

A Theoretical Study of HF-C H 3 Cl and (HF) 2 -CH 3 Cl Complexes

Mohammad Esmaïl Alikhani, Laurent Manceron

▶ To cite this version:

Mohammad Esmaïl Alikhani, Laurent Manceron. A Theoretical Study of HF-C H 3 Cl and (HF) 2 -CH 3 Cl Complexes. Journal of Physical Chemistry A, In press, 10.1021/acs.jpca.7b10405. hal-01656920

HAL Id: hal-01656920 https://hal.sorbonne-universite.fr/hal-01656920

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE JOURNAL OF PHYSICAL CHEMISTICS SORBONNE UNIVERSITÉS

Article

Subscriber access provided by BUPMC - Bibliothèque Universitaire Pierre et Marie Curie

A Theoretical Study of HF-C HCI and (HF)-CHCI Complexes

Mohammad Esmail Alikhani, and Laurent Manceron

J. Phys. Chem. A, Just Accepted Manuscript • DOI: 10.1021/acs.jpca.7b10405 • Publication Date (Web): 28 Nov 2017

Downloaded from http://pubs.acs.org on November 29, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Physical Chemistry A is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A Theoretical Study of HF-C H₃Cl and (HF)₂-CH₃Cl Complexes

Mohammad Esmail Alikhani and Laurent Manceron*

Sorbonne Universités, UMR 8233, Université Pierre et Marie Curie-CNRS, De la Molécule au Nanomatériau : Réactivité, Interaction, Spectroscopies (MONARIS), Equipe de Modélisation et Chimie Théorique 4 Place Jussieu, case courrier 49, F-75252 Paris Cedex 05, France

Abstract

The equilibrium geometries, relative stabilities and vibrational properties (frequencies and intensities) of the HF-CH₃Cl (1:1) and (HF)₂-CH₃Cl (1:2) complexes have been reinvestigated at the MP2/Aug-cc-pVTZ level. The results are discussed in light of the results obtained in solid argon matrices by L. Andrews and coworkers and related to the bonding analysis. The stability and cooperative effects in the hydrogen bonding of the (HF)₂-CH₃Cl complex in its cyclic form are outlined.

• E-mail corresponding author: <u>laurent.manceron@synchrotron-soleil.fr</u>, M.E. Alikhani : <u>esmail.alikhani@upmc.fr</u>

Introduction

It has been early recognized that the matrix-isolation technique could be applied to the study of intermolecular forces and, inasmuch as the molecular guest-cryogenic crystal interaction can be considered much weaker than the intermolecular interactions which is very often the case, in particular, for Hydrogen-bonded small molecular clusters¹ embedded in solid rare gas crystals. Following early studies on heavy halide dimers,² for instance, L. Andrews and coworkers initiated in the 80's a series of pioneering studies involving HF complexes with most known small polyatomic molecules, ranging from hydrogen to aromatic 18-atoms molecules.^{3,4} Among the many systems studied, two articles tackled the HF-Chloromethane system,^{5,6} reaching structural conclusions about the structures of the HF-CH₃Cl (1:1) and $(HF)_2-CH_3CI$ (1:2) complexes based on spectroscopic observations (H-F stretching frequency shifts, number of H-F proton donor non-degenerate librational motions). These conclusions were later substantiated in a theoretical study by Del Bene and Mettee.⁷ In substance, all studies converged in predicting a most stable configuration for the 1:1 complex with a nonlinear arrangement of the F-H --- Cl-CH₃ hydrogen bond. This structure can be compared with that inferred for the Cl-H --- Cl-CH₃ in liquefied argon or deduced in the gas phase.^{8,9} It should be noted that the predicted binding energy in reference 7 is quite low (13.4 kJ/mol at MP2/cc-pVTZ+ level, after zero point energy correction) and thus the matrix role in the complex properties might not be completely negligible. In reference 6, Hunt and Andrews also reported a weak band near 3897 cm⁻¹, due to another isomer of the complex, probably the so called antihydrogen bonded structure. Predictions for much more very weakly bound, methyl hydrogen to fluorine bonded structures were also made by Del Bene and Mettee, the most stable one with the three methyl hydrogens pointing at the fluorine atom and a head-to tail arrangement of the two molecular dipoles (with a binding enthalpy of about 4 kJ/mol around 13K). An even more weakly bonded structure was also predicted with only two methyl hydrogens pointing at the fluorine end of the H-F molecule, with an estimated binding enthalpy of only 1.2 kJ/mol at 13K.

