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* Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
i Sony Computer Science Laboratories, CSL-Paris, F-75005 Paris, France
* Spotify Creator Technology Research Lab, CTRL, F-75008 Paris, France

This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to
generate musical content. We propose a methodology based on five dimensions for our analysis:

o Objective

— What musical content is to be generated?
Examples are: melody, polyphony, accompaniment or counterpoint.
— For what destination and for what use?
To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file).

e Representation

— What are the concepts to be manipulated?

Examples are: waveform, spectrogram, note, chord, meter and beat.
— What format is to be used?

Examples are: MIDI, piano roll or text.
— How will the representation be encoded?

Examples are: scalar, one-hot or many-hot.

e Architecture

— What type(s) of deep neural network is (are) to be used?
Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks.

Challenge

— What are the limitations and open challenges?
Examples are: variability, interactivity and creativity.

Strategy

— How do we model and control the process of generation?
Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation.

For each dimension, we conduct a comparative analysis of various models and techniques and we propose some
tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning
based systems for music generation selected from the relevant literature. These systems are described and are used
to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section
includes some discussion and some prospects.

Supplementary material is provided at the following companion web site:

! Also Visiting Professor at UNIRIO (Universidade Federal do Estado do Rio de Janeiro) and Permanent Visiting Professor at PUC-Rio
(Pontificia Universidade Catélica do Rio de Janeiro), Rio de Janeiro, Brazil.



www.briot.info/dlt4mg/

This paper is a simplified (weak DRME]) version of the following book [15]: Jean-Pierre Briot, Gaétan Hadjeres
and Frangois-David Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative
Systems, Springer, 2019. Hardcover ISBN: 978-3-319-70162-2. eBook ISBN: 978-3-319-70163-9. Series ISSN: 2509-
6575.

2 In addition to including high quality color figures, the book includes: a table of contents, a list of tables, a list of figures, a table of
acronyms, a glossary and an index.



Chapter 1
Introduction

Deep learning has recently become a fast growing domain and is now used routinely for classification and prediction
tasks, such as image recognition, voice recognition or translation. It became popular in 2012, when a deep learning
architecture significantly outperformed standard techniques relying on handcrafted features in an image classification
competition, see more details in Section E}

We may explain this success and reemergence of artificial neural network techniques by the combination of:

availability of massive data;
availability of efficient and affordable computing powerﬂ;
technical advances, such as:

— pre-training, which resolved initially inefficient training of neural networks with many layers [80
— convolutions, which provide motif translation invariance [111];
— LSTM (long short-term memory), which resolved initially inefficient training of recurrent neural networks [83]].

There is no consensual definition for deep learning. It is a repertoire of machine learning (ML) techniques, based
on artificial neural networks. The key aspect and common ground is the term deep. This means that there are multiple
layers processing multiple hierarchical levels of abstractions, which are automatically extracted from datzﬂ Thus
a deep architecture can manage and decompose complex representations in terms of simpler representations. The
technical foundation is mostly artificial neural networks, as we will see in Chapter[5] with many extensions, such as:
convolutional networks, recurrent networks, autoencoders, and restricted Boltzmann machines. For more information
about the history and various facets of deep learning, see, e.g., a recent comprehensive book on the domain [63].

Driving applications of deep learning are traditional machine learning taskﬂ classification (for instance, identifi-
cation of images) and predictiorE] (for instance, of the weather) and also more recent ones such as translation.

But a growing area of application of deep learning techniques is the generation of content. Content can be of
various kinds: images, text and music, the latter being the focus of our analysis. The motivation is in using now widely
available various corpora to automatically learn musical styles and to generate new musical content based on this.

! Notably, thanks to graphics processing units (GPU), initially designed for video games, which have now one of their biggest markets in
data science and deep learning applications.

2 Although nowadays it has being replaced by other techniques, such as batch normalization [92] and deep residual learning [74].

3 That said, although deep learning will automatically extract significant features from the data, manual choices of input representation,
e.g., spectrum vs raw wave signal for audio, may be very significant for the accuracy of the learning and for the quality of the generated
content, see Section@

4 Tasks in machine learning are types of problems and may also be described in terms of how the machine learning system should process
an example [63| Section 5.1.1]. Examples are: classification, regression and anomaly detection.

5 As a testimony of the initial DNA of neural networks: linear regression and logistic regression, see Section



1.1 Motivation

1.1.1 Computer-Based Music Systems

The first music generated by computer appeared in 1957. It was a 17 seconds long melody named “The Silver Scale”
by its author Newman Guttman and was generated by a software for sound synthesis named Music I, developed by
Mathews at Bell Laboratories. The same year, “The Illiac Suite” was the first score composed by a computer [78]].
It was named after the ILLIAC I computer at the University of Illinois at Urbana-Champaign (UIUC) in the United
States. The human “meta-composers” were Lejaren A. Hiller and Leonard M. Isaacson, both musicians and scientists.
It was an early example of algorithmic composition, making use of stochastic models (Markov chains) for generation
as well as rules to filter generated material according to desired properties.

In the domain of sound synthesis, a landmark was the release in 1983 by Yamaha of the DX 7 synthesizer, building
on groundwork by Chowning on a model of synthesis based on frequency modulation (FM). The same year, the
MID]E] interface was launched, as a way to interoperate various software and instruments (including the Yamaha DX
7 synthesizer). Another landmark was the development by Puckette at IRCAM of the Max/MSP real-time interactive
processing environment, used for real-time synthesis and for interactive performances.

Regarding algorithmic composition, in the early 1960s Iannis Xenakis explored the idea of stochastic compositiorﬂ
[209], in his composition named “Atrées” in 1962. The idea involved using computer fast computations to calculate
various possibilities from a set of probabilities designed by the composer in order to generate samples of musical
pieces to be selected. In another approach following the initial direction of “The Illiac Suite”, grammars and rules
were used to specify the style of a given corpus or more generally tonal music theory. An example is the generation in
the 1980s by Ebcioglu’s composition software named CHORAL of a four-part chorale in the style of Johann Sebastian
Bach, according to over 350 handcrafted rules [42]. In the late 1980s David Cope’s system named Experiments in
Musical Intelligence (EMI) extended that approach with the capacity to learn from a corpus of scores of a composer
to create its own grammar and database of rules [27].

Since then, computer music has continued developing for the general public, if we consider, for instance, the
GarageBand music composition and production application for Apple platforms (computers, tablets and cellphones),
as an offspring of the initial Cubase sequencer software, released by Steinberg in 1989.

For more details about the history and principles of computer music in general, see, for example, the book by Roads
[L60]. For more details about the history and principles of algorithmic composition, see, for example, [128] and the
books by Cope [27] or Dean and McLean [33]].

1.1.2 Autonomy versus Assistance

When talking about computer-based music generation, there is actually some ambiguity about whether the objective
is

e to design and construct autonomous music-making systems — two recent examples being the deep-learning based
Amper™ and Jukedeck systems/companies aimed at the creation of original music for commercials and documen-
tary; or

e to design and construct computer-based environments to assist human musicians (composers, arrangers, producers,
etc.) — two examples being the FlowComposer environment developed at Sony CSL-Paris [153]] (introduced in
Section[6.11.4) and the OpenMusic environment developed at IRCAM [3].

6 Musical instrument digital interface, to be introduced in Sectionm

7 One of the first documented case of stochastic music, long before computers, is the Musikalisches Wurfelspiel (Dice Music), attributed
to Wolfgang Amadeus Mozart. It was designed for using dice to generate music by concatenating randomly selected predefined music
segments composed in a given style (Austrian waltz in a given key).



The quest for autonomous music-making systems may be an interesting perspective for exploring the process of
compositiorﬁ and it also serves as an evaluation method. An example of a musical Turing tesﬂ will be introduced
in Section It consists in presenting to various members of the public (from beginners to experts) chorales
composed by J. S. Bach or generated by a deep learning system and played by human musician As we will see in
the following, deep learning techniques turn out to be very efficient at succeeding in such tests, due to their capacity
to learn musical style from a given corpus and to generate new music that fits into this style. That said, we consider
that such a test is more a means than an end.

A broader perspective is in assisting human musicians during the various steps of music creation: composition,
arranging, orchestration, production, etc. Indeed, to compose or to improvis a musician rarely creates new music
from scratch. S/he reuses and adapts, consciously or unconsciously, features from various music that s/he already
knows or has heard, while following some principles and guidelines, such as theories about harmony and scales. A
computer-based musician assistant may act during different stages of the composition, to initiate, suggest, provoke
and/or complement the inspiration of the human composer.

That said, as we will see, the majority of current deep-learning based systems for generating music are still focused
on autonomous generation, although more and more systems are addressing the issue of human-level control and
interaction.

1.1.3 Symbolic versus Sub-Symbolic A1

Artificial Intelligence (Al) is often divided into two main streams{ﬂ

e symbolic Al — dealing with high-level symbolic representations (e.g., chords, harmony...) and processes (harmo-
nization, analysis...); and

e sub-symbolic Al — dealing with low-level representations (e.g., sound, timbre. . .) and processes (pitch recognition,
classification. . .).

Examples of symbolic models used for music are rule-based systems or grammars to represent harmony. Examples
of sub-symbolic models used for music are machine learning algorithms for automatically learning musical styles from
a corpus of musical pieces. These models can then be used in a generative and interactive manner, to help musicians
in creating new music, by taking advantage of this added “intelligent” memory (associative, inductive and generative)
to suggest proposals, sketches, extrapolations, mappings, etc. This is now feasible because of the growing availability
of music in various forms, e.g., sound, scores and MIDI files, which can be automatically processed by computers.

A recent example of an integrated music composition environment is FlowComposer [153]], which we will introduce
in Section [6.1T.4] It offers various symbolic and sub-symbolic techniques, e.g., Markov chains for modeling style,
a constraint solving module for expressing constraints, a rule-based module to produce harmonic analysis; and an
audio mapping module to produce rendering. Another example of an integrated music composition environment is
OpenMusic [3].

However, a deeper integration of sub-symbolic techniques, such as deep learning, with symbolic techniques, such
as constraints and reasoning, is still an open issu although some partial integrations in restricted contexts already
exist (see, for example, Markov constraints in [149}[7]] and an example of use for FlowComposer in Section @])

8 As Richard Feynman coined it: “What I cannot create, I do not understand.”

9 Initially codified in 1950 by Alan Turing and named by him the “imitation game” [191]], the “Turing test” is a test of the ability for a
machine to exhibit intelligent behavior equivalent to (and more precisely, indistinguishable from) the behavior of a human. In his imaginary
experimental setting, Turing proposed the test to be a natural language conversation between a human (the evaluator) and a hidden actor
(another human or a machine). If the evaluator cannot reliably tell the machine from the human, the machine is said to have passed the test.

10 This is to avoid the bias (synthetic flavor) of a computer rendered generated music.

! Improvisation is a form of real time composition.

12 With some precaution, as this division is not that strict.

13 The general objective of integrating sub-symbolic and symbolic levels into a complete Al system is among the “Holy Grails” of AL



1.1.4 Deep Learning

The motivation for using deep learning (and more generally machine learning techniques) to generate musical content
is its generality. As opposed to handcrafted models, such as grammar-based [[177] or rule-based music generation
systems [42], a machine learning-based generation system can be agnostic, as it learns a model from an arbitrary
corpus of music. As a result, the same system may be used for various musical genres.

