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Abstract
Wenumerically explore themany body localization (MBL) transition through the lens of the
entanglement spectrum.While a direct transition from localization to thermalization is believed to be
obtained in the thermodynamic limit (the exact details of which remain an open problem), infinite
system sizes there exists an intermediate ‘quantumcritical’ regime. Previous numerical investigations
have explored the crossover from thermalization to criticality, and have used this to place a numerical
lower bound on the critical disorder strength forMBL. A careful analysis of the high energy part of the
entanglement spectrum (which contains universal information about the critical point) allows us to
study the crossover from criticality toMBL, andwefind evidence for such a crossover which could
allowus to place a numerical upper bound on the critical disorder strength forMBL.

1. Introduction

Many body localization (MBL) and the resulting breakdownof statisticalmechanics in disordered interacting
systems has been the subject ofmuch recent research [1–6]. The intensive research has yielded a plethora of
insights into the properties of this non-ergodic regime, including its connections of integrability [7–12], its
response properties [13, 14], and the circumstances underwhich the phenomenonmay arise [15–23]. However,
the quantumphase transition between a ‘thermal’ phase where statisticalmechanics is obeyed and a ‘many body
localized’ (MBL) phasewhere it is not continues to be an open problem. This is a dynamical transitionwhich lies
outside the usual thermodynamic frameworks, andwhile it has been attackedwith a variety of techniques, from
meanfield theory [24, 25] to the strong disorder renormalization group [26–30], and using both analytic
arguments [31–34] and numerics [35–37], (see [38] for a review), a complete understanding of the transition
remains elusive.

Many investigations have focused on the (VonNeuman) eigenstate entanglement entropy (EEE) as an order
parameter for the phase transition. An early analytic paper argued [31] that if the EEE density evolved in a
smooth fashion across theMBL transition, then the critical pointmust exhibit thermal entanglement. However,
a careful parsing of results fromnumerical exact diagonalization [37] suggests a different picture, whereby the
EEE density is discontinuous at the transition, in the thermodynamic limit. This work [37] put forth an appealing
picturewherein theMBL and thermal phases are separated infinite size numerics by a ‘quantum critical fan’ (see
figure 1(a)), just like thermodynamic quantum critical points [39]. However, exact numerical investigations to
date have only seen the left side of the fan i.e. the crossover from the thermal phase to the quantum critical
regime. As a result, not only is the global structure of the phase diagram still unresolved, but since the disorder
strength ht for the thermal to critical crossover increases with system size, existing exact numerics are only able to
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place a lower bound on the critical disorder strength for theMBL transition4. This lower bound has drifted
gradually upwards as numerics on larger system sizes have become available, andwhilefinite size scaling
collapses (e.g. [36]) suggest afinite critical disorder strength, it is possible that the sizes accessed are not large
enough to be in the scaling regime, a perspective reinforced by the observation that the critical exponents
extracted from such analysis violate analytic bounds [33] and are therefore likely incorrect. Existing exact
numerics thus cannot exclude the possibility that ht  ¥ as L  ¥, i.e. that theMBLphase observed in
numerics is nothingmore than afinite-size effect, and the correct phase diagram resemblesfigure 1(b). A direct
observation of theMBL to critical crossover using exact numericalmethods is thus highly desirable, both to
confirm the global structure of the phase diagram, and to enable the extraction of a numerical upper bound on
the critical disorder strength for theMBL transition. (Of course, it remains possible that rare region effects could
turn the critical point obtained from such an extrapolation into an avoided critical point, as happens in e.g. [40].)

In this workwe analyze the thermal-MBL transition through a new lens, that of the eigenstate entanglement
spectrum (EES) [41–46]. The EES contains farmore information about the pattern of quantum entanglement
than the EEE (and itmay be experimentally observable [47]). In earlier work [43], we revealed a rich and
universal structure in the EES of theMBLphase, and pointed out that the high energy part of the EES (the part
typically discarded in numerical analyses) contains robust information about the critical regime.Wenowparse
the system size dependence of the high energy EES—andfind this provides information about both the thermal-
critical andMBL-critical crossovers. Ourwork thus not only confirms the scenario of a ‘quantum critical fan’ in
finite size numerics, but also suggests an upper bound on the critical disorder strength for theMBL transition.