Another conclusion from the experimental results is a strengthening of the HF to Chlorine hydrogen bond upon addition of a second HF molecule.⁵ Again, the multiplicity of the observed HF librational modes advocated a nonlinear molecular cluster arrangement, which was, at the time, supposed to be that of an angled chain:

With the progress of instrumentation and the development of free jet expansion to stabilize molecular clusters, it becomes possible to observe such weakly bound complex in the gas phase, free of potential matrix effects. Indeed, in a more recent study, Asselin and coworkers observed small HF-containing species in a free jet expansion,¹⁰ some of them induced by seeding the gas with methyl chloride, also leading to a clear observation of the methyl chloride – HF complex with a prominent Q-branch near 3747 cm⁻¹. The rotational structure was not resolved in these experiments, but it is clear that the way is open for a fuller characterization of either 1:1 or 1:2 complexes in the gas phase. This contribution thus presents a reinvestigation of the 1:1 or 1:2 complexes with state-of-the-art theoretical methods, in view of facilitating future experimental characterizations.

Computational Methods

All calculations have been done with the Gaussian 09 software package.¹¹ Optimization and vibrational frequency calculations have been performed using the second-order of Moller-Plesset perturbative method (MP2) with the augmented triple zeta basis set of Dunning Aug-cc-pVTZ for all atoms as implemented in Gaussian 09 software package. The anharmonic vibrational frequencies have been calculated using the second order perturbative approach PT2 as also implemented in the Gaussian 09 software package. The basis set superposition error has been calculated for the complexes using the counterpoise technique (noted as CP).

Results

1 - Structures and energetics

For the 1:1 complex, following the study of Del Bene and Mettee, we optimized their three structures at the MP2/Aug-cc-pVTZ level of theory (labelled S11-I to –III in Fig. 1). The most weakly bound structure suggested by Del Bene, S11-III, now appears to be a transition state, connecting the S11-I structure to the S11-II one. We note that the barrier height for this isomerization is, indeed, very low (\cong 1 kJ/mol).

Fig. 1. Some relevant structur al parameters for the studied 1:1 complexes calculated at the MP2/Aug-cc-pVTZ level. Binding energies (corrected for the zero-point-vibrational-energy and for the basis-set-superposition error) are given in kJ/mol. Data reported in parentheses are obtained at the CCSD(T)-F12/Aug-cc-pVDZ level of theory.

The binding energy corresponding to the minima found on the potential energy surfaces of both complexes are gathered in Table 1. D_e and D_0 represent the binding energy and the ZPE corrected binding energy (in kJ/mol). $D_e^{(CP)}$ and $D_0^{(CP)}$ are the D_e and D_0 corrected for the basis set superposition error. The Cs symmetry structure S11-I is by far the most likely to be observed in the gas phase. Equilibrium rotational constants are thus predicted to be 0.4338, 0.1177 and 0.09375 cm⁻¹.

Concerning the 1:2 complex, energetic properties have been calculated considering the following equations:

CH₃Cl + HF → S11-I, S11-II, or S11-III (1) CH₃Cl + (HF)₂ → S12-I, S12-I-bis, or S12-IV (2) S11-I + HF → S12-II, or S12-III (3) S11-II+ HF → S12-III (4)

Four stationary points are now found on the potential energy surface (labelled S12_I to -IV Fig. 2) at the MP2/Aug-cc-pVTZ level. Table 1 presents the energetic results of these calculations. Four local minima could be considered as potentially observable in low temperature experiments as isomeric forms of the $CH_3CI - (HF)_2$ system. The S12-I is the global minimum and is by far the most strongly bound form (D₀ about -24 kJ/mol), while the structure suggested by Arlinghaus and Andrews in reference 5, labelled 12-I-bis in figure 2, corresponds to the transition state for the rotation of the second HF molecule around of the axis of the HF molecule engaged in the CI---H-F hydrogen bond. The barrier height for this motion is calculated about 8 kJ/mol. The structure noted as S12-II in Fig. 2 represents two HF molecules in interaction with the chlorine atom in a bifid position. This form might be produced by addition of

The Journal of Physical Chemistry

another HF moiety to the S11-I complex, but the energy gained in adding a second HF molecule is substantially less than in the previous structure (-8 compared to -12.5 kJ/mol). The structure noted as S12-III in Fig. 2 could arise from a S11-I + HF interaction, but with an even smaller energy stabilization (-5 kJ/mol). Finally, the last minimum (noted as S12-IV in Fig. 2) could arise from a $CH_3CI + (HF)_2$ addition with a $CICH_3 - F$ anti-hydrogen bonding interaction. It has a very weak binding energy (less than 3 kJ/mol) compared to structure S12-I and is the least likely to be observed in free jet experiments.