Therefore, as more large scale musical datasets are made available, a machine learning-based generation system
will be able to automatically learn a musical style from a corpus and to generate new musical content. As stated by
Fiebrink and Caramiaux [52]], some benefits are

e it can make creation feasible when the desired application is too complex to be described by analytical formulations
or manual brute force design, and

e learning algorithms are often less brittle than manually designed rule sets and learned rules are more likely to
generalize accurately to new contexts in which inputs may change.

Moreover, as opposed to structured representations like rules and grammars, deep learning is good at processing
raw unstructured data, from which its hierarchy of layers will extract higher level representations adapted to the task.

1.1.5 Present and Future

As we will see, the research domain in deep learning-based music generation has turned hot recently, building on initial
work using artificial neural networks to generate music (e.g., the pioneering experiments by Todd in 1989 [190] and the
CONCERT system developed by Mozer in 1994 [139]), while creating an active stream of new ideas and challenges
made possible thanks to the progress of deep learning. Let us also note the growing interest by some private big actors
of digital media in the computer-aided generation of artistic content, with the creation by Google in June 2016 of the
Magenta research project [48] and the creation by Spotify in September 2017 of the Creator Technology Research Lab
(CTRL) [L76]. This is likely to contribute to blurring the line between music creation and music consumption through
the personalization of musical content [2].

1.2 This Book

The lack (to our knowledge) of a comprehensive survey and analysis of this active research domain motivated the
writing of this book, built in a bottom-up way from the analysis of numerous recent research works. The objective is to
provide a comprehensive description of the issues and techniques for using deep learning to generate music, illustrated
through the analysis of various architectures, systems and experiments presented in the literature. We also propose
a conceptual framework and typology aimed at a better understanding of the design decisions for current as well as
future systems.

1.2.1 Other Books and Sources

To our knowledge, there are only a few partial attempts at analyzing the use of deep learning for generating music.
In [14], a very preliminary version of this work, Briot e al. proposed a first survey of various systems through a
multicriteria analysis (considering as dimensions the objective, representation, architecture and strategy). We have
extended and consolidated this study by integrating as an additional dimension the challenge (after having analyzed it
in [16]).



In [65]], Graves presented an analysis focusing on recurrent neural networks and text generation. In [90], Humphrey
et al. presented another analysis, sharing some issues about music representation (see Section 4)) but dedicated to
music information retrieval (MIR) tasks, such as chord recognition, genre recognition and mood estimation. On MIR
applications of deep learning, see also the recent tutorial paper by Choi et al. [21]].

One could also consult the proceedings of some recently created international workshops on the topic, such as

o the Workshop on Constructive Machine Learning (CML 2016), held during the 30th Annual Conference on Neural
Information Processing Systems (NIPS 2016) [29];

o the Workshop on Deep Learning for Music (DLM), held during the International Joint Conference on Neural
Networks (IJCNN 2017) [75]], followed by a special journal issue [[76]; and

e on the deep challenge of creativity, the related Series of International Conferences on Computational Creativity
(ICCC) [186].

For a more general survey of computer-based techniques to generate music, the reader can refer to general books
such as

Roads’ book about computer music [[160];

Cope’s [27]], Dean and McLean’s [33] and/or Nierhaus’ books [[144]] about algorithmic composition;
a recent survey about Al methods in algorithmic composition [51]; and

Cope’s book about models of musical creativity [28]].

About machine learning in general, some examples of textbooks are

o the textbook by Mitchell [132];
e anice introduction and summary by Domingos [39]; and
e arecent, complete and comprehensive book about deep learning by Goodfellow ef al. [63].

1.2.2 Other Models

We have to remember that there are various other models and techniques for using computers to generate music, such
as rules, grammars, automata, Markov models and graphical models. These models are either manually defined by
experts or are automatically learnt from examples by using various machine learning techniques. They will not be
addressed in this book as we are concerned here with deep learning techniques. However, in the following section we
make a quick comparison of deep learning and Markov models.

1.2.3 Deep Learning versus Markov Models

Deep learning models are not the only models able to learn musical style from examples. Markov chain models are
also widely used, see, for example, [146]. A quick comparison (inspired by the analysis of Mozer in [139113]) of the
pros (+) and cons (—) of deep neural network models and Markov chain models is as follows:

+ Markov models are conceptually simple.

+ Markov models have a simple implementation and a simple learning algorithm, as the model is a transition prob-
ability tabld"]

— Neural network models are conceptually simple but the optimized implementations of current deep network ar-
chitectures may be complex and need a lot of tuning.

—  Order 1 Markov models (that is, considering only the previous state) do not capture long-term temporal structures.

14 Note that he made his analysis in in 1994, long before the deep learning wave.
15 Statistics are collected from the dataset of examples in order to compute the probabilities.



— Order n Markov models (considering n previous states) are possible but require an explosive training set sizeFE]

and can lead to plagiarisrrm

Neural networks can capture various types of relations, contexts and regularities.

Deep networks can learn long-term and high-order dependencies.

Markov models can learn from a few examples.

Neural networks need a lot of examples in order to be able to learn well.

—  Markov models do not generalize very well.

Neural networks generalize better through the use of distributed representations [82].

Markov models are operational models (automata) on which some control on the generation could be attache

— Deep networks are generative models with a distributed representation and therefore with no direct control to be
attache

I+ + +

+ +

As deep learning implementations are now mature and a large number of examples are available, deep learning-
based models are in high demand for their characteristics. That said, other models (such as Markov chains, graphical
models, etc.) are still useful and used and the choice of a model and its tuning depends on the characteristics of the
problem.

1.2.4 Requisites and Roadmap

This book does not require prior knowledge about deep learning and neural networks nor music.

Chapter [1) Introduction (this chapter) introduces the purpose and rationale of the book.

Chapter 2/ Method introduces the method of analysis (conceptual framework) and the five dimensions at its ba-
sis (objective, representation, architecture, challenge and strategy), dimensions that we discuss within the next four
chapters.

Chapter [3] Objective concerns the different types of musical content that we want to generate (such as a melody
or an accompaniment to an existing melody as well as their expected use (by a human and/or a machine).

Chapter 4 Representation provides an analysis of the different types of representation and techniques for encoding
musical content (such as notes, durations or chords) for a deep learning architecture. This chapter may be skipped by
a reader already expert in computer music, although some of the encoding strategies are specific to neural networks
and deep learning architectures.

Chapter 5| Architecture summarizes the most common deep learning architectures (such as feedforward, recurrent
or autoencoder) used for the generation of music. This includes a short reminder of the very basics of a simple neural
network. This chapter may be skipped by a reader already expert in artificial neural networks and deep learning
architectures.

Chapter [6| Challenge and Strategy provides an analysis of the various challenges that occur when applying deep
learning techniques to music generation, as well as various strategies for addressing them. We will ground our study
in the analysis of various systems and experiments surveyed from the literature. This chapter is the core of the book.

Chapter [7] Analysis summarizes the survey and analysis conducted in Chapter [6] through some tables as a way to
identify the design decisions and their interrelations for the different systems surveye

16 See the discussion in [139] page 249].

17 By recopying too long sequences from the corpus. Some promising solution is to consider a variable order Markov model and to constrain
the generation (through min order and max order constraints) on some sweet spot between junk and plagiarism [152].

18 Examples are Markov constraints [149] and factor graphs [148].

19 This issue as well as some possible solutions will be discussed in Section

20 Qur proposed typology of possible objectives will turn out to be useful for our analysis because, as we will see, different objectives can
lead to different architectures and strategies.

21" And hopefully also for the future ones. If we draw the analogy (at some meta-level) with the expected ability for a model learnt from
a corpus by a machine to be able to generalize to future examples (see Section [5.3.9), we hope that the conceptual framework presented
in this book, (manually) inducted from a corpus of scientific and technical literature about deep-learning-based music generation systems,
will also be able to help in the design and the understanding of future systems.



Chapter 8 Discussion and Conclusion revisits some of the open issues that were touched in during the analysis of
challenges and strategies presented in Chapter 6} before concluding this book.

A table of contents, a table of acronyms, a list of references, a glossary and an index complete this book.

Supplementary material is provided at the following companion web site:

www.briot.info/dlt4mg/

1.2.5 Limits

This book does not intend to be a general introduction to deep learning — a recent and broad spectrum book on this
topic is [63]. We do not intend to get into all technical details of implementation, like engineering and tuning, as well as
theoryFZl, as we wish to focus on the conceptual level, whilst providing a sufficient degree of precision. Also, although
having a clear pedagogical objective, we do not provide some end-to-end tutorial with all the steps and details on how
to implement and tune a complete deep learning-based music generation system.

Last, as this book is about a very active domain and as our survey and analysis is based on existing systems, our
analysis is obviously not exhaustive. We have tried to select the most representative proposals and experiments, while
new proposals are being presented at the time of our writing. Therefore, we encourage readers and colleagues to
provide any feedback and suggestions for improving this survey and analysis which is a still ongoing project.

22 For instance, we will not develop the probability theory and information theory frameworks for formalizing and interpreting the behavior
of neural networks and deep learning. However, Section[5.5.6] will introduce the intuition behind the notions of entropy and cross-entropy,
used for measuring the progress made during learning.






Chapter 2
Method

In our analysis, we consider five main dimensions to characterize different ways of applying deep learning techniques
to generate musical content. This typology is aimed at helping the analysis of the various perspectives (and elements)
leading to the design of different deep learning-based music generation system

2.1 Dimensions

The five dimensions that we consider are as follows.

2.1.1 Objective

The objectivsﬂ consists in:

e The musical nature of the content to be generated.
Examples are a melody, a polyphony or an accompaniment; and

o The destination and use of the content generated.
Examples are a musical score to be performed by some human musician(s) or an audio file to be played.

2.1.2 Representation

The representation is the nature and format of the information (data) used to train and to generate musical content.
Examples are signal, transformed signal (e.g., a spectrum, via a Fourier transform), piano roll, MIDI or text.

2.1.3 Architecture

The architecture is the nature of the assemblage of processing units (the artificial neurons) and their connexions.

! In this book, systems refers to the various proposals (architectures, systems and experiments) about deep learning-based music generation
that we have surveyed from the literature.

2 We could have used the term fask in place of objective. However, as task is a relatively well-defined and common term in the machine
learning community (see SectionE]and [63} Chapter 5]), we preferred an alternative term.
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Examples are a feedforward architecture, a recurrent architecture, an autoencoder architecture and generative ad-
versarial networks.

2.1.4 Challenge

A challenge is one of the qualities (requirements) that may be desired for music generation.
Examples are content variability, interactivity and originality.

2.1.5 Strategy

The strategy represents the way the architecture will process representations in order to generat the objective while
matching desired requirements.

Examples are single-step feedforward, iterative feedforward, decoder feedforward, sampling and input manipula-
tion.

2.2 Discussion

Note that these five dimensions are not orthogonal. The choice of representation is partially determined by the objective
and it also constrains the input and output (interfaces) of the architecture. A given type of architecture also usually
leads to a default strategy of use, while new strategies may be designed in order to target specific challenges.