2.Model

In this workwe perform exact diagonalization on a spin one half Heisenbergmodel of length Lwith random
fields in the x and z directions and periodic boundary conditions:
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where S2 s=m
m are the Paulimatrices. Here we set J=1while h controls the disorder strength. The ia m are

randomnumbers drawn from auniformdistribution in 1, 1-[ ]. Thismodel is known to have a thermal-critical
transition around h 2.5= [43]. Equation (1) is similar to the ‘standardmodel’used in studies ofmany-body
localizationwhich has a random field in only one direction.We use two random fields to break the total S z

conservation.Without breaking this symmetry, we have to choose a total S z sector for every entanglement

Figure 1.Possible phase diagrams for the thermal-MBL transition, as a function of disorder strength h and system size L. The phase
diagramproposed by [37] is given in (a), in the thermodynamic limit it has a direct transition from the thermal toMBL phases, but at
the finite sizes accessible numerically there is an intermediate ‘critical’ regime. Figure (b) shows an alternative phase diagram inwhich
there is noMBLphase in the thermodynamic limit, thoughfinite sized systemsmay be glassy. Previous numerical investigations have
only observed transition between the thermal and critical phases, and therefore cannot determinewhich of these phase diagrams are
correct. Our examination of the eigenstate entanglement spectrum tentatively allows us to see both sides of the quantum critical fan,
thus ruling out scenario (b). The symbols correspond towherewe have detected a transition out of the critical fan using the
entanglement spectrum.

4
The transition also occurs as a function of energy density, in this workwewill fix the energy density to be in themiddle of the density of

states.
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spectra. Different sectors are available depending onwhether L5 is even or odd, and this leads to significant even/
odd effects in our data. Breaking the symmetry by introducing afield along the x axis eliminates these effects,
allowing us to compare even and odd L and therefore doubling our resolution in system size.

We use exact diagonalization to obtain the eigenstates of equation (1) for system sizes in the range L= 11–17,
for 200−500 realizations of disorder. Extensive disorder averaging is necessary, since sample to sample
fluctuations are known to be large close to the transition [37]. For L 15 we compute all the eigenstates of the
system.However since the entanglement properties depend on the energy density we use only themiddle 1/3 of
these eigenstates in our calculations, similar to [5, 43]. For L 15> weuse the shift-invertmethod (see e.g. [48] to
obtain 1000 eigenstates at energy densities approximately halfway between the top and bottomof the spectrum).

3. Entanglement density of states

Having obtained the eigenstates the next task is to extract from them some useful information. Entanglement
has long been understood to be a useful quantity to probeMBL.Historically work focuses on the entanglement
entropy, defined as:

S Tr log ; Tr , 2A A A Br r r= - = YñáY( ) ∣ ∣ ( )

where YñáY∣ ∣ is the densitymatrix of an eigenstate, and Ar is the ‘reduced densitymatrix’ for subregionA
obtained by tracing out all the degrees of freedom in some regionBwhich is the complement toA6. The
subregionA is composed of LA consecutive sites. Entanglement entropy exhibits area law behavior in theMBL
phase and volume law behavior in the thermal phase,making it a useful probe of the physics of the transition. A
potential drawback of it is that it distills a lot of information (e.g. the entirematrix Ar ) down to a single number.
More information can be potentially found in the entanglement spectrum, il{ }, which is the set of all
eigenvalues of log Ar- . The entanglement entropy is dominated by ‘entanglement states’with low
‘entanglement eigenvalue’ (i.e.small il ). However, in a previous work [43]we showed that entanglement states
at high entanglement eigenvalue have universal structure in theMBLphase, and appear to carry amemory of the
critical point.Motivated by this observation, we focus in the present work on the high energy part of the
entanglement spectrum to tease out insights into theMBL transition. Such information can only be obtained by
studying the spectrumdirectly since these states’ contribution to the entanglement entropy is small. Note that
this procedure produces a lot of data: for each realization of disorder we get 1000 eigenstates, and for each
eigenstate we get an entanglement spectra with a number of eigenvalues equal to the square root of the size of the
Hilbert space.