Fig. 2. Some relevant structural parameters for the calculated stationary points on the 1:2 potential energy surface at the MP2/Aug-cc-pVTZ level. Data reported in parentheses are obtained at the CCSD(T)-F12/Aug-cc-pVDZ level of theory.

Geometrical parameters, reported in figures 1 and 2, show that the so-called "anti-hydrogen bonded complex" is characterized by a small lengthening of the H-F distance (some thousandths of an angstrom or less) while a more pronounced H-F lengthening in the "H-bonded" structures (about a tenth of an angstrom).

In order to check the reliability of our theoretical geometrical and energetic results obtained at the MP2/Aug-cc-pVTZ level of theory, we optimized the three subunits (free HF and CH₃Cl molecules and the(HF)2 dimer) as well as both most stable 1:1 and 2:1 complexes (S11-I and S12-I) with the highly accurate theoretical method for hydrogen-bonded systems, the coupled-cluster approach. Optimization calculations have been done at the explicitly correlated CCSD(T)-F12 level with the Aug-cc-pVDZ basis set, using the MolPro package.¹² As shown in Fig. 1 and 2, one can note that, for both open-chain and cyclic hydrogen bonded complexes, there is a good agreement between the geometrical parameters calculated with two ab initio (MP2 and CCSD(T)-F12) techniques. Furthermore, we should underline that the complexation energy (see Table 1) calculated with MP2 method for both S11-I and S12-I structures

 $(D_0^{(CP)} = -12.5 \text{ and } -24.1 \text{ kJ/mol})$ is very close to that obtained at CCSD(T)-F12/Aug(cc-pVDZ level $(D_0^{(CP)} = -12.6 \text{ and } -24.2 \text{ kJ/mol})$. In line with an earlier work,¹³ we note that the MP2/Aug-cc-pVTZ is suitable to study the hydrogen bonded complexes.

2 - Vibrational analysis

Our goal in this contribution is to bring out reliable predictions of the vibrational or rovibrational properties, in order to assist in the assignments of future experimental studies. Table 2 compares the available matrix data of the literature with our results at the harmonic level for the isotopic effects and anharmonic level for the main $CH_3^{35}CI - HF$ isotopic species.

1:1 complex. As observed by Andrews and collaborators, the HF stretching mode is clearly the most intense fundamental. Also, our results fully confirm Andrews' group assignment of the two HF librational modes, who relied on the larger HF/DF isotopic ratio for the out of plane motion than for the in-plane one (1.393 vs 1.305 calculated here). Also, our results reproduce the trend reported in intensities (the inplane mode is predicted twice as strong as the out of plane). This supports our calculations and in table 2 and 3 are reported complete predictions of all fundamentals at the anharmonic level for both Cs and anti-hydrogen bonded C_{3v} minima to help in future characterizations. As stated above, a recent low resolution study has assigned an absorption near 3747 cm⁻¹ to the strongest mode of the CH₃Cl --- H-F complex in a free jet expansion, close to the band origin of 3736 cm⁻¹ predicted here. This latter figure can also be compared to the signal at 3734 cm⁻¹ by Tokhadze and Tkhorzhevskaya in liquid Xe cryosolution of HF and methyl chloride,¹⁴ although the exact stoichiometry of the complex is perhaps uncertain. It is therefore relevant to compare what could be simulated at our level for the v_1 band of the structure calculated most stable (S11-I). Considering the ground state rotational constants (0.4429, 0.12 and 0.0957 cm-1 for A", B" and C", respectively) calculated here, the complex corresponds to an asymmetric rotor with an asymmetry parameter κ = -0.85, that is close to the symmetric rotor limit. The transition moment for the HF stretching mode is nearly parallel to the principal axis and a band contour simulation should resemble an A-type asymmetric rotor band. Figure 3 presents such a simulation (I_r representation) for the fundamental, based on our calculated parameters for a 30K temperature and in the rigid rotor approximation, using the PGOPHER software.¹⁵

Figure 3. Simulated band contour for the v_1 band of the S11-I structure of the CH₃Cl --- H-F complex, with a 0.1 cm⁻¹ apparatus function, 30K rotational temperature and 0.4429, 0.12 and 0.0957 cm⁻¹ for A", B" and C", 0.4425, 0.1223 and 0.0972 cm⁻¹ for A', B' and C', respectively.

