and C. Young, Structure and function of neuromuscular junctions in the vastus lateralis of man. A motor point biopsy study of two groups of patients, Brain, vol.115, issue.2, pp.451-78, 1992.

A. Engel, Congenital myasthenic syndromes, Handb Clin Neurol, vol.91, pp.285-331, 2008.
DOI : 10.1016/S0072-9752(07)01510-2

C. Slater, The functional organization of motor nerve terminals, Progress in Neurobiology, vol.134, pp.55-103, 2015.
DOI : 10.1016/j.pneurobio.2015.09.004

S. Wood and C. Slater, Safety factor at the neuromuscular junction, Progress in Neurobiology, vol.64, issue.4, pp.393-429, 2001.
DOI : 10.1016/S0301-0082(00)00055-1

R. Zucker and W. Regehr, Short-Term Synaptic Plasticity, Annual Review of Physiology, vol.64, issue.1, pp.355-405, 2002.
DOI : 10.1146/annurev.physiol.64.092501.114547

K. Magleby, Facilitation, Augmentation, and Potentiation of Transmitter Release, Progress in Brain Research, vol.49, pp.175-82, 1979.
DOI : 10.1016/S0079-6123(08)64631-2

F. Dodge and R. Rahamimoff, Co-operative action of calcium ions in transmitter release at the neuromuscular junction, The Journal of Physiology, vol.193, issue.2, pp.419-451, 1967.
DOI : 10.1113/jphysiol.1967.sp008367

R. Ruiz, R. Cano, J. Casanas, M. Gaffield, W. Betz et al., Active Zones and the Readily Releasable Pool of Synaptic Vesicles at the Neuromuscular Junction of the Mouse, Journal of Neuroscience, vol.31, issue.6, pp.2000-2008, 2011.
DOI : 10.1523/JNEUROSCI.4663-10.2011

T. Tarr, P. Wipf, and S. Meriney, Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome, Molecular Neurobiology, vol.29, issue.202, pp.456-63, 2015.
DOI : 10.1523/JNEUROSCI.4434-08.2009

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362862/pdf

A. Engel, A. Nagel, T. Fukuoka, H. Fukunaga, M. Osame et al., Motor Nerve Terminal Calcium Channels in Lambert-Eaton Myasthenic Syndrome., Annals of the New York Academy of Sciences, vol.394, issue.1 Calcium Chann, pp.278-90, 1989.
DOI : 10.1126/science.2447652

C. Huze, S. Bauche, P. Richard, F. Chevessier, E. Goillot et al., Identification of an agrin mutation that causes congenital myasthenia and affects synapse function
URL : https://hal.archives-ouvertes.fr/inserm-00409064

R. Maselli, J. Fernandez, J. Arredondo, C. Navarro, M. Ngo et al., LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z???) agrin, Human Genetics, vol.60, issue.2, pp.1123-1158, 2012.
DOI : 10.1016/j.neuron.2008.10.006

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795461/pdf

N. Yumoto, N. Kim, and S. Burden, Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses, Nature, vol.283, issue.7416, pp.438-480, 2012.
DOI : 10.1074/jbc.M805729200

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448831/pdf

H. Wu, Y. Lu, C. Shen, N. Patel, L. Gan et al., Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation, Neuron, vol.75, issue.1, pp.94-107, 2012.
DOI : 10.1016/j.neuron.2012.04.033

J. Plomp, Trans-synaptic homeostasis at the myasthenic neuromuscular junction, Frontiers in Bioscience, vol.22, issue.7, pp.1033-51, 2017.
DOI : 10.2741/4532

M. Takamori, Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders, International Journal of Molecular Sciences, vol.6, issue.4, 2017.
DOI : 10.1038/nature07456

URL : https://doi.org/10.3390/ijms18040896

P. Maddison, J. Newsom-davis, and K. Mills, Decay of postexercise augmentation in the Lambert-Eaton myasthenic syndrome: Effect of cooling, Neurology, vol.50, issue.4, pp.1083-1090, 1998.
DOI : 10.1212/WNL.50.4.1083