We begin by reviewing the relevant results of [43] on the properties of entanglement spectra in the ETHand
MBLphases. The quantity wewill bemost interested in is the density of states (EDOS) of the entanglement
spectrum,whichwas found to be qualitatively different in the two phases. Figure 2 shows examples of the EDOS
in the ETH (a) andMBL (c) phases. To understand the ETHdensity of states, the prototypical example is a
system at infinite temperature. In this case every eigenvalue of the reduced densitymatrix is equal. Let us define
NA to be the size of theHilbert space of the regionA (the complement towhich is traced out), and LA to be the
length of this region in the one-dimensional systemswewill study. Then N Llogi A Al = µ for all i. Since the
systemswe study are not at infinite temperature we instead get a density of states narrowly distributed around
LA. In theMBLphase amodel wavefunction could be a pure product state which has 00l = and all other

il = ¥. Away from this ideal limit we believe that the eigenstates should be products of ‘l-bits’, which decay
exponentially in space. Therefore therewill be some non-zeroλ values which result from cutting the tails of
these l-bits. From this intuitionwe expect an EDOSwhich decays exponentially from 0l = . However in [43]we
showed that themajority of entanglement eigenvalues are not in this exponentially decaying part but are instead
in another peakwhich is atmuch higher entanglement eigenvalue. The level spacings in this higher peak obey
semi-Poisson statistics, which are indicative of criticality.

We study the location of this ‘high-energy peak’, which turns out to be a very sensitive probe of the critical
properties of the system.Wehave studied the scaling of the ‘high energy peak’with system size L, subsystem size
LA, and disorder strength h.We discuss these in turn.Note that we found that we need L 5A  in order to have
good statistics. Since for any location of entanglement cut, LA is the smaller of the two subregions, it then follows
thatwe need L 11 .Meanwhile, the largest system sizes we can access given available numerical resources are
L=17, and thus our results are limited to the range L11 17  . A larger rangemay be accessible with
specifically tailoredmodels (e.g. [49]) orwith greater computational resources, andwould be an interesting
problem for futurework.

5
And also LA.

6
Whatwe have defined is the VonNeumann entanglement entropy, other entanglement entropies (e.g. Renyi) are defined similarly.
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4. Results

4.1. System size dependence
Deep in either the thermal orMBLphases, we expect the EDOS to be independent of L. In the thermal phase, our
intuition from the infinite-temperature case tells us that the EDOS should depend only on the number of
degrees of freedom in the traced-out regionA, i.e. it depends on LA but not on L. In theMBLphase the
correlation length is very small. Increasing L forfixed LAmeans adding degrees of freedom far from the regionA,
and these should not affect the entanglement betweenA and the rest of the system. Infigure 2we showhow the
EDOS changes with system sizes for a few different disorder strengths. Deep in the thermal (a) andMBLphases
(c) the EDOS peak position changes little with L, as expected. But at intermediate values of h (b), whichwemight
expect to lie in the critical region, we see significant changes in the EDOSpeak position as a function of L.

The dependence of the EDOS in the critical region has a natural explanation in terms of the scenario outlined
in [37] (and anticipated also in [27]). In that work it was argued that entanglement in the critical regime is
dominated by sparse ‘fractal’ networks of long range resonances. Adding degrees of freedom far away from the
entanglement cut alters the structures of these resonant networks, and hence alters the EDOS. Aswe increase
system size at subcritical disorder, tuning through the critical to thermal crossover, these ‘resonant networks’
denselyfill in, so that EDOS becomes insensitive to system size as discussed above.Meanwhile, as we increase
system size at supercritical disorder, tuning through the critical toMBL crossover, then eventually system size
exceeds the size of the resonances, such that adding degrees of freedom far from the cut no longer affects the
resonant networks across the entanglement cut, or the EDOS. The key diagnostic of criticality is thus a
dependence of the EDOS on total system size L, at constant h and LA.

We can quantify themotion of the density of states with system size by tracking the position of the top of the
high entanglement eigenvalue peak. Infigure 3we plot this peak location as a function of L for a variety of
disorder strengths, at L 5A = . Note that the curves in this plot correspond tomoving down vertical lines in
figure 1. At small or large h the curves are flat, since at the system sizes we can access these disorder strengths are
entirely in either the thermal orMBLphases. At intermediate disorder, e.g. h=3, we see curves which decrease
steadily, implying that at the system sizes we can access these curves are all in the critical regime. In figure 4we
show the results offitting the data infigure 3 to straight lines, which shows a non-zero slope in the critical region
which seems to decay to zero in both the small- and large-disorder limits.