The exploration of these five different dimensions and of their interplay is actually at the core of our analysiﬂ Each
of the first three dimensions (objective, representation and architecture) will be analyzed with its associated typology
in a specific chapter, with various illustrative examples and discussion. The challenge and strategy dimensions will
be jointly analyzed within the same chapter (Chapter[6) in order to jointly illustrate potential issues (challenges) and
possible solutions (strategies). As we will see, the same strategy may relate to more than one challenge and vice versa.

Last, we do not expect our proposed conceptual framework (and its associated five dimensions and related typolo-
gies) to be a final result, but rather a first step towards a better understanding of design decisions and challenges for
deep learning-based music generation. In other words, it is likely to be further amended and refined, but we hope that
it could help bootstrap what we believe to be a necessary comprehensive study.

3 Note, that we consider here the strategy relating to the generation phase and not the strategy relating to the training phase, as they could
be different.

4 Let us remember that our proposed typology has been constructed in a bottom-up manner from the survey and analysis of numerous
systems retrieved from the literature, most of them being very recent.

12



Chapter 3
Objective

The first dimension, the objective, is the nature of the musical content to be generated.

3.1 Facets

We may consider five main facets of an objective:

o Type
The musical nature of the generated content.
Examples are a melody, a polyphony or an accompaniment.

e Destination
The entity aimed at using (processing) the generated content.
Examples are a human musician, a software or an audio system.

o Use
The way the destination entity will process the generated content.
Examples are playing an audio file or performing a music score.

e Mode
The way the generation will be conducted, i.e. with some human intervention (inferaction) or without any inter-
vention (automation).

o Style
The musical style of the content to be generated.
Examples are Johann Sebastian Bach chorales, Wolfgang Amadeus Mozart sonatas, Cole Porter songs or Wayne
Shorter music. The style will actually be set though the choice of the dataset of musical examples (corpus) used as
the training examples.

3.1.1 Type

Main examples of musical types are as follows:

e Single-voice monophonic melody, abbreviated as Melody
It is a sequence of notes for a single instrument or vocal, with at most one note at the same time.

13



An example is the music produced by a monophonic instrument like a ﬂute{ﬂ

o Single-voice polyphony (also named Single-track polyphony), abbreviated as Polyphony
It is a sequence of notes for a single instrument, where more than one note can be played at the same time.
An example is the music produced by a polyphonic instrument such as a piano or guitar.

e Multivoice polyphony (also named Multitrack polyphony), abbreviated as Multivoice or Multitrack
It is a set of multiple voices/tracks, which is intended for more than one voice or instrument.
Examples are: a chorale with soprano, alto, tenor and bass voices or a jazz trio with piano, bass and drums.

e Accompaniment to a given melody
Such as

— Counterpoint, composed of one or more melodies (voices); or

— Chord progression, which provides some associated harmony.

e Association of a melody with a chord progression
An example is what is named a lead sheeﬂ and is common in jazz. It may also include lyricsﬂ

Note that the fype facet is actually the most important facet, as it captures the musical nature of the objective for
content generation. In this book, we will frequently identify an objective according to its fype, e.g., a melody, as a
matter of simplification. The next three facets — destination, use and mode — will turn out important when regarding
the dimension of the interaction of human user(s) with the process of content generation.

3.1.2 Destination and Use

Main examples of destination and use are as follows:

e Audio system
Which will play the generated content, as in the case of the generation of an audio file.

o Sequencer software
Which will process the generated content, as in the case of the generation of a MIDI file.

e Human(s)
Who will perform and interpret the generated content, as in the case of the generation of a music score.

3.1.3 Mode

There are two main modes of music generation:

o Autonomous and Automated
Without any human intervention; or

e [Interactive (to some degree)
With some control interface for the human user(s) to have some interactive control over the process of generation.

! Although there are non-standard techniques to produce more than one note, the simplest one being to sing simultaneously as playing.
There are also non-standard diphonic techniques for voice.

2 Figure in ChapterERepresentation will show an example of a lead sheet.

3 Note that lyrics could be generated too. Although this target is beyond the scope of this book, we will see later in Section that, in
some systems, music is encoded as a text. Thus, a similar technique could be applied to lyric generation.
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As deep learning for music generation is recent and basic neural network techniques are non-interactive, the ma-
jority of systems that we have analyzed are not yet very interactiveﬂ Therefore, an important goal appears to be the
design of fully interactive support systems for musicians (for composing, analyzing, harmonizing, arranging, produc-
ing, mixing, etc.), as pioneered by the FlowComposer prototype [153] to be introduced in Section [6.1T.4]

3.1.4 Style

As stated previously, the musical style of the content to be generated will be governed by the choice of the dataset of
musical examples that will be used as training examples. As will be discussed further in Section[d.12] we will see that
the choice of a dataset, notably properties like coherence, coverage (versus sparsity) and scope (specialized versus
large breadth), is actually fundamental for good music generation.

4 Some examples of interactive systems will be introduced in Section
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Chapter 4
Representation

The second dimension of our analysis, the representation, is about the way the musical content is represented. The
choice of representation and its encoding is tightly connected to the configuration of the input and the output of the
architecture, i.e. the number of input and output variables as well as their corresponding types.

We will see that, although a deep learning architecture can automatically extract significant features from the data,
the choice of representation may be significant for the accuracy of the learning and for the quality of the generated
content.

For example, in the case of an audio representation, we could use a spectrum representation (computed by a Fourier
transform) instead of a raw waveform representation. In the case of a symbolic representation, we could consider (as
in most systems) enharmony, i.e. Af being equivalent to Bb and Cb being equivalent to B, or instead preserve the
distinction in order to keep the harmonic and/or voice leading meaning.

4.1 Phases and Types of Data

Before getting into the choices of representation for the various data to be processed by a deep learning architecture, it
is important to identify the two main phases related to the activity of a deep learning architecture: the training phase
and the generation phase, as well as the related fou main types of data to be considered:

e Training phase

— Training data
The set of examples used for training the deep learning system;

— Validation data (aIS(ﬂ named 7Zest data)
The set of examples used for testing the deep learning syste

e Generation phase

— Generation (input) data
The data that will be used as input for the generation, e.g., a melody for which the system will generate an
accompaniment, or a note that will be the first note of a generated melody;

— Generated (output) data
The data produced by the generation, as specified by the objective.

! There may be more types of data depending on the complexity of the architecture, which may include intermediate processing steps.
2 Actually, a difference could be made, as will be later explained in Section
3 The motivation will be introduced in Section

17



Depending on the objectiveﬂ these four types of data may be equal or differenﬂ For instance:

e in the case of the generation of a melody (for example, in Section [6.6.1.7), both the training data and the generated
data are melodies; whereas

e in the case of the generation of a counterpoint accompaniment (for example, in Section [6.2.2), the generated data
is a set of melodies.

4.2 Audio versus Symbolic

A big divide in terms of the choice of representation (both for input and output) is audio versus symbolic. This also
corresponds to the divide between continuous and discrete variables. As we will see, their respective raw material
is very different in nature, as are the types of techniques for possible processing and transformation of the initial
representatiorﬁ They in fact correspond to different scientific and technical communities, namely signal processing
and knowledge representation.

However, the actual processing of these two main types of representation by a deep learning architecture is basi-
cally the sam(ﬂ Therefore, actual audio and symbolic architectures for music generation may be pretty similar. For
example, the WaveNet audio generation architecture (to be introduced in Section [6.10.3.2)) has been transposed into
the MidiNet symbolic music generation architecture (in Section[6.10.3.3)). This polymorphism (possibility of multiple
representations leading to genericity) is an additional advantage of the deep learning approach.

That said, we will focus in this book on symbolic representations and on deep learning techniques for generation of
symbolic music. There are various reasons for this choice:

the grand majority of the current deep learning systems for music generation are symbolic;
we believe that the essence of music (as opposed to soun(ﬁ) is in the compositional process, which is exposed via
symbolic representations (like musical scores or lead sheets) and is subject to analysis (e.g., harmonic analysis);

e covering the details and variety of techniques for processing and transforming audio representations (e.g., spectrum,
cepstrum, MFCCﬂ etc.) would necessitate an additional b00 and

e as stated previously, independently of considering audio or symbolic music generation, the principles of deep
learning architectures as well as the encoding techniques used are actually pretty similar.

Last, let us mention a recent deep learning-based architecture which combines audio and symbolic representations.
In this proposal from Manzelli et al. [126], a symbolic representation is used as a conditioning inpulE] in addition to
the audio representation main input, in order to better guide and structure the generation of (audio) music (see more

details in Section [6.10.3.2)).

4.3 Audio

The first type of representation of musical content is audio signal, either in its raw form (waveform) or transformed.

4 As stated in Section _ we identify an objective by its type as a matter of simplification.
5 Actually, training data and validation data are of the same kind, being both input data of the same architecture.

6 The initial representation may be transformed, through, e.g., data compression or extraction of higher-level representations, in order to
improve learning and/or generation.

7 Indeed, at the level of processing by a deep network architecture, the initial distinction between audio and symbolic representation boils
down, as only numerical values and operations are considered.

8 Without minimizing the importance of the orchestration and the production.

9 Mel-frequency cepstral coefficients.

10 An example entry point is the recent review by Wyse of audio representations for deep convolutional networks [208].
! Conditioning will be introduced in Section
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4.3.1 Waveform

The most direct representation is the raw audio signal: the waveform. The visualization of a waveform is shown in
Figure [4.T] and another one with a finer grain resolution is shown in Figure .2] In both figures, the x axis represents
time and the y axis represents the amplitude of the signal.

Fig. 4.1 Example of a waveform

S Mg

oM

Fig. 4.2 Example of a waveform with a fine grain resolution. Excerpt from a waveform visualization (sound of a guitar) by Michael Jancsy
reproduced from “https://plot.ly/"michaeljancsy/205.embed” with permission of the author

The advantage of using a waveform is in considering the raw material untransformed, with its full initial resolution.
Architectures that process the raw signal are sometimes named end-to-end architecture The disadvantage is in the
computational load: low level raw signal is demanding in terms of both memory and processing.

4.3.2 Transformed Representations

Using transformed representations of the audio signal usually leads to data compression and higher-level information,
but as noted previously, at the cost of losing some information and introducing some bias.

12 The term end-to-end emphasizes that a system learns all features from raw unprocessed data — without any pre-processing, transformation
of representation, or extraction of features — to produce the final output.
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4.3.3 Spectrogram

A common transformed representation for audio is the spectrum, obtained via a Fourier transfor Figure shows
an example of a spectrogram, a visual representation of a spectrum, where the x axis represents time (in seconds), the
y axis represents the frequency (in kHz) and the third axis in color represents the intensity of the sound (in dBFﬂ.

dBFS

Tine

Fig. 4.3 Example of a spectrogram of the spoken words “nineteenth century”. Reproduced from Aquegg’s original image at
“https://en.wikipedia.org/wiki/Spectrogram”

4.3.4 Chromagram

A variation of the spectrogram, discretized onto the tempered scale and independent of the octave, is a chromagram.
It is restricted to pitch classe The chromagram of the C major scale played on a piano is illustrated in Figure
The x axis common to the four subfigures (a to d) represents time (in seconds). The y axis of the score (a) represents
the note, the y axis of the chromagrams (b and d) represents the chroma (pitch class) and the y axis of the signal (c)
represents the amplitude. For chromagrams (b and d), the third axis in color represents the intensity.