P. Maddison, J. Newsom-davis, and K. Mills, Effect of 3,4-diaminopyridine on the time course of decay of compound muscle action potential augmentation in the Lambert-Eaton myasthenic syndrome, Muscle & Nerve, vol.16, issue.9, pp.1196-1204, 1998.
DOI : 10.1212/WNL.34.4.480

L. Hesselmans, F. Jennekens, C. Van-den-oord, H. Veldman, and A. Vincent, Development of innervation of skeletal muscle fibers in man: Relation to acetylcholine receptors, The Anatomical Record, vol.95, issue.3, pp.553-62, 1993.
DOI : 10.1007/978-1-4684-1131-7_10

R. Couteaux and J. Taxi, Recherches histochimiques sur la distribution des activités cholinestérasiques au niveau de la synapse myoneurale, Arch Anat Micr Morphol Exp, vol.41, pp.352-92, 1952.

A. Engel, E. Lambert, and M. Gomez, A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release, Annals of Neurology, vol.232, issue.4
DOI : 10.1113/jphysiol.1972.sp010000

S. Nicole, Congenital Myasthenic Syndromes or Inherited Disorders of Neuromuscular Transmission Neuromuscular synaptogenesis: Coordinating partners with multiple functions, Nat Rev Neurosci, vol.6415, issue.11, pp.703-721, 2014.

K. Petrov, E. Girard, A. Nikitashina, C. Colasante, V. Bernard et al., Schwann Cells Sense and Control Acetylcholine Spillover at the Neuromuscular Junction by ??7 Nicotinic Receptors and Butyrylcholinesterase, Journal of Neuroscience, vol.34, issue.36, pp.11870-83, 2014.
DOI : 10.1523/JNEUROSCI.0329-14.2014

URL : http://www.jneurosci.org/content/jneuro/34/36/11870.full.pdf

M. Milone, H. Wang, K. Ohno, R. Prince, T. Fukudome et al., Mode Switching Kinetics Produced by a Naturally Occurring Mutation in the Cytoplasmic Loop of the Human Acetylcholine Receptor ?? Subunit, Neuron, vol.20, issue.3, pp.575-88, 1998.
DOI : 10.1016/S0896-6273(00)80996-4

K. Ohno, P. Quiram, M. Milone, H. Wang, M. Harper et al., Congenital Myasthenic Syndromes due to Heteroallelic Nonsense/Missense Mutations in the Acetylcholine Receptor ?? Subunit Gene: Identification and Functional Characterization of Six New Mutations, Human Molecular Genetics, vol.6, issue.5, pp.753-66, 1997.
DOI : 10.1093/hmg/6.5.753

X. Shen, K. Ohno, S. Sine, and A. Engel, Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3-M4 linker, Brain, vol.128, issue.2, pp.345-55, 2005.
DOI : 10.1093/brain/awh364

URL : https://academic.oup.com/brain/article-pdf/128/2/345/1125636/awh364.pdf

P. Quiram, K. Ohno, M. Milone, M. Patterson, N. Pruitt et al., Mutation causing congenital myasthenia reveals acetylcholine receptor ??/?? subunit interaction essential for assembly, Journal of Clinical Investigation, vol.104, issue.10, pp.1403-1413, 1999.
DOI : 10.1172/JCI8179

URL : http://www.jci.org/articles/view/8179/files/pdf

X. Shen, K. Ohno, T. Fukudome, A. Tsujino, J. Brengman et al., Congenital myasthenic syndrome caused by low-expressor fast-channel AChR ?? subunit mutation, Neurology, vol.59, issue.12, pp.1881-1889, 2002.
DOI : 10.1212/01.WNL.0000042422.87384.2F

X. Shen, T. Fukuda, K. Ohno, S. Sine, and A. Engel, Congenital myasthenia???related AChR ?? subunit mutation interferes with intersubunit communication essential for channel gating, Journal of Clinical Investigation, vol.118, issue.5, pp.1867-76, 2008.
DOI : 10.1172/JCI34527