The data infigure 4was the result offitting all the data to a straight line, but if the picture in figure 1(a) is
correct then the slope of such lines should decrease as L is increased (though it is possible that the range of L that
we study is too narrow to observe this). If such a change occuredwe could imagine defining a ‘crossover
lengthscale’ L hc ( ) for the quantum critical fan as the lengthscale where the dependence of the EDOSpeak on L
disappears. The observation of such a crossover at weak disorder sets a lower bound on the location of the

Figure 2.Entanglement density of states (EDOS) for phases in the thermal phase with h 1.5= (a), in the critical phase with h=4 (b),
and in theMBLphasewith h=8 (c), for L 5A = . In the thermal phase the EDOS is peaked around a value proportional to LA and
independent of L. In theMBLphase the EDOShas two peaks, onewhich exponentially decays from zero and the other at higher
entanglement energies. In the critical phase the systemmoves between the two cases as a function of L. The EDOs shownwe obtained
by averaging over themiddle third of the eigenstates in 128−512 realizations of disorder.
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Figure 3.The location of themaximumof the EDOS (excluding the peak around 0l = which occurs in theMBLphase), as a function
of L for several h values and L 5A = . The peak location should only depend on L in the critical regime. Thus this plot allows us to
identify both the critical-thermal boundary and the critical-MBL boundary. The peak location for a single samplewas computed by
averagingmaximumvalues of the EDOS of all that sampleʼs eigenstates (see section 4.4 for justification of this procedure). The plotted
data and errors are the result of averaging the peak locations of 128−512 samples. (More samples were used at smaller sizes and larger
disorder.)The separation between curves at different h is larger than the change in the curves with L, especially at large disorder.
Therefore to show all data clearly on the same plot we subtracted a constant from each curvewith h 3.5 . The following is a list of the
values of to constants whichwere subtracted in the format (h:offset): (3.5:0.5), (4:1), (4.5:1.5), (5:2), (6:4), (7:5.5), (8:6.5), (9:7.5),
(10:8.5), (12:10.5).

Figure 4.The slope of the best-fit lines to the data in figure 3. As expected, in the critical region the slope is large and negative while it
tends to zero for both strong andweak disorder.

5
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thermal-MBL transition, while at strong disorder it would set an upper bound. The observation of such an upper
bound infinite-size numerics would definitively rule out the scenario infigure 1(b).

We can clearly detect L hc ( ) at weak disorder, andwe plot its observed values as green circles infigure 1,
finding as expected that itmoves to large L as h is increased. Interestingly, we also observe aflattening of the
curves at h 7» , corresponding to L 15c » , andwe plot these results as green squares infigure 1.

We interpret thisflattening as an observation of L h 6 17c = >( ) , L h 7, 8, 9 15 1c = = ( ) , and
L h 12 12c =( ) . This second crossover lengthscale, which is a decreasing function of disorder strength,
corresponds to the right side of the quantum critical fan infigure 1, constituting to our knowledge thefirst
observation of the critical toMBL crossover.We believe that the apparent ‘uptick’ in the peak position at large h
and largest L is a numerical artifact (in this regime the curves are ‘flat within error bars’), although it is interesting
to speculate about a possible second crossover, which couldmodify the picture of the phase diagram infigure 1.

4.2.Dependence of entanglement spectra on subsystem size
Wenow explore how the peak position varies as a function of subsystem size LA, atfixed system size L. In the
thermal phase the location of the peak in the EDOS should be LAµ . In theMBLphase, we also expect the peakʼs
location to scale as LA, by the following argument:most degrees of freedom live a distance LA~ away from the
entanglement cut. (This is just dimensional analysis—LA is the only lengthscale characterizing the cut.)
However, in the eigenstates degrees of freedom are typically only entangledwithin a lengthscale ξ, where ξ is the
localization length. Given exponential localization, a degree of freedoma distance LA~ away from the cut will
have entanglement Lexp A x~ -( ) across the cut, and thus will have entanglement eigenvalue LA x~ . In
figure 5we show the peak location, as a function of LA forfixed L=17 and several disorder strengths.We see
that in the thermal phase the behavior is LAµ as expected (figure 5(a)). In theMBLphase the peak location scales
approximately as LA, but there are small deviations fromperfect linear behavior in the deepMBL regime
(figure 5(b)). Understandingwhether these deviations are physical, and towhat physics they correspond if so, is
an interesting challenge for futurework.