It is interesting to note that the asymmetry in the band profile with a more rapid degradation on the high frequency side of the R branch is very sensitive to the evolution of the rotational constants between ground and excited states, but reproduces at least qualitatively the observed profile in reference 8, thus supporting strongly its assignment. The second and third most intense bands for the S11-I form are the HF in- and out –of plane librational modes, seen near 436 and 378 cm⁻¹ in solid argon, respectively. ^{5,6} Our results suggest that these IR absorptions might be observable some 30 to 20 cm⁻¹ higher in the gas phase, as these should have notable intensities (roughly three to six times less than the stronger HF stretching mode). The strongest mode in intensity in the CH₃Cl moiety is the C-Cl stretching mode, is predicted near 734 cm⁻¹, that is, shifted by -13 cm⁻¹ from the calculated value of 747 cm⁻¹ at the same level. This is in qualitative agreement with the -20 cm⁻¹ shift observed for the same mode in solid argon. The very low values calculated for the H-bond stretching near 49 cm⁻¹ or the torsional motion of the methyl group near 15 cm⁻¹, should be considered as only indicative.

Calculations of the vibrational fundamentals at the same level are also reported for the secondary minimum S11-II in table 4. The strongest mode is the HF stretching mode, calculated four times less intense than in the first structure and whose band center is predicted -11 cm⁻¹ shifted from that of free HF at the same level. This is substantially less than the -63 cm⁻¹ shift observed in solid argon [6] and a sign that matrix effect might strongly affect the position of the band center for such a weakly bound species. The next strongest IR absorption is calculated near 85 cm⁻¹ for the HF librational mode. This suggests that an identification in the gas phase will be more difficult and the best chance of observation might be in combined jet-microwave experiments, which have revealed unexpected structure for F-H hydrogen bonded complexes. ^{16,17}

1:2 complex. The results concerning the (HF)₂-CH₃Cl (1:2) complex in table 5-and 6 are the first predictions of observable spectroscopic properties for this species. In table 5 are reported the predicted frequencies and intensities for the most stable conformation (S12-I on figure 2). The match of the two H-F stretching modes, predicted most intense at 3707 and 3520 cm⁻¹ at the anharmonic level with the 3665 and 3521 cm⁻¹ bands observed in solid argon is reasonable. Two H-F librational modes (A" and A' symmetries) are predicted near 545 and 493 cm⁻¹, relatively close to the observed bands at 508 and 475 cm⁻¹ observed by Andrews and coworkers.^{5,6} A third librational mode is however, predicted with a comparable intensity at 706 cm⁻¹, but has not been observed. Note that this band should fall in the region of the intense v_2 C-Cl CH3Cl precursor band and is likely to be obscured in matrix isolation experiments. We thus feel confident that these predictions can constitute a good guide for future experimental characterizations, except perhaps the very low frequency modes below 100 cm⁻¹ for which the perturbative treatment of the anharmonicity is probably not sufficient.

Table 6 gathers results obtained at the harmonic and anharmonic levels for the S12-II to IV conformations. As noted above, the perturbative treatment of anharmonic effects limit the scope of the predictions for the low frequency intermolecular modes, but these might serve as a guide for possible experimental characterization in conditions of very strong adiabatic expansions capable of freezing out rapidly the complex in a metastable configuration.

3- Bonding and conclusive remarks.

It is interesting to compare the results for the bonding in the cyclic CH₃Cl---(HF)₂ most stable , S12-I structure to that in the CH₃Cl---H-F complex or in the (HF)₂ dimer itself. The bonding analysis has been done in the framework of QTAIM (Quantum Theory of Atoms In Molecules¹⁸) using the AIMALL software.¹⁹ For three compounds, the bonding critical points on the 2D Laplacian of the charge are displayed in Figure 4.

Figure 4. Bond critical points of the Laplacian of the electron density for three complexes.

An important point is the existence of three bond critical points in the electronic structure: one in between the chlorine and first HF, one in between the two HF moieties, but also one between the inplane C-H bond and the Fluorine atom of the second HF. The electron densities at the first two bond critical points (0.031 and 0.035) can be compared to those in the $CH_3CI---H-F$ complex (0.024) and the $(HF)_2$ dimer (0.025). It shows a strengthening of the two H-bonds in a cooperative mechanism with respect to the binary complexes. This is in line with the slight shortening in the H to chlorine distance (2.095 in the ternary vs 2.200Å in the binary complex) or in the inter HF hydrogen bond (1.721 vs 1.826 Å in $(HF)_2$), or in the evolution of the corresponding vibrational modes. In conclusion, the present results point out at a surprising stability of the "ring" structure for the $CH_3CI---(HF)_2$, first observed by Andrews using the matrix isolation technique and thus likely to be characterized in free jet expansion conditions as well as the $CH_3CI---H-F$ complex.