13 The objective of the Fourier transform (which could be continuous or discrete) is the decomposition of an arbitrary signal into its
elementary components (sinusoidal waveforms). As well as compressing the information, its role is fundamental for musical purposes as it
reveals the harmonic components of the signal.

14 Decibel relative to full scale, a unit of measurement for amplitude levels in digital systems.

15 A pitch class (also named a chroma) represents the name of the corresponding note independently of the octave position. Possible pitch
classes are C, Cff (or Db), D, ... Af (or Bb) and B.
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Fig. 4.4 Examples of chromagrams. (a) Musical score of a C-major scale. (b) Chromagram obtained from the score. (c) Audio recording
of the C-major scale played on a piano. (d) Chromagram obtained from the audio recording. Reproduced from Meinard Mueller’s original

image at “https://en.wikipedia.org/wiki/Chroma_feature” under a CC BY-SA 3.0 licence

4.4 Symbolic

Symbolic representations are concerned with concepts like notes, duration and chords, which will be introduced in the

following sections.
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4.5 Main Concepts

4.5.1 Note

In a symbolic representation, a note is represented through the following main features, and for each feature there are
alternative ways of specifying its value:

e Pitch — specified by

— frequency, in Hertz (Hz);

— vertical position (height) on a score; or

— pitch notatio which combines a musical note name, e.g., A, Af, B, etc. — actually its pitch class — and a
number (usually notated in subscript) identifying the pitch class octave which belongs to the [—1,9] discrete
interval. An example is A4, which corresponds to A440 — with a frequency of 440 Hz — and serves as a general
pitch tuning standard.

e Duration — specified by

— absolute value, in milliseconds (ms); or
— relative value, notated as a division or a multiple of a reference note duration, i.e. the whole note o. Examples

are a quarter notJ and an eighth not .

e Dynamics — specified by

— absolute and quantitative value, in decibels (dB); or
— qualitative value, an annotation on a score about how to perform the note, which belongs to the discrete set

{ppp, pD, P, I. ff, fff}, from pianissimo to fortissimo.

4.5.2 Rest

Rests are important in music as they represent intervals of silence allowing a pause for breat A rest can be consid-
ered as a special case of a note, with only one feature, its duration, and no pitch or dynamics. The duration of a rest
may be specified by

absolute value, in milliseconds (ms); or
relative value, notated as a division or a multiple of a reference rest duration, the whole rest = having the same

duration as a whole note o. Examples are a quarter rest & and an eighth rest 7, corresponding respectively to a
quarter note Jand an eighth note JD.

4.5.3 Interval

An interval is a relative transition between two notes. Examples are a major third (which includes 4 semitones), a
minor third (3 semitones) and a (perfect) fifth (7 semitones). Intervals are the basis of chords (to be introduced in the

16 Also named international pitch notation or scientific pitch notation.

17 Named a crotchet in British English.

18 Named a quaver in British English.

19 As much for appreciation of the music as for respiration by human performer(s)!
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next section). For instance, the two main chords in classical music are major (with a major third and a fifth) and minor
(with a minor third and a fifth).

In the pioneering experiments described in [190], Todd discusses an alternative way for representing the pitch of
a note. The idea is not to represent it in an absolute way as in Section 4.5.1] but in a relative way by specifying the
relative transition (measured in semitones), i.e. the interval, between two successive notes. For example, the melody
Cy4, E4, G4 would be represented as Cq4, +4, +3.

In [190], Todd points out as two advantages the fact that there is no fixed bounding of the pitch range and the fact
that it is independent of a given key (tonality). However, he also points out that this second advantage may also be a
major drawback, because in case of an error in the generation of an interval (resulting in a change of key), the wrong
tonality (because of a wrong index) will be maintained in the rest of the melody generated. Another limitation is that
this strategy applies only to the specification of a monophonic melody and cannot directly represent a single-voice
polyphony, unless separating the parallel intervals into different voices. Because of these pros and cons, an interval-
based representation is actually rarely used in deep learning-based music generation systems.

4.5.4 Chord

A representation of a chord, which is a set of at least 3 notes (a triadfz_cl, could be

e implicit and extensional, enumerating the exact notes composing it. This permits the specification of the precise
octave as well as the position (voicing) for each note, see an example in Figure[4.5} or
o explicit and intensional, by using a chord symbol combining

— the pitch class of its root note, e.g., C, and
— the type, e.g., major, minor, dominant seventh, or diminishe@

=

Fig. 4.5 C major chord with an open position/voicing: 1-5-3 (root, 5th and 3rd)

We will see that the extensional approach (explicitly listing all component notes) is more common for deep learning-
based music generation systems, but there are some examples of systems representing chords explicitly with the
intensional approach, as for instance the MidiNet system to be introduced in Section[6.10.3.3]

4.5.5 Rhythm

Rhythm is fundamental to music. It conveys the pulsation as well as the stress on specific beats, indispensable for
dance! Rhythm introduces pulsation, cycles and thus structure in what would otherwise remain a flat linear sequence
of notes.

20 Modern music extends the original major and minor triads into a huge set of richer possibilities (diminished, augmented, dominant 7th,
suspended, 9th, 13th, etc.) by adding and/or altering intervals/components.

21 There are some abbreviated notations, frequent in jazz and popular music, for example C minor = Cmin = Cm = C-; C major seventh =
CM7 = Cmaj7 = CA, etc.

23



4.5.5.1 Beat and Meter

A beat is the unit of pulsation in music. Beats are grouped into measures, separated by bar@ The number of beats
in a measure as well as the duration between two successive beats constitute the rthythmic signature of a measure
and consequently of a piece of musi(FEl This time signature is also often named meter. It is expressed as the fraction
numberO fBeats / Beat Duration, where

numberO fBeats is the number of beats within a measure; and
beatDuration is the duration between two beats. As with the relative duration of a note (see Section or of a
rest, it is expressed as a division of the duration of a whole note o.

More frequent meters are 2/4, 3/4 and 4/4. For instance, 3/4 means 3 beats per measure, each one with the duration of
a quarter note J.Itis the rhythmic signature of a Waltz. The stress (or accentuation) on some beats or their subdivisions
may form the actual style of a rhythm for music as well as for a dance, e.g., ternary jazz versus binary rock.

4.5.5.2 Levels of Rhythm Information

We may consider three different levels in terms of the amount and granularity of information about rhythm to be
included in a musical representation for a deep learning architecture:

e None — only notes and their durations are represented, without any explicit representation of measures. This is the
case for most systems.
Measures — measures are explicitly represented. An example is the system described in Section
Beats — information about meter, beats, etc. is included. An example is the C-RBM system described in Sec-
tion[6.10.5.1} which allows us to impose a specific meter and beat stress for the music to be generated.

4.6 Multivoice/Multitrack

A multivoice representation, also named multitrack, considers independent various voices, each being a different vocal
range (e.g., soprano, alto. .. ) or a different instrument (e.g., piano, bass, drums. .. ). Multivoice music is usually mod-
eled as parallel tracks, each one with a distinct sequence of notesPEl, sharing the same meter but possibly with different
strong (stressed) beat@

Note that in some cases, although there are simultaneous notes, the representation will be a single-voice polyphony,
as introduced in Section[3.1.T} Common examples are polyphonic instruments like a piano or a guitar. Another example
is a drum or percussion kit, where each of the various components, e.g., snare, hi-hat, ride cymbal, kick, etc., will
usually be considered as a distinct note for the same voice.

The different ways to encode single-voice polyphony and multivoice polyphony will be further discussed in Sec-

tion 4.11.21

22 Although (and because) a bar is actually the graphical entity — the line segment “|” — separating measures, the term bar is also often
used, specially in the United States, in place of measure. In this book we will stick to the term measure.

23 For more elaborate music, the meter may change within different portions of the music.

24 It is interesting to note that, as pointed out by Sturm ef al. in [I79)], the generated music format also contains bars separating measures
and that there is no guarantee that the number of notes in a measure will always fit to a measure. However, errors rarely occur, indicating
that this representation is sufficient for the architecture to learn to count, see [60] and Section@

23 With possibly simultaneous notes for a given voice, see Section

26 Dance music is good at this, by having some syncopated bass and/or guitar not aligned on the strong drum beats, in order to create some
bouncing pulse.
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4.7 Format

The format is the language (i.e. grammar and syntax) in which a piece of music is expressed (specified) in order to be
interpreted by a compute

4.7.1 MIDI

Musical Instrument Digital Interface (MIDI) is a technical standard that describes a protocol, a digital interface and
connectors for interoperability between various electronic musical instruments, softwares and devices [133]]. MIDI
carries event messages that specify real-time note performance data as well as control data. We only consider here the
two most important messages for our concerns:

e Note on — to indicate that a note is played. It contains

— a channel number, which indicates the instrument or track, specified by an integer within the set {0, 1,... ,15};
— a MIDI note number, which indicates the note pitch, specified by an integer within the set {0,1,... ,127}; and
— avelocity, which indicates how loud the note is playe@ specified by an integer within the set {0,1,... ,127}.

An example is “Note on, 0, 60, 50” which means “On channel 1, start playing a middle C with velocity 50;

e Note off — to indicate that a note ends. In this situation, the velocity indicates how fast the note is released. An
example is “Note off, 0, 60, 20” which means “On channel 1, stop playing a middle C with velocity 20”.

Each note event is actually embedded into a track chunk, a data structure containing a delta-time value which
specifies the timing information and the event itself. A delta-time value represents the time position of the event and
could represent

e a relative metrical time — the number of ticks from the beginning. A reference, named the division and defined in
the file header, specifies the number of ticks per quarter note J;or
e an absolute time — useful for real performances, not detailed here, see [133]].

An example of an excerpt from a MIDI file (turned into readable ascii) and its corresponding score are shown in
Figures .6 and The division has been set to 384, i.e. 384 ticks per quarter note o (which corresponds to 96 ticks
for a sixteenth note ﬁ).

2, 96, Note_on, 0, 60, 90
2, 192, Note_off, 0, 60, O
2, 192, Note_on, 0, 62, 90
2, 288, Note_off, 0, 62, O
2, 288, Note_on, 0, 64, 90
2, 384, Note_off, 0, 64, 0

Fig. 4.6 Excerpt from a MIDI file

In [87]], Huang and Hu claim that one drawback of encoding MIDI messages directly is that it does not effectively
preserve the notion of multiple notes being played at once through the use of multiple tracks. In their experiment, they
concatenate tracks end-to-end and thus posit that it will be difficult for such a model to learn that multiple notes in the
same position across different tracks can really be played at the same time. Piano roll, to be introduced in next section,
does not have this limitation but at the cost of another limitation.