URL : http://www.jci.org/articles/view/34527/files/pdf

B. Ammar, A. Petit, F. Alexandri, N. Gaudon, K. Bauche et al., Phenotype genotype analysis in 15 patients presenting a congenital myasthenic syndrome due to mutations in DOK7, Journal of Neurology, vol.6, issue.5, pp.754-66, 2010.
DOI : 10.1016/S0959-4388(96)80014-6

C. Slater, P. Fawcett, T. Walls, P. Lyons, S. Bailey et al., Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia', Brain, vol.129, issue.8, pp.2061-76, 2006.
DOI : 10.1093/brain/awl200

K. Boycott, A. Rath, J. Chong, T. Hartley, F. Alkuraya et al., International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases, The American Journal of Human Genetics, vol.100, issue.5, pp.695-705, 2017.
DOI : 10.1016/j.ajhg.2017.04.003

V. Marx, The DNA of a nation, Nature, vol.94, issue.7566, pp.503-508, 2015.
DOI : 10.1016/j.ajhg.2014.03.010

A. Philippakis, D. Azzariti, S. Beltran, A. Brookes, C. Brownstein et al., The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery, Human Mutation, vol.2011, issue.R1, pp.915-936, 2015.
DOI : 10.1093/database/bar026

R. Thompson, L. Johnston, D. Taruscio, L. Monaco, C. Beroud et al., RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research, Journal of General Internal Medicine, vol.29, issue.9, pp.780-787, 2014.
DOI : 10.1038/nbt.1958

URL : https://link.springer.com/content/pdf/10.1007%2Fs11606-014-2908-8.pdf

U. Schara, D. Marina, A. Abicht, and A. , Congenital Myasthenic Syndromes: Current Diagnostic and Therapeutic Approaches, Neuropediatrics, vol.43, issue.04, pp.184-93, 2012.
DOI : 10.1055/s-0032-1323850

G. Kirsch and T. Narahashi, 3,4-diaminopyridine. A potent new potassium channel blocker, Biophysical Journal, vol.22, issue.3, pp.507-519, 1978.
DOI : 10.1016/S0006-3495(78)85503-9

A. Engel, The therapy of congenital myasthenic syndromes, Neurotherapeutics, vol.12, issue.suppl 3, pp.252-259, 2007.
DOI : 10.1016/S0960-8966(01)00336-4

D. Lashley, J. Palace, S. Jayawant, S. Robb, and D. Beeson, Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7, Neurology, vol.74, issue.19, pp.1517-1540, 2010.
DOI : 10.1212/WNL.0b013e3181dd43bf

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875925/pdf

G. Burke, A. Hiscock, A. Klein, E. Niks, M. Main et al., Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations, Neuromuscular Disorders, vol.23, issue.2, pp.170-175, 2013.
DOI : 10.1016/j.nmd.2012.11.004

URL : https://doi.org/10.1016/j.nmd.2012.11.004

P. Lorenzoni, R. Scola, C. Kay, L. Filla, A. Miranda et al., Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation, Journal of the Neurological Sciences, vol.331, issue.1-2, pp.155-162, 2013.
DOI : 10.1016/j.jns.2013.05.017

K. Krnjevic and R. Miledi, Adrenaline and Failure of Neuromuscular Transmission, Nature, vol.180, issue.4590, pp.814-819, 1957.
DOI : 10.1038/180814b0

J. Sieb and A. Engel, Ephedrine: effects on neuromuscular transmission, Brain Research, vol.623, issue.1, pp.167-71, 1993.
DOI : 10.1016/0006-8993(93)90025-I

M. Milone and A. Engel, Block of the endplate acetylcholine receptor channel by the sympathomimetic agents ephedrine, pseudoephedrine, and albuterol, Brain Research, vol.740, issue.1-2, pp.346-52, 1996.
DOI : 10.1016/S0006-8993(96)00894-3

M. Khan, D. Lustrino, W. Silveira, F. Wild, T. Straka et al., Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease, Proceedings of the National Academy of Sciences, vol.13, issue.2 Pt 1, pp.746-50, 2016.
DOI : 10.1016/S0092-8674(00)81410-5

URL : https://hal.archives-ouvertes.fr/hal-01306149