4- Acknowledgements

The authors acknowledge CNRS and UPMC for financial support (UMR 8233). The authors declare no competing financial interest.

5- References

[1] Andrews, L.; Moskovits, M. in Chemistry *and physics of matrix-isolated species*. North-Holland Amsterdam-Oxford-New-York-Tokyo **1989**, ISBN 0-444-70549.

[2] Maillard, D.; Schriver A.; Perchard, J. P. Study of hydracids trapped in monatomic matrices. I. Near infrared spectra and aggregate structures. *J. Chem. Phys.*, **1979**, *71*, 505-516.

[3] Andrews, L. Infrared spectra of HF complexes in noble-gas solids . *Faraday Discuss. Chem. Soc.*, **1988**, *86*, 37-44.

[4] Davis, S. R.; Andrews, L. FTIR spectra of HF complexes with phenylalkynes in solid argon and nitrogen. *J. Molecul. Struct.* **1987**, *157*, 103-117.

[5] Arlinghaus R.; Andrews L. Fourier-Transform infrared spectra of alkyl-halide-HF hydrogen bonded complexes in solid argon. *J. Phys. Chem.*, **1984**, *88*, 4032-4036.

[6] Hunt, R.D.; Andrews L. Infrared spectra of HF complexes with CCl4, CHCl3, CH2Cl2 in solid argon. *J. Phys. Chem.*, **1992**, *96*, 6945-6949.

[7] Del Bene, J.E. ; Mettee, H.D. An ab initio study of the complexes of HF with the chloromethanes . *J. Phys. Chem.* **1993**,*97*, 9650-9656.

[8] Herrebout, W.A.; van der Veken, B.J. On the angular geometry of the CH3Cl-HCl van der Waals complex in the gas phase and in liquefied noble gas solutions. *J. Mol. Struct. THEOCHEM* **1995**, *332*, 231-240.

[9] Goubet, M. ; Asselin, P.; Soulard. P.; Madebène, B. Structural and dynamic Properties of a hydrogen bond from the study of the CH₃Cl-HCl complex and isotopic species. *J. Phys. Chem. A* **2013**, *117*, 12569-12580.

[10] Asselin, P.; Soulard, P.; Madebène, B.; Goubet, M.; Huet, T.; Georges, R.; Pirali O.; Roy, P. The cyclic ground state structure of the HF trimer revealed by far infrared jet-cooled FT spectroscopy. *Phys. Chem. Chem. Phys.* **2014**, *16*, 4797-4806.

[11] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al., *Gaussian 09, Revision D.01;* Gaussian, Inc., Wallingford CT, 2013.

[12] Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R. et al. MOLPRO, A general-purpose quantum chemistry program package. *WIREs Comput. Mol. Sci.* **2012**, *2*, 242-252.

[13] Riley K.E.; Hobza P. Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. *J. Phys. Chem. A* **2007**, *111*, 8257-8263.

[14] Tokhadze, K.G.; Tkhorzhevskaya, Infrared spectra of weak hydrogen-bonded complexes in cryogenic solutions N.A. *J. Mol. Struct.* **1992**, *270*, 351-368.

[15] Western, C. M., PGOPHER, A Program for simulating rotational, vibrational and electronic spectra *J*. *Quant. Spectroscopy and Rad. Transfer*, **2016**, *186*, 221-242.

[16] Legon, A. C.; Lister, D. G.; Warner, H. E. Nonreactive interaction of methyl isocyanide and hydrogen chloride: isolation and characterization of CH3NC...HCl in a pulsed jet. *J. Am. Chem. Soc.*, **1992**, *114*, 8177-8188.

[17] Legon, A. C.; Roberts, B.P.; Wallwork, A.L. Rotational spectra and geometries of the gas phase dimers (CH4,HF) and (CH4,HCl). *Chem. Phys. Lett.* **1990**, *173*, 107-114.

[18] Bader, R. F. W. Atoms in Molecules – A Quantum Theory; Clarendon: Oxford, U.K., **1990**.

[19] AIMAII (Version 17.01.25), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, **2017** (aim.tkgristmill.com).