27 The standard format for humans is a musical score.
28 For a keyboard, it means the speed of pressing down the key and therefore corresponds to the volume.
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Fig. 4.7 Score corresponding to the MIDI excerpt

4.7.2 Piano Roll

The piano roll representation of a melody (monophonic or polyphonic) is inspired from automated pianos (see Fig-
ure [4.8)). This was a continuous roll of paper with perforations (holes) punched into it. Each perforation represents a
piece of note control information, to trigger a given note. The length of the perforation corresponds to the duration of
a note. In the other dimension, the localization of a perforation corresponds to its pitch.

Fig. 4.8 Automated piano and piano roll. Reproduced from Yaledmot’s post “https://www.youtube.com/watch?v=QrcwR7eijyc” with per-
mission of YouTube

An example of a modern piano roll representation (for digital music systems) is shown in Figure The x axis
represents time and the y axis the pitch.
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Fig. 4.9 Example of symbolic piano roll. Reproduced from [71] with permission of Hao Staff Music Publishing (Hong Kong) Co Ltd.

There are several music environments using piano roll as a basic visual representation, in place of or in complement
to a score, as it is more intuitive than the traditional score notatio@ An example is Hao Staff piano roll sheet music
(711, shown in Figure [4.9) with the time axis being horizontal rightward and notes represented as green cells. Another
example is tabs, where the melody is represented in a piano roll-like format [85], in complement to chords and lyrics.
Tabs are used as an input by the MidiNet system, to be introduced in Section

The piano roll is one of the most commonly used representations, although it has some limitations. An important
one, compared to MIDI representation, is that there is no note off information. As a result, there is no way to distinguish
between a long note and a repeated short notﬂ In Section we will look at different ways to address this
limitation. For a more detailed comparison between MIDI and piano roll, see [[87]] and [200].

4.7.3 Text

4.7.3.1 Melody

A melody can be encoded in a textual representation and processed as a fext. A significant example is the ABC
notation [202], a de facto standard for folk and traditional musicfﬂ Figures and show the original score
and its associated ABC notation for a tune named “A Cup of Tea”, from the repository and discussion platform The
Session [99].

The first six lines are the header and represent metadata: T is the title of the music, M is the meter, L is the default
note length, K is the key, etc. The header is followed by the main text representing the melody. Some basic principles
of the encoding rules of the ABC notation are as followsFZ}

o the pitch class of a note is encoded as the letter corresponding to its English notation, e.g., A for A or La;

2% Another notation specific to guitar or string instruments is a tablature, in which the six lines represent the chords of a guitar (four lines
for a bass) and the note is specified by the number of the fret used to obtain it.

30 Actually, in the original mechanical paper piano roll, the distinction is made: two holes are different from a longer single hole. The end
of the hole is the encoding of the end of the note.

31 Note that the ABC notation has been designed independently of computer music and machine learning concerns.
32 Please refer to [202]] for more details.
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Fig. 4.10 Score of “A Cup of Tea” (Traditional). Reproduced from The Session [99] with permission of the manager

X: 1

T: A Cup Of Tea

R: reel

M: 4/4

L: 1/8

K: Amix

| :eA (3AAA g2 fgleA (3AAA BGGf|eA (3AAA g2 fgllafge d2 gf:
|2afge d2 cd|| |:eaag efgfl|eaag edBdleaag efgelafge dgfg:|

Fig. 4.11 ABC notation of “A Cup of Tea”. Reproduced from The Session [99] with permission of the manager

e its pitch is encoded as following: A corresponds to A4, a to an A one octave up and a’ to an A two octaves up;

o the duration of a note is encoded as following: if the default length is marked as 1 /8 (i.e. an eighth note J’ the case
for the “A Cup of Tea” example), a corresponds to an eighth note Jl a/ 2 to a sixteenth note d and a2 to a quarter
note and

e measures are separated by “|” (bars).

Note that the ABC notation can only represent monophonic melodies.

In order to be processed by a deep learning architecture, the ABC text is usually transformed from a character
vocabulary text into a foken vocabulary text in order to properly consider concepts which could be noted on more than
one character, e.g., g2. Sturm et al.’s experiment, described in Section[6.6.1.2} uses a token-based notation named the
folk-rnn notation [179]]. A tune is enclosed within a “<s>” begin mark and an “<\s>" end mark. Last, all example
melodies are transposed to the same C root base, resulting in the notation of the tune “A Cup of Tea” shown in

Figured.12]

<s> M:4/4 K:Cmix |: gc (3 cccb2ab
| gc (3 cccb2abllc abgf2b
fl:gc”" ¢” bgabal] gc ¢ bgfd
| ¢/ abgfbab

Fig. 4.12 Folk-rnn notation of “A Cup of Tea”. Reproduced from [[179]] with permission of the authors

33 Note that rests may be expressed in the ABC notation through the z letter. Their durations are expressed as for notes, e.g., z2 is a double
length rest.
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4.7.3.2 Chord and Polyphony

When represented extensionally, chords are usually encoded with simultaneous notes as a vector. An interesting alter-
native extensional representation of chords, named ChordZVe has recently been proposed in [122 Rather than
thinking of chords (vertically) as vectors, it represents chords (horizontally) as sequences of constituent notes. More
precisely,

e achord is represented as an arbitrary length-ordered sequence of notes; and
e chords are separated by a special symbol, as with sentence markers in natural language processing.

When using this representation for predicting neighboring chords, a specific compound architecture is used, named
RNN Encoder-Decoder which will be described in Section

Note that a somewhat similar model is also used for polyphonic music generation by the BachBot system [119]]
which will be introduced in Section In this model, for each time step, the various notes (ordered in a descending
pitch) are represented as a sequence and a special delimiter symbol ““| | | indicates the next time frame.

4.7.4 Markup Language

Let us mention the case of general text-based structured representations based on markup languages (famous examples
are HTML and XML). Some markup languages have been designed for music applications, like for instance the open
standard MusicXML [62]. The motivation is to provide a common format to facilitate the sharing, exchange and
storage of scores by musical software systems (such as score editors and sequencers). MusicXML, as well as similar
languages, is not intended for direct use by humans because of its verbosity, which is the down side of its richness and
effectiveness as an interchange language. Furthermore, it is not very appropriate as a direct representation for machine
learning tasks for the same reasons, as its verbosity and richness would create too much overhead as well as bias.

4.7.5 Lead Sheet

Lead sheets are an important representation format for popular music (jazz, pop, etc.). A lead sheet conveys in upto
a few pages the score of a melody and its corresponding chord progression via an intensional notatiorm Lyrics may
also be added. Some important information for the performer, such as the composer, author, style and tempo, is often
also present. An example of lead sheet in shown in Figure [d.13]

Paradoxically, few systems and experiments use this rich and concise representation, and most of the time they
focus on the notes. Note that Eck and Schmidhuber’s Blues generation system, to be introduced in Section [6.5.1.1}
outputs a combination of melody and chord progression, although not as an explicit lead sheet. A notable contribution
is the systematic encoding of lead sheets done in the Flow Machines project [49], resulting in the Lead Sheet Data
Base (LSDB) repository [147]], which includes more than 12,000 lead sheets.

Note that there are some alternative notations, notably tabs [85]], where the melody is represented in a piano roll-like
format (see Sectiond.7.2) and complemented with the corresponding chords. An example of use of tabs is the MidiNet
system to be analyzed in Section

34 Chord2Vec is inspired by the Word2Vec model for natural language processing [130]).

35 For information, there is another similar model, also named Chord2 Vec, proposed in [88].
36 See Section
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Fig. 4.13 Lead sheet of “Very Late” (Pachet and d’Inverno). Reproduced with permission of the composers
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4.8 Temporal Scope and Granularity

The representation of time is fundamental for musical processes.

4.8.1 Temporal Scope

An initial design decision concerns the temporal scope of the representation used for the generation data and for
the generated data, that is the way the representation will be interpreted by the architecture with respect to time, as
illustrated in Figure(4.14]

Global — in this first case, the temporal scope of the representation is the whole musical piece. The deep network
architecture (typically a feedforward or an autoencoder architecture, see Sections[5.5]and[5.6) will process the input
and produce the output within a global single ste Examples are the MiniBach and DeepHear systems introduced
in Sections[6.2.2]and [6.4.1.1] respectively.

Time step (or time slice) — in this second case, the most frequent one, the temporal scope of the representation is
a local time slice of the musical piece, corresponding to a specific temporal moment (time step). The granularity
of the processing by the deep network architecture (typically a recurrent network) is a time step and generation is
iterativ Note that the time step is usually set to the shortest note duration (see more details in Section , but
it may be larger, e.g., set to a measure in the system as discussed in [190].

Note step — this third case was proposed by Mozer in [139] in his CONCERT system [139], see Section [6.6.1.1]
In this approach there is no fixed time step. The granularity of processing by the deep network architecture is a
note. This strategy uses a distributed encoding of duration that allows to process a note of any duration in a single
network processing step. Note that, by considering as a single processing step a note rather than a time step, the
number of processing steps to be bridged by the network is greatly reduced. The approach proposed later on by
Walder in [200] is similar.

global time step note step

notes

v

time

Fig. 4.14 Temporal scope for a piano roll-like representation

Note that a global temporal scope representation actually also considers time steps (separated by dash lines in

Figure [4.14). However, although time steps are present at the representation level, they will not be interpreted as
distinct processing steps by the neural network architecture. Basically, the encoding of the successive time slices will
be concatenated into a global representation considered as a whole by the network, as shown in Figure [6.2] of an
example to be introduced in Section[6.2.2]

37 1n Chapter we will name it the single-step feedforward strategy, see Section
g

38 In Chapter

| we will name it the iterative feedforward strategy, see Section
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Also note that in the case of a global temporal scope the musical content generated has a fixed length (the number
of time steps), whereas in the case of a time step or a note step temporal scope the musical content generated has an
arbitrary length, because generation is iterative as we will see in Section[6.5.1]

4.8.2 Temporal Granularity

In the case of a global or a time step temporal scope, the granularity of the time step, corresponding to the granularity
of the time discretization, must be defined. There are two main strategies:

e The most common strategy is to set the time step to a relative duration, the smallest duration of a note in the corpus
(training examples/dataset), e.g., a sixteenth note j To be more precise, as stated by Todd in [[190], the time step
should be the greatest common factor of the durations of all the notes to be learned. This ensures that the duration
of every note will be properly represented with a whole number of time steps. One immediate consequence of this
“leveling down” is the number of processing steps necessary, independent of the duration of actual notes.

e Another strategy is to set the time step to a fixed absolute duration, e.g., 10 milliseconds. This strategy permits us
to capture expressiveness in the timing of each note during a human performance, as we will see in Section[4.10]

Note that in the case of a note step temporal scope, there is no uniform discretization of time (no fixed time step)
and no need for.

4.9 Metadata

In some systems, additional information from the score may also be explicitly represented and used as metadata, such
as

note ti

fermata,

harmonics,

key,

meter, and

the instrument associated to a voice.

This extra information may lead to more accurate learning and generation.

4.9.1 Note Hold/Ending

An important issue is how to represent if a note is held, i.e. tied to the previous note. This is actually equivalent to the
issue of how to represent the ending of a note.

In the MIDI representation format, the end of a note is explicitly stated (via a “Note off” evem@). In the piano roll
format discussed in Sectiond.7.2] there is no explicit representation of the ending of a note and, as a result, one cannot
distinguish between two repeated quarter notes 44 and a half note d.