4.3.Dependence ondisorder strength
Wenow consider the dependence on the disorder strength h. Note that our toymodel above suggests that in the
thermal phase, the peak location should be independent of h (depending only on LA), whereas in theMBLphase,
peak location should be L hA x~ ( ). Now close to the transition, h hcx ~ - n-( ) , whereas far from the transition
(deep in the locator limit), h1 logx ~ ( ). Given that exact diagonalization studies typically see 0.9n » [36], we
should expect to see the peak location be (i) independent of h in the thermal regime (ii) increasing roughly
linearly with h close to theMBL side of the transition, and (iii) increasingmuchmore slowlywith h in the deep
MBL regime. Infigure 6we show the numerically obtained dependence of peak position on h for several system
sizes. Note that the behavior is broadly consistent with the predictions of the toymodel detailed above.

Figure 5.The location of themaximumof the EDOS (excluding the peak around 0l = which occurs in theMBLphase), as a function
of LA for several h values and L=16. As discussed in the text, the peak location grows LAµ in all phases. The data has been broken into
multiple panels tomake the small h behavior easy to see.

6

New J. Phys. 19 (2017) 113021 SDGeraedts et al



4.4. Statisticalfluctuations: variations between samples versus variations between eigenstates
In this subsection, we investigate the dominant source of the statistical fluctuations. In each sample we study,
every eigenstate produces its own entanglement spectrum, and therefore its own entanglement density of states.
Herewe compare the density of states of eigenstates coming from the same sample to those fromdifferent
samples. In addition to fundamental interest, it is important to understand these difference because they inform
howwe performour data analysis.

Figure 7 shows such a comparison. To obtain this figure, we created amicrocanonical average EDOS out of
1000 eigenstates of a single sample. At L=14, where this datawas taken, we focus 5000» eigenstates (note that
we restrict ourselves to themiddle of the spectrum so that we do not have toworry aboutmobility edges), and
therefore we canmakefive such different EDOS curves.We then repeat this procedure formultiple disorder
realizations, with data coming from the same realization of disorder plotted in the same color. The plot shows
thatfluctuations between the EDOS obtained bymicrocanonical averaging over different energywindows
within the same sample (different groups of 1000 eigenstates) are small compared tofluctuations between
microcanonically averaged EDOS fromdifferent samples.

These results informour numerical procedures in a number of ways. For large system sizes we use the shift-
invertmethod to obtain 1000 eigenstates in themiddle of our spectrum,while for smaller system sizes we use full
diagonalization. Figure 7 suggests that thesemethods should give very similar results, since the difference
between EDOS obtianed frommicrocanonical averaging over different windows ismuch smaller than the

Figure 6.The location of themaximumof the EDOS (excluding the peak around 0l = which occurs in theMBLphase), as a function
of h for several L values and L 5A = . In the ETH the curve isflat while the peak location is hµ in theMBLphase.

Figure 7.A comparison of EDOS for different groups of eigenstates in the same sample and in different samples. The curves in the
figure are obtained by averaging over 1000 eigenstates, at h=5, L 5A = , L=14. Curves of the same color come from the same
sample.We can see that distinctmicrocanonical averages of the EDOS from the same sample aremuchmore similar than
microcanonical averages fromdifferent samples, implying that sample-to-sample variation ismore important than variation between
microcanonical energywindows (of 1000 states)within the same sample.

7
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fluctuations between samples. To confirm this expectation infigure 8we showdata for 256 samples, where each
point is the result of averaging over 16 samples. Thefirst four points (64 samples)were obtained using full
diagonalizationwhile the remainder we taken using shift-invert. If shift-invert gave different results wewould
expect larger error bars on the points takenwith shift-invert, but we do not observe this.