Tables

	E(ZPE)	D _e	D _e ^(CP)	D ₀	$D_0^{(CP)}$	Remark
S11-I	-599.828201	-21.6	-18.8	-15.3	-12.5	with respect to CH CL HE
	(-599.890502)	(-21.3)	(-18.5)	(-15.4)	(-12.6)	with respect to CH ₃ CI + HF
S11-II	-599.823949	-5.9	-5.1	-4.1	-3.3	with respect to CH ₃ Cl + HF
S11-III	-599.8720026	-4.9	-4.1	-3.3	-2.5	with respect to CH ₃ Cl + HF
						One imaginary frequency ω = 16i
S12-I	-700.169324	-36.2	-31.9	-28.4	-24.1	with respect to CH ₃ Cl + (HF) ₂
	(-700.255573)	(-35.7)	(-31.7)	(-28.2)	(-24.2)	
S12-I-bis	-700.163670	-28.0	-24.8	-22.0	-18.8	with respect to $CH_3CI + (HF)_2$
						One imaginary frequency ω = 8i
S12-II	-700.163670	-15.5	-12.9	-10.4	-7.8	with respect to S11-I + HF
S12-III	-700.161925	-7.8	-6.8	-5.8	-4.8	with respect to S11-I + HF
		-23.5	-20.6	-17.0	-14.1	with respect to S11-II + HF
S12-IV	-700.161032	-5.9	-4.8	-3.5	-2.4	with respect to $CH_3CI + (HF)_2$
HF	-100.331498					
	(-100.355021)					
(HF)₂	-200.667628	-19.7	-17.7	-12.2	-10.2	with respect to HF + HF
	(-200.715218)	-21.0)	(-18.4)	(-13.6)	(-11.0)	
CH₃Cl	-499.490880					
	(-499.529612)					

Table 1. Energetic properties of the studied species obtained using the MP2/Aug-cc-pVTZ method and (in parentheses) at the CCSD(T)-F12/Aug-cc-pVDZ level of theory. E(ZPE) is the total energy corrected for the ZPE contribution (in Hartree). D_e and D_0 are respectively the binding and the ZPE corrected binding energies (in kJ/mol). D_e (CP). D_0 (CP) are the D_e and D_0 values corrected for the basis set superposition error.

	Mode	Exp.			Calc. MP2/aVTZ			
		HF	DF	Δν	Structure	HF ω _e (IR Int) / ν	DF ω _e (IR Int)	$\Delta \omega_{e}$
	ν_{s}	3726,3716 (site)	2738	988	S11-I	3904(564)/3736	2831(291)	1073
1.1 chooses	ν_s^a	3897	2858	1039	S11-II	4111(144)/3945	2815(5)	1296
1.1 species	ν_{l}	436	331	105	S11-I	538(159)/462	412(80)	126
	ν_{l}	378	283	95	S11-I	447(87)/398	321(47)	126
	ν_{sa}	3521	2595	926	S12-I	3696(943)/3520	2577(451)	1119
1.2 chooses	ν_{sb}	3665	2699	966	S12-I	3861(532)/3707	2784(248)	1077
1.2 species	ν_{l}	508			S12-I	615(182)/545	589(74)	26
	ν_{l}	475			S12-I	573(159)/493	411(80)	162
		Exp.			Calc. MP2/aVTZ			
1:1 species		C- ³⁵ C	C- ³⁷ Cl	Δν	Structure	C- ³⁵ Cl	C- ³⁷ Cl	$\Delta \omega_{e}$
	V_{C-CI}	708	702	6	S11-I	748(22)/734	742(20)	6

Table 2. Experimentally observed vibrational frequencies (cm⁻¹) in solid Ar compared to the calculated harmonic vibrational frequencies and intensities (km/mol) as well as the HF/DF and 35 Cl/ 37 Cl isotopic shifts (Δ).

a-HF stretching anti hydrogen bonded form.