The main possible techniques are

39 A tied note on a music score specifies how a note duration extends across a single measure. In our case, the issue is how to specify that
the duration extends across a single time step. Therefore, we consider it as metadata information, as it is specific to the representation and
its processing by a neural network architecture.

40 Note that, in MIDI, a “Note on” message with a null (0) velocity is interpreted as a “Note off”” message.
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e to introduce a hold/replay representation, as a dual representation of the sequence of notes. This solution is used,
for example, by Mao et al. in their DeepJ system [127] (to be analyzed in Section[6.10.3.4), by introducing a replay
matrix similar to the piano roll-type matrix of notes;

e to divide the size of the time ste by two and always mark a note ending with a special tag, e.g., 0. This solution
is used, for example, by Eck and Schmidhiiber in [43]], and will be analyzed in Section[6.5.1.1}

e to divide the size of the time step as before but instead mark a new note beginning. This solution is used by Todd in
[190]; or

e to use a special hold symbol “__" in place of a note to specify when the previous note is held. This solution was
proposed by Hadjeres et al. in their DeepBach system [70] to be analyzed in Section[6.14.2]

S0
i ﬁ ! I D5,

A4

m

IESIFSIDSI_I_I_l CSI_I_I
G4, __,F4,__ ,E4,

+ES
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C4’—-—’—.—.f—.—’B3f_._f_f__..'G3l r r IAS
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s em——
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(2) (b)

Fig. 4.15 a) Extract from a J. S. Bach chorale and b) its representation using the hold symbol “__". Reproduced from [[70] with permission
of the authors

This last solution considers the hold symbol as a note, see an example in Figure The advantages of the hold
symbol technique are

e itis simple and uniform as the hold symbol is considered as a note; and
e there is no need to divide the value of the time step by two and mark a note ending or beginning.

The authors of DeepBach also emphasize that the good results they obtain using Gibbs sampling rely exclusively
on their choice to integrate the hold symbol into the list of notes (see [70] and Section[6.14.2)). An important limitation
is that the hold symbol only applies to the case of a monophonic melody, that is it cannot directly express held notes
in an unambiguous way in the case of a single-voice polyphony. In this case, the single-voice polyphony must be
reformulated into a multivoice representation with each voice being a monophonic melody; then a hold symbol is
added separately for each voice. Note that in the case of the replay matrix, the additional information (matrix row) is
for each possible note and not for each voice.

We will discuss in Section [F.11.7/how to encode a hold symbol.

4.9.2 Note Denotation (versus Enharmony)

Most systems consider enharmony, i.e. in the tempered system Af is enharmonically equivalent to (i.e. has the same
pitch as) Bb, although harmonically and in the composer’s intention they are different. An exception is the DeepBach

41 See Sectionfor details of how the value of the time step is defined.
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system, described in Section [6.14.2] which encodes notes using their real names and not their MIDI note numbers.
The authors of DeepBach state that this additional information leads to a more accurate model and better results [[70].

4.9.3 Feature Extraction

Although deep learning is good at processing raw unstructured data, from which its hierarchy of layers will extract
higher-level representations adapted to the task (see Section [I.1.4), some systems include a preliminary step of auto-
matic feature extraction, in order to represent the data in a more compact, characteristic and discriminative form. One
motivation could be to gain efficiency and accuracy for the training and for the generation. Moreover, this feature-
based representation is also useful for indexing data, in order to control generation through compact labeling (see, for
example, the DeepHear system in Section [6.4.1.1)), or for indexing musical units to be queried and concatenated (see
Section[6.10.7.1).

The set of features can be defined manually (handcrafted) or automatically (e.g. by an autoencoder, see Section[5.6).
In the case of handcrafted features, the bag-of-words (BOW) model is a common strategy for natural language text
processing, which may also be applied to other types of data, including musical data, as we will see in Section[6.10.7.1]
It consists in transforming the original text (or arbitrary representation) into a “bag of words” (the vocabulary com-
posed of all occurring words, or more generally speaking, all possible tokens); then various measures can be used to
characterize the text. The most common is term frequency, i.e. the number of times a term appears in the tex

Sophisticated methods have been designed for neural network architectures to automatically compute a vector
representation which preserves, as much as possible, the relations between the items. Vector representations of texts
are named word embeddingﬁ A recent reference model for natural language processing (NLP) is the Word2Vec
model [130]. It has recently been transposed to the Chord2Vec model for the vector encoding of chords, as described

in [122]] (see Section4.5.4).

4.10 Expressiveness

4.10.1 Timing

If training examples are processed from conventional scores or MIDI-format libraries, there is a good chance that the
music is perfectly quantized — i.e., note onsets{ﬂ are exactly aligned onto the tempo — resulting in a mechanical sound
without expressiveness. One approach is to consider symbolic records — in most cases recorded directly in MIDI —
from real human performances, with the musician interpreting the tempo. An example of a system for this purpose is
Performance RNN [174], which will be analyzed in Section It follows the absolute time duration quantization
strategy, presented in Section[4.8.2]

42 Note that this bag-of-words representation is a lossy representation (i.e. without effective means to perfectly reconstruct the original data
representation).

43 The term embedding comes from the analogy with mathematical embedding, which is an injective and structure-preserving mapping.
Initially used for natural language processing, it is now often used in deep learning as a general term for encoding a given representation into
a vector representation. Note that the term embedding, which is an abstract model representation, is often also used (we think, abusively)
to define a specific instance of an embedding (which may be better named, for example, a label, see [[180] and Section @

4 An onset refers to the beginning of a musical note (or sound).
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4.10.2 Dynamics

Another common limitation is that many MIDI-format libraries do not include dynamics (the volume of the sound
produced by an instrument), which stays fixed throughout the whole piece. One option is to take into consideration (if
present on the score) the annotations made by the composer about the dynamics, from pianissimo ppp to fortissimo
Sff. see Section As for tempo expressiveness, addressed in Section another option is to use real human
performances, recorded with explicit dynamics variation — the velocity field in MIDI.

4.10.3 Audio

Note that in the case of an audio representation, expressiveness as well as tempo and dynamics are entangled within the
whole representation. Although it is easy to control the global dynamics (global volume), it is less easy to separately
control the dynamics of a single instrument or voic

4.11 Encoding

Once the format of a representation has been chosen, the issue still remains of how to encode this representation. The
encoding of a representation (of a musical content) consists in the mapping of the representation (composed of a set
of variables, e.g., pitch or dynamics) into a set of inputs (also named input nodes or input variables) for the neural
network architecturef*

4.11.1 Strategies

At first, let us consider the three possible types for a variable:

e Continuous variables — an example is the pitch of a note defined by its frequency in Hertz, that is a real value within
the ]0, oo intervaf’]
The straightforward way is to directly encode the VariableEg] as a scalar whose domain is real values. We call this
strategy value encoding.

e Discrete integer variables — an example is the pitch of a note defined by its MIDI note number, that is an integer
value within the {0, 1,... , 127} discrete se
The straightforward way is to encode the variable as a real value scalar, by casting the integer into a real. This is
another case of value encoding.

e Boolean (binary) variables — an example is the specification of a note ending (see Section[4.9.1).
The straightforward way is to encode the variable as a real value scalar, with two possible values: 1 (for true) and
0 (for false).

4 More generally speaking, audio source separation, often coined as the cocktail party effect, has been known for a long time to be a
very difficult problem, see the original article in [19]. Interestingly, this problem has been solved in 2015 by deep learning architectures
[46], opening up ways for disentangling instruments or voices and their relative dynamics as well as tempo (by using audio time stretching
techniques).

46 See Sectionfor more details about the input nodes of a neural network architecture.
47 The notation ]0, +oof is for an open interval excluding its endpoints. An alternative notation is (0, o).

48 In practice, the different variables are also usually scaled and normalized, in order to have similar domains of values ([0, 1] or [—1,+1])
for all input variables, in order to ease learning convergence.

49 See our summary of MIDI specification in Section
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e Categorical variablesF_U] — an example is a component of a drum kit; an element within a set of possible values:
{snare, high-hat, kick, middle-tom, ride-cymbal, etc.}.
The usual strategy is to encode a categorical variable as a vector having as its length the number of possible
elements, in other words the cardinality of the set of possible values. Then, in order to represent a given element,
the corresponding element of the encoding vector is set to 1 and all other elements to 0. Therefore, this encoding
strategy is usually called one-hot encoding@ This frequently used strategy is also often employed for encoding
discrete integer variables, such as MIDI note numbers.

4.11.2 From One-Hot to Many-Hot and to Multi-One-Hot

Note that a one-hot encoding of a note corresponds to a time slice of a piano roll representation (see Figure .9), with
as many lines as there are possible pitches. Note also that while a one-hot encoding of a piano roll representation of a
monophonic melody (with one note at a time) is straightforward, a one-hot encoding of a polyphony (with simultaneous
notes, as for a guitar playing a chord) is not. One could then consider

e many-hot encoding — where all elements of the vector corresponding to the notes or to the active components are
set to 1;

o multi-one-hot encoding — where different voices or tracks are considered (for multivoice representation, see Sec-
tion@ and a one-hot encoding is used for each different voice/track; or

o multi-many-hot encoding — which is a multivoice representation with simultaneous notes for at least one or all of
the voices.

4.11.3 Summary

The various approaches for encoding are illustrated in Figure 4.16} showing from left to right

a scalar continuous value encoding of A4 (A440), the real number specifying its frequency in Hertz;

a scalar discrete integer value encodindg_f] of A4, the integer number specifying its MIDI note number;

a one-hot encoding of Ay;

a many-hot encoding of a D minor chord (D4, Fs, Ay);

a multi-one-hot encoding of a first voice with A4 and a second voice with D3; and

a multi-many-hot encoding of a first voice with a D minor chord (D4, F4, A4) and a second voice with C3 (corre-
sponding to a minor seventh on bass).

4.11.4 Binning

In some cases, a continuous variable is transformed into a discrete domain. A common technique, named binning, or
also bucketing, consists of

e dividing the original domain of values into smaller intervalﬂ named bins; and

30 In statistics, a categorical variable is a variable that can take one of a limited — and usually fixed — number of possible values. In computer
science it is usually referred as an enumerated type.

5! The name comes from digital circuits, one-hot referring to a group of bits among which the only legal (possible) combinations of values
are those with a single high (hot!) (1) bit, all the others being low (0).

32 Note that, because the processing level of an artificial neural network only considers real values, an integer value will be casted into a
real value. Thus, the case of a scalar integer value encoding boils down to the previous case of a scalar continuous value encoding.

33 This can be automated through a learning process, e.g., by automatic construction of a decision tree.
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Fig. 4.16 Various types of encoding

e replacing each bin (and the values within it) by a value representative, often the central value.

Note that this binning technique may also be used to reduce the cardinality of the discrete domain of a variable. An
example is the Performance RNN system described in Section [6.7.1] for which the initial MIDI set of 127 values for
note dynamics is reduced into 32 bins.