Previously we computed the location of the EDOSpeak by first computing an EDOSwhich is averaged over
all eigenstates in a given sample, and then averaging those peak locations.We could imagine other ways of
performing this analysis.We could compute the peak location for each eigenstate, and average those peak
locations over eigenstates and samples. Figure 7 tells us that both of these averagingmethods should give the
same results, since the EDOS for all eigenstates in a given sample and the final error barwill be dominated by
sample-to-sample fluctuations in any case.We could also imagine finding the peak of an EDOSwhich is
averaged over all eigenstates and samples. The values of the peaks extracted this waywill be different: infigure 7
for example one can see that the results of averaging the peaks of the different samples will not necessarily be the
same as the peak of the average distribution. Infigure 9we show the results of extracting peak values from an
EDOS averaged over all samples. To determine the values in figure 9we fit the data near the top of the curve to a
Gaussian distribution, and the peak location is themaximumof thisfit. Using such amethod it is less clear how
to assign an error bar to our data, and furthermore the data seemsmore noisy than that infigure 3.However we
can clearly see that thismethod gives similar results to those offigure 3.

5.Discussion

Wehave examined theMBL transition through the lens of the entanglement spectrum. In particular, we have
shown that system size dependence of the high energy peak in the entanglement spectrum is a sensitivemeasure of
criticality, which allows us to study both the critical to thermal crossover (whichmany studies have seen before),
and the critical toMBL crossover (which has never before been observed to our knowledge). As such, not only
does ourwork justify a picture inwhich atfinite size theMBL and thermal regimes are separated by a ‘critical’
fan, but it also suggests both a lower and an upper bound on the critical disorder strength for theMBL transition.
(Of course, while observation of a critical fan suggests a critical point between the boundswe place herein, it
remains possible that e.g. rare region effects could render the critical point avoided in thermodynamically large
samples.)

Weprovided twopieces of evidence suggesting that the entanglement spectrum can detect the critical-MBL
crossover. Thefirst was that at large disorder the peak location is independent of L, which is a qualitatively
different behavior than the decrease of the peak locationwith L observed in the critical region. The second
evidencewas that for a given hwe can observe a crossover lengthscale L hc ( )where the peak location versus L
curves becomeflat. If these results are correct this implies a critical-MBL crossover. However there is still work
to be done to improve our results. Thoughfigure 4 seems to show a curvewhich goes to zero at large h, we cannot
rule out that it only asymptotically approaches zero. Itmay be desirable to apply greater computation resources
(or new techniques) to this problem in an effort tomore definitively establishwhether the slope indeed vanishes.

Figure 8.Each data point in thisfigure is the result of averaging the peak locations of 8 different samples. For the first eight points
(those on the left-hand side of the dashed line), all of the eigenstates of the sampleswere computed using full diagonalization, while in
the remaining points only 1000 eigenstates in themiddle of the spectrumwere computed, using the shift-invertmethod. The different
points are consistent (within error bars), and have error bars of similar size, which leads us to conclude that our results do not depend
onwhether we use shift-invert or full diagonalization. Datawas taken for L=14, L 5A = , h=6.
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It is also possible that other systems, while exhibiting the same universal properties,might yield cleaner results at
the system sizes we are able to study.We note that the data we present required thousands of hours of CPU time,
so improving our data by obtainingmore samples, though possible, would require significant computational
resources. A similar problem exists with our putative observation of L hc ( ). It is possible that the flatteningwe
observe is statistical noise, and higher-quality data could help us to establish this7. Higher quality datamight also
provide a tighter bound on the location of the thermodynamic transition point (recall that our current data
suggests h2 7c< < ). Also interesting would be to apply similar analyses formodels with quasi-periodic
disorder, whichmay also be relevant for understanding theMBL transition [50], or to examine the dynamical
evolution of the entanglement spectrum starting from low entanglement initial conditions, as pioneered by [51].

Figure 9. Similar to figure 3, but using a differentmethod of determining the average peak location (error bars not shown). Instead of
finding a peak location for each sample and averaging those, we determine one EDOSby averaging over all samples and plot its peak
value. Though the results of the twomethods are qualitatively the samewe find that the data using the full EDOS is noisier, and
moreover it is harder to estimate error bars.

7
As a rought estimate, at e.g. h=7 the probability to observe our data if the true results lie on a straight line (the p-value) is 0.08, which is

suggestive but not definitive.
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