The Journal of Physical Chemistry

Mode	E(harm) (cm ⁻¹)	IR Int (km/mole)	E(anharm) (cm ⁻¹)	Exp.	Approx. description	
1	3904	564.1	3736	3726	(A') HF stretch	
2	3232	0.1	3095		(A') CH stretch	
3	3116	13.8	3014		(A') CH stretch in phase	
4	1509	6.4	1464		(A') CH₃ bend	
5	1405	9.9	1372		(A') CH_3 bend in phase	
6	1062	1.8	1034		(A') CH₃ bend	
7	748	21.7	734		(A') CCl stretch	
8	538	159.3	462 436		(A') FH lib in-plane	
9	155	7	139		(A') FHCIC CH_3 stretch	
10	68	11.2	49		(A') FHCl CH₃ bend	
11	3235	0.7	3096		(A") CH stretch	
12	1511	6.3	1464		(A") CH₃ bend	
13	1053	2	1033		(A") CH ₃ bend	
14	447	87.2	398	378	(A") FH lib out-of-plane	
15	34	0	15		(A") CH_3 torsion	

Table 3. Predicted vibrational fundamental bands of 1:1 H-bonded complex (C_s, S11-I in Fig. 1) at the MP2/aVTZ level. Frequencies are given in cm⁻¹ and IR intensity in km/mole.

Mode	E(harm) (cm ⁻¹)	IR Int (km/mole)	E(anharm) (cm ⁻¹)	Exp.	Assignment	
1	4111	144.1	3945	3897	(A ₁) HF stretch	
6	3231	3.4	3092		(E) CH stretch	
2	3119	20.8	3014		(A ₁) CH stretch in-phase	
7	1508	10.6	1464		(E)CH₃ bend	
3	1396	9.8	1362		(A_1) CH $_3$ bend in phase	
8	1045	4	1025		(E)CH₃ bend	
4	759	31.3	743		(A ₁) CCl stretch	
5	67	0.1	53		(A_1) F CH_3 stretch	
9	33	8	80		(E) HFCl CH ₃ bend	
10	83	328	84		(E)HFlib	

Table 4. Predicted vibrational fundamental bands of 1:1 anti-H-bonded complex (C_{3v} , S11-II in Fig. 1) at the MP2/aVTZ level. Frequencies are given in cm⁻¹ and IR intensity in km/mole.

	E(harm)	IR Int	E(anharm)	_	Assignment	
Mode(Quanta)	(cm ⁻¹)	(km/mole)	(cm⁻¹)	Exp.		
1	3861	532.3	3707	3665	(A') HF stretch out-of-phase	
2	3696	942.7	3520	3521	(A') HF stretch in phase	
3	3241	7.4	3108		(A') CH stretch	
4	3238	0.4	3098		(A ") CH stretch	
5	3119	13.9	3017		(A') CH stretch in phase	
6	1516	6.5	1466		(A') CH ₃ bend	
7	1511	6.5	1465		(A") CH_3 bend	
8	1412	11.4	1375		(A') CH_3 bend in phase	
9	1070	1.2	1045		(A') CH₃ bend	
10	1057	2.1	1035		(A") CH_3 bend	
11	819	145.8	706		(A') lib HF in-plane opp phase	
12	733	35.6	719		(A') CCl stretch	
13	615	181.9	545	508	(A") lib HF out-of-plane in phase	
14	573	158.9	493	475	(A') lib HF in-plane opp phase	
15	512	9.5	466		(A ") lib HF out-of-plane opp phase	
16	221	8.2	194		(A') FHFH stretch	
17	177	21.5	156		(A') FHCl CH₃ stretch	
18	126	6.8	99		(A') FHFHCl CH ₃ bend	
19	77	0.6	62		(A'') CH ₃ torsion	
20	67	2.1	62		(A') FHFHCl CH ₃ bend	
21	11	2.9	57		(A") CI CH ₃ lib	

Table 5. Predicted vibrational fundamental bands of cyclic 1:2 complex (S12-I in Fig. 2) at the MP2/aVTZ level. Frequencies are given in cm⁻¹ and IR intensity in km/mole.