4.11.5 Pros and Cons

In general, value encoding is rarely used except for audio, whereas one-hot encoding is the most common strategy for
symbolic representatio

A counterexample is the case of the DeepJ symbolic generation system described in Section [6.10.3.4] which is, in
part, inspired by the WaveNet audio generation system. DeepJ’s authors state that: “We keep track of the dynamics of
every note in an N x T dynamics matrix that, for each time step, stores values of each note’s dynamics scaled between 0

34 Let us remind (as pointed out in Section that, at the level of the encoding of a representation and its processing by a deep network,
the distinction between audio and symbolic representation boils down to nothing, as only numerical values and operations are considered.
In fact the general principles of a deep learning architecture are independent of that distinction and this is one of the vectors of the generality
of the approach. See also in [126] the example of an architecture (to be introduced in Section[6.10.3.2) which combines audio and symbolic
representations.

37



and 1, where 1 denotes the loudest possible volume. In our preliminary work, we also tried an alternate representation
of dynamics as a categorical value with 128 bins as suggested by Wavenet [[194]. Instead of predicting a scalar value,
our model would learn a multinomial distribution of note dynamics. We would then randomly sample dynamics during
generation from this multinomial distribution. Contrary to Wavenet’s results, our experiments concluded that the scalar
representation yielded results that were more harmonious.” [[127].

The advantage of value encoding is its compact representation, at the cost of sensibility because of numerical
operations (approximations). The advantage of one-hot encoding is its robustness (discrete versus analog), at the cost
of a high cardinality and therefore a potentially large number of inputs.

It is also important to understand that the choice of one-hot encoding at the output of the network architecture is
often (albeit not always) associated to a softmax functiodg_gl in order to compute the probabilities of each possible value,
for instance the probability of a note being an A, or an Af, a B, a C, etc. This actually corresponds to a classification
task between the possible values of the categorical variable. This will be further analyzed in Section

4.11.6 Chords

Two methods of encoding chords, corresponding to the two main alternative representations discussed in Section[4.5.4]
are

e implicit and extensional — enumerating the exact notes composing the chord. The natural encoding strategy is
many-hot. An example is the RBM-based polyphonic music generation system described in Section [6.4.2.3} and

o explicit and intensional — using a chord symbol combining a pitch class and a type (e.g., D minor). The natural
encoding strategy is multi-one-hot, with an initial one-hot encoding of the pitch class and a second one-hot en-
coding of the class type (major, minor, dominant seventh, etc.). An example is the MidiNet systen'F_?’-] described in
Section[6.10.3.3]

4.11.7 Special Hold and Rest Symbols

We have to consider the case of special symbols for hold (‘“hold previous note”, see Section[4.9.1) and rest (“no note”,
see Section[4.5.2)) and how they relate to the encoding of actual notes.
First, note that there are some rare cases where the rest is actually implicit:

e in MIDI format — when there is no “active” “Note on”, that is when they all have been “closed” by a corresponding
“Note off”; and

e in one-hot encoding — when all elements of the vector encoding the possible notes are equal to 0 (i.e. a “zero-
hot” encoding, meaning that none of the possible notes is currently selected). This is for instance the case in the
experiments by Todd (to be described in Section [6.8. 1’|

Now, let us consider how to encode hold and rest depending on how a note pitch is encoded:

e value encoding — In this case, one needs to add two extra boolean variables (and their corresponding input nodes)
hold and rest. This must be done for each possible independent voice in the case of a polyphony; or

33 Introduced in Sectionm

36 In MidiNet, the possible chord types are actually reduced to only major and minor. Thus, a boolean variable can be used in place of
one-hot encoding.

37 This may appear at first as an economical encoding of a rest, but at the cost of some ambiguity when interpreting probabilities (for each
possible note) produced by the softmax output of the network architecture. A vector with low probabilities for each note may be interpreted
as a rest or as an equiprobability between notes. See the threshold trick proposed in Section[6.8.1]in order to discriminate between the two
possible interpretations.
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e one-hot encoding — In that case (the most frequent and manageable strategy), one just needs to extend the vocabulary
of the one-hot encoding with two additional possible values: hold and rest. They will be considered at the same
level, and of the same nature, as possible notes (e.g., Az or C4) for the input as well as for the output.

4.11.8 Drums and Percussion

Some systems explicitly consider drums and/or percussion. A drum or percussion kit is usually modeled as a single-
track polyphony by considering distinct simultaneous “notes”, each “note” corresponding to a drum or percussion
component (e.g., snare, kick, bass tom, hi-hat, ride cymbal, etc.), that is as a many-hot encoding.

An example of a system dedicated to rhythm generation is described in Section[6.10.3.1} It follows the single-track
polyphony approach. In this system, each of the five components is represented through a binary value, specifying
whether or not there is a related event for current time step. Drum events are represented as a binary Wor of
length 5, where each binary value corresponds to one of the five drum components; for instance, 10010 represents
simultaneous playing of the kick (bass drum) and the high-hat, following a many-hot encoding.

Note that this system also includes — as an additional voice/track — a condensed representation of the bass line part
and some information representing the meter, see more details in Section The authors [123]] argue that this
extra explicit information ensures that the network architecture is aware of the beat structure at any given point.

Another example is the MusicVAE system (see Section [6.12.1]), where nine different drum/percussion components
are considered, which gives 29 possible combinations, i.e. 29 = 512 different tokens.

4.12 Dataset

The choice of a dataset is fundamental for good music generation. At first, a dataset should be of sufficient size
(i.e. contain a sufficient number of examples) to guarantee accurate learninﬂ As noted by Hadjeres in [67]: “T
believe that this tradeoff between the size of a dataset and its coherence is one of the major issues when building deep
generative models. If the dataset is very heterogeneous, a good generative model should be able to distinguish the
different subcategories and manage to generalize well. On the contrary, if there are only slight differences between
subcategories, it is important to know if the “averaged model” can produce musically-interesting results.”

4.12.1 Transposition and Alignment

A common technique in machine learning is to generate synthetic data as a way to artificially augment the size of the
dataset (the number of training examplesﬂ in order to improve accuracy and generalization of the learnt model (see
Section [5.5.10). In the musical domain, a natural and easy way is transposition, i.e. to transpose all examples in all
keys. In addition to artificially augmenting the dataset, this provides a key (tonality) invariance of all examples and
thus makes the examples more generic. Moreover, this also reduces sparsity in the training data. This transposition
technique is, for instance, used in the C-RBM system [109]] described in Section [6.10.5.1]

An alternative approach is to transpose (align) all examples into a single common key. This has been advocated for
the RNN-RBM system [[11]] to facilitate learning, see Section[6.9.1]

38 In this system, encoding is made in text, similar to the format described in Section and more precisely following the approach
proposed in [22].

39 Neural networks and deep learning architectures need lots of examples to function properly. However, one recent research area is about
learning from scarce data.

60 This is named dataset augmentation.
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4.12.2 Datasets and Libraries

A practical issue is the availability of datasets for training systems and also for evaluating and comparing systems
and approaches. There are some reference datasets in the image domain (e.g., the MNISTEFI dataset about handwritten
digits [[113]]), but none yet in the music domain. However, various datasets or librarie@ have been made public, with
some examples listed below:

the Classical piano MIDI database [[105]];
the JSB Chorales datase [0
the LSDB (Lead Sheet Data Base) repository [147]], with more than 12,000 lead sheets (including from all jazz and
bossa nova song books), developed within the Flow Machines project [49]];

e the MuseData library, an electronic library of classical music with more than 800 pieces, from CCARH in Stanford
University [[77];

o the MusicNet dataset [188]], a collection of 330 freely-licensed classical music recordings together with over 1
million annotated labels (indicating timing and instrumental information);

o the Nottingham database, a collection of 1,200 folk tunes in the ABC notation [54]], each tune consisting of a simple
melody on top of chords, in other words an ABC equivalent of a lead sheet;

e the Session [99]], a repository and discussion platform for Celtic music in the ABC notation containing more than
15,000 songs;
the Symbolic Music dataset by Walder [201], a huge set of cleaned and preprocessed MIDI files;
the TheoryTab database [85], a set of songs represented in a tab format, a combination of a piano roll melody,
chords and lyrics, in other words a piano roll equivalent of a lead sheet;

e the Yamaha e-Piano Competition dataset, in which participants MIDI performance records are made available [210]].

61 MINIST stands for Modified National Institute of Standards and Technology.

2 The difference between a dataset and a library is that a dataset is almost ready for use to train a neural network architecture, as all
examples are encoded within a single file and in the same format, although some extra data processing may be needed in order to adapt the
format to the encoding of the representation for the architecture or vice-versa; whereas a library is usually composed of a set of files, one
for each example.

63 Note that this dataset uses a quarter note quantization, whereas a smaller quantization at the level of a sixteenth note should be used in
order to capture the smallest note duration (eighth note), see Section @
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Chapter 5
Architecture

Deep networks are a natural evolution of neural networks, themselves being an evolution of the Perceptron, proposed
by Rosenblatt in 1957 [166]. Historically spea.kin the Perceptron was criticized by Minsky and Papert in 1969
[L31] for its inability to classify nonlinearly separable domaimﬂ Their criticism also served in favoring an alternative
approach of Artificial Intelligence, based on symbolic representations and reasoning.

&3 N O &3
&3

O O 3 O

A
linearly separable non linearly separable

Fig. 5.1 Example and counterexample of linear separability

Neural networks reappeared in the 1980s, thanks to the idea of hidden layers joint with nonlinear units, to resolve
the initial linear separability limitation, and to the backpropagation algorithm, to train such multilayer neural networks
[167].

In the 1990s, neural networks suffered declining interesﬂ because of the difficulty in training efficiently neural
networks with many layer{f] and due to the competition from support vector machines (SVM) [197], which were
efficiently designed to maximize the separation margin and had a solid formal background.

An important advance was the invention of the pre-training techniqueE] by Hinton et al. in 2006 [80], which resolved
this limitation. In 2012, an image recognition competition (the ImageNet Large Scale Visual Recognition Challenge

I See, for example, [[63] Section 1.2] for a more detailed analysis of key trends in the history of deep learning.

2 A simple example and a counterexample of linear separability (of a set of four points within a 2-dimensional space and belonging to green
cross or red circle classes) are shown in Figure[5.I] The elements of the two classes are linearly separable if there is at least one straight line
separating them. Note that the discrete version of the counterexample corresponds to the case of the exclusive or (XOR) logical operator,
which was used as an argument by Minsky and Papert in [131].

3 Meanwhile, convolutional networks started to gain interest, notably though handwritten digit recognition applications [112]]. As Goodfel-
low et al. in [63} Section 9.11] put it: “In many ways, they carried the torch for the rest of deep learning and paved the way to the acceptance
of neural networks in general.”

4 Another related limitation, although specific to the case of recurrent networks, was the difficulty in training them efficiently on very
long sequences. This was resolved in 1997 by Hochreiter and Schmidhuber with the Long short-term memory (LSTM) architecture [83],
presented in Section @}

3 Pre-training consists in prior training in cascade (one layer at a time, also named greedy layer-wise unsupervised training) of each hidden
layer [80] [63} page 528]. It turned out to be a significant improvement for the accurate training of neural networks with several layers [47].
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[168]) was won by a deep neural network algorithm named AlexNetﬂ with a stunning margi over the other algo-
rithms which were using handcrafted features. This striking victory was the event which ended the prevalent opinion
that neural networks with many hidden layers could not be efficiently trainecﬂ

5.1 Introduction to Neural Networks

The purpose of this section is to review, or to introduce, the basic principles of artificial neural networks. Our objective
is to define the key concepts and terminology that we will use when analyzing various music generation systems.
Then, we will introduce the concepts and basic principles of various derived architectures, like autoencoders, recurrent
networks, RBMs, etc., which are used in musical applications. We will not describe extensively the techniques of
neural networks and deep learning, for example covered in the recent book [[63]].