S	L2-II	S12	2-111	S12-IV		
ω(IR Int)/v	Assignment	$ω_e$ (IR Int)/ν	Assignment	ω_{e} (IR Int) /v	Assignment	
3959(655)/3794	(A") HF stretch		anti-H-bonded	4078(137)/	free HF	
5555(055)//5754	out-of-phase	4108(150)/3939	HF stretch	3909	stretch	
3239(1)/3103	(A") CH stretch		H-bonded HF	3964(610)/	C-bonded HF	
(//	()	3886(616)/3720	stertch	3823	stretch	
1508(7)/1463	(A") CH_3 bend	3244(0) /3105	CH stretch	3235(2)/ 3100	CH stretch	
1071(2)/1044	(A") CH₃ bend	2242(0)/2405		3234(2)/	CH stretch	
		3242(0)/3105	CH stretch	3100		
441(154)/350	(A ^m) lib in-plane	2124/12/2010	Sym. CH	3122(20)/	CH stretch	
	(A") lib out of	3124(13)/3019	stretch	3016		
262/171/201	(A) ID OUL-OI-			1508(5)/	CH bond	
505(47)/504	plane out-oi-	1507(6)/1462	CH bond	1463		
		1307(0)/1402				
145(11)/122	stretch out-of-			1507(5)/	CH₃ bend	
113(11)/122	phase	1507(6)/1461	CH₂ bend	1462		
	(A") HF-Cl bend	1007(0)/1101	symm CH ₂	1394(9)/	CH₂ bend (in	
78(18)/44	out-of-phase	1398(9)/1365	bend	1366	phase)	
				1044(2)/		
57(0)/21	$(A'') CH_3$ torsion	1058(2)/1034	CH₃ bend	1022	CH₃ bend	
2072(200)/2004	(A') HF stretch			1043(2)/	CH₃ bend	
3973(200)/3804	in- phase	1049(2)/1028	CH₃ bend	1023		
2242(0)/2104	(A') CH stratch			756(34)/	C Clistratch	
5242(0)/5104	(A) CH Stretch	742(30)/727	C-Cl stretch	747		
3118(9)/3016	(A') CH stretch			591(157)/	lib (in) H _a Fa	
5110(5)/ 5010	in- phase	555(145)/472	lib (in) H _a F _a	139		
1511(7)/1463	(A') CH₂ bend			493(158)/	lib (out) H ₂ F ₂	
	() () () () () () () () () () () () () (466(87)/400	lib (out) H _a F _a	485		
1408(8)/1373	(A') CH₃ bend	450(7)/400		237(146)/	lib (in) HհFհ	
		159(7)/139	FHCl stretch	191		
1061(2)/103/	$(A') CH_3$ bend	94(154)/104	lib (out) H _b F _b	1/4(6)/ 98	HFHF bend	
731(21)/718	(A') C-Cl stretch	93(134)/104	lib (in) H _b F _b	57(0)/ 38	HFCH₃ stretch	
478(245)/384	(A') lib. in-plane			38(19)/-202	Intermol bend	
	in phase	74(47)/75	intermol bend	(,,,		
397(119)/317	(A') lib. out-of-			36(6)/ 108	Intermol bend intermol bend	
· // -	plane in-phase	67(1)/75	intermol bend			
128(1)/108	(A ^r) HF-CI stretch	28/11/40	internet hand	13(4)/ 191		
	In phase	38(1)/40	intermol bend			
63(10)/108	(A) HF-CI Dend	22(0)/E	CH2 torsion	13(5)/ 403	H _b F _b torsion	
		53(0)/5				
14(2)/ <i>-34</i>	hending	18(2)/-13	intermol hend	5(96)/-5644	lib (out) H _b F _b	
	benuing	10(2//-13				

Table 6. Vibrational fundamental bands of the S12-II, S12-III, and S12-IV complexes. Frequencies are given in cm^{-1} and IR intensity in km/mole. Note that the lowest vibrational frequency were found

negative when calculated with the anharmonicity correction using the second perturbative approach. It shows that PT2 is not reliable enough for the low frequency modes (particularly < 100 cm⁻¹).

TOC Graphic

60

Fig. 1. Some relevant structur al parameters for the studied 1:1 complexes calculated at the MP2/Aug-ccpVTZ level. Binding energies (corrected for the zero-point-vibrational-energy and for the basis-setsuperposition error) are given in kJ/mol. Data reported in parentheses are obtained at the CCSD(T)-F12/Aug-cc-pVDZ level of theory

455x141mm (96 x 96 DPI)

Fig. 2. Some relevant structural parameters for the calculated stationary points on the 1:2 potential energy surface at the MP2/Aug-cc-pVTZ level. Data reported in parentheses are obtained at the CCSD(T)-F12/Augcc-pVDZ level of theory.

432x162mm (96 x 96 DPI)

Figure 3. Simulated band contour for the v1 band of the S11-I structure of the CH3Cl --- H-F complex, with a 0.1 cm-1 apparatus function, 30K rotational temperature and 0.4429, 0.12 and 0.0957 cm-1 for A", B" and C", 0.4425, 0.1223 and 0.0972 cm-1 for A', B' and C', respectively

288x201mm (300 x 300 DPI)

ACS Paragon Plus Environment

Figure 4. Bond critical points of the Laplacian of the electron density for three complexes.

354x98mm (96 x 96 DPI)

TOC Graphic

93x29mm (150 x 150 DPI)

0 _ P

ACS Paragon Plus Environment