5.1.1 Linear Regression

Although bio-inspired (biological neurons), the foundation of neural networks and deep learning is linear regression.
In statistics, linear regression is an approach for modeling the (assumed linear) relationship between a scalar variable
y € R and oneﬂ or more than one explanatory variable(s) X1 ... X,, with X; € IR, jointly noted as vector x. A simple
example is to predict the value of a house, depending on some factors (e.g., size, height, location. .. ).

Equation [5.T] gives the general model of a (multiple) linear regression, where

n
h(X) =b+61x1 + ...+ 6., = b+ Y 0ix; 5.1
i=1

e /1 is the model, also named hypothesis, as this is the hypothetical best model to be discovered, i.e. learnt;
e Disthe biaﬂ representing the offset; and
e 0 ... 0, are the parameters of the model, the weights, corresponding to the explanatory variables X ... X,,.

5.1.2 Notations

We will use the following simple notation conventions

e aconstant is in roman (straight) font, e.g., integer 1 and note Cy.

e avariable of a model is in roman font, e.g., input variable x and output variable y (possibly vectors).

e a parameter of a model is in italics, e.g., bias b, weight parameter 8;, model function /s, number of explanatory
variables n and index i of a variable x;.

That said, pre-training is now rarely used and has been replaced by other more recent techniques, such as batch normalization and deep
residual learning. But its underlying techniques are useful for addressing some new concerns like transfer learning, which deals with the
issue of reusability (of what has been learnt, see Section [8.3).

6 AlexNet was designed by the SuperVision team headed by Hinton and composed of Alex Krizhevsky, Ilya Sutskever and Geoffrey
E. Hinton [104]. AlexNet is a deep convolutional neural network with 60 million parameters and 650,000 neurons, consisting of five
convolutional layers, some followed by max-pooling layers, and three globally-connected layers.

7 On the first task, AlexNet won the competition with a 15% error rate whereas other teams did not achieve better than a 26% error rate.

8 Interestingly, the title of Hinton ef al.’s article about pre-training [80] is about “deep belief nets” and does not mention the term “neural
nets” because, as Hinton remembers it in [106]: “At that time, there was a strong belief that deep neural networks were no good and could
never be trained and that ICML (International Conference on Machine Learning) should not accept papers about neural networks.”

9 The case of one explanatory variable is called simple linear regression, otherwise it is named multiple linear regression.

10 1t could also be notated as 6y, see Section
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e aprobability as well as a probability distribution are in italics and upper case, e.g., probability P(note = A4) that the
value of variable note is A4 and probability distribution P(note) of variable note over all possible notes (outcomes).

5.1.3 Model Training

The purpose of training a linear regression model is to find the values for each weight 6; and the bias b that best fit the
actual training data/examples, i.e. various pairs of values (x,y). In other words, we want to find the parameters and
bias values such that for all values of x, h(x) is as close as possibl to y, according to some measure named the cost.
This measure represents the distance between h(x) (the prediction, also notated as §) and y (the actual ground value),
for all examples.

The cost, also named the loss, is usually{T_ZI notated Jyg () and could be measured, for example, by a mean squared
error (MSE), which measures the average squared difference, as shown in Equation where m is the number of
examples and (x(),y(?)) is the ith example pair.

=

Il
=

Jo) = 1/m¥" (v —n(x D)7 = 1/m Y (%) — 52 52)
i=1

1

An example is shown in Figure [5.2]for the case of simple linear regression, i.e. with only one explanatory variable
x. Training data are shown as blue solid dots. Once the model has been trained, values of the parameters are adjusted,
illustrated by the blue solid bold line which mostly fits the examples. Then, the model can be used for prediction, e.g.,
to provide a good estimate § of the actual value of y for a given value of x by computing /(x) (shown in green).

h(x)
b (or 8,

6,

Fig. 5.2 Example of simple linear regression

T Actually, for the neural networks that are more complex (nonlinear models) than linear regression and that will be introduced in Sec-
tion[5.3] the best fit to the training data is not necessarily the best hypothesis because it may have a low generalization, i.e. a low ability to
predict yer unseen data. This issue, named overfitting, will be introduced in Section@]

12 Or also J(8), L or £(6).
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5.1.4 Gradient Descent Training Algorithm

The basic algorithm for training a linear regression model, using the simple gradient descent method, is actually pretty
simpleE}

initialize each parameter 6; and the bias b to a random or some heuristic valueFE];
compute the values of the model # for all exampleﬁ
compute the cost Jg(h), e.g., by Equation

e compute the gradients 9{399(_}') which are the partial derivatives of the cost function Jg (h) with respect to each 6;, as

well as to the bias b;
e update simultaneousl all parameters 6; and the bias according to the update rul shown in Equation with
a being the learning rate.

dJg(h)
0; .= 9,‘ — O 53
This represents an update in the opposite direction of the gradients in order to decrease the cost Jg (%), as illustrated

in Figure and

e iferate until the error reaches a minimu or after a certain number of iterations.

Jofh)

A gradient

global minimum

v

Fig. 5.3 Gradient descent

13 See, e.g., [142]] for more details.

14 Pre-training led to a significant advance, as it improved the initialization of the parameters by using actual training data, via sequential
training of the successive layers [47].

15 Computing the cost for all examples is the best method but also computationally costly. There are numerous heuristic alternatives to
minimize the computational cost, e.g., stochastic gradient descent (SGD), where one example is randomly chosen, and minibatch gradient
descent, where a subset of examples is randomly chosen. See, for example, 63} Sections 5.9 and 8.1.3] for more details.

16 A simultaneous update is necessary for the algorithm to behave correctly.

dJg(h)
96, -

18 If the cost function is convex (the case for linear regression), there is only one global minimum, and thus there is a guarantee of finding
the optimal model.

17 The update rule may also be notated as 8 := 6 — aVgJg (h), where VgJq (h) is the vector of gradients
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5.1.5 From Model to Architecture

Let us now introduce in Figure [5.4]a graphical representation of a linear regression model, as a precursor of a neural
network. The architecture represented is actually the computational representation of the mode@

The weighted sum is represented as a computational uni@ drawn as a squared box with a ), taking its inputs from
the x; nodes, drawn as circles.

In the example shown, there are four explanatory variables: X1, X», X3 and x4. Note that there is some convention
of considering the bias as a special case of weight (thus alternatively notated as 8y) and having a corresponding input
node named the bias node, which is implici@ and has a constant value notated as +1. This actually corresponds to
considering an implicit additional explanatory variable xo with constant value +1, as shown in Equation[5.4] alternative
formulation of linear regression initially defined in Equation

n
h(x) = 60+ 01X1 + ...+ 6,x, = Y 6ix; (5.4)
i=0

Fig. 5.4 Architectural model of linear regression

5.1.6 From Model to Linear Algebra Representation

The initial linear regression equation (in Equation [5.I)) may also be made more compact thanks to a linear algebra
notation leading to Equation [5.5| where

h(x) = b+ Ox (5.5)

e b and h(x) are scalars;
e fOisarow vecto consisting of a single row of n elements: [61 6, ... Gn] ;

19 We mostly use the term architecture as, in this book, we are concerned with the way to implement and compute a given model and also
with the relation between an architecture and a representation.

20 We use the term node for any component of a neural network, whether it is just an interface (e.g., an input node) or a computational unit
(e.g., a weighted sum or a function). We use the term unit only in the case of a computational node. The term neuron is also often used in
place of unit, as a way to emphasize the inspiration from biological neural networks.

21 However, as will be explained later in Section bias nodes rarely appear in illustrations of non-toy neural networks.
22 That is a matrix which has a single row, i.e. a matrix of dimension 1xn.
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X1
X2
e X is a column vector”?| consisting of a single column of # elements:

Xn

5.1.7 From Simple to Multivariate Model

Linear regression can be generalized to multivariate linear regression, the case when there are multiple variables
y1 ... ¥p to be predicted, as illustrated in Figure @] with three predicted variables: yi, y» and y3, each subnetwork
represented in a different color.

+1

X 2 *‘OW

" 2 ”{:>Y2
> ’OY3

Fig. 5.5 Architectural model of multivariate linear regression

The corresponding linear algebra equation is Equation where

h(x) =b+Wx (5.6)

e the b bias vector is a column vector of dimension px 1, with b; representing the weight of the connexion between
the bias input node and the jth sum operation corresponding to the jth output node;

o the W weight matrix is a matrix of dimension pXn, that is with p rows and n columns, with W; ; representing the
weight of the connexion between the jth input node and the ith sum operation corresponding to the ith output node;
n is the number of input nodes (without considering the bias node); and
p is the number of output nodes.

For the architecture shown in Figure [5.5] n = 4 (the number of input nodes and of columns of W) and p = 3 (the
number of output nodes and of rows of W). The corresponding b bias vector and W weight matrix are shown in

Equations[5.7|and anﬂ in Figure

b= |b (5.7)

23 That is a matrix which has a single column, i.e. a matrix of dimension nx 1.

24 Indeed, b and W are generalizations of b and 6 for the case of univariate linear regression (as shown in Section|5.1.6) to the case of
multivariate and thus to multiple rows, each row corresponding to an output node.

25 By showing only the connexions to one of the output node, in order to keep readability.
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Fig. 5.6 Architectural model of multivariate linear regression showing the bias and the weights corresponding to the connexions to the
third output

W1 Wip Wiz Wig
W= | Wy Wap Wo3 Wy (5.8)
W31 W3, W33 Wiy

5.1.8 Activation Function

Let us now also apply an activation function (AF) to each weighted sum unit, as shown in Figure|5.7

+1
s > Har Oy
Xz

> HAF O
X3

> Har Oy
X4
input layer output layer

Fig. 5.7 Architectural model of multivariate linear regression with activation function

This activation function allows us to introduce arbitrary nonlinear functions.

e From an engineering perspective, a nonlinear function is necessary to overcome the linear separability limitation of
the single layer Perceptron (see Section [3).

e From a biological inspiration perspective, a nonlinear function can capture the threshold effect for the activation of
a neuron through its incoming signals (via its dendrites), determining whether it fires along its output (axone).
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e From a statistical perspective, when the activation function is the sigmoid function, a model corresponds to logistic
regression, which models the probability of a certain class or event and thus performs binary classiﬁcatioﬂ

Historically speaking, the sigmoid function (which is used for logistic regression) is the most common. The sigmoid
function (usually written ©) is defined in Equation [5.9] and is shown in Figure [5.8] It will be further analyzed in
Section[5.3.3]

An alternative is the hyperbolic tangent, often noted tanh, similar to sigmoid but having [—1,+1] as its domain
interval ([0, 1] for sigmoid). Tanh is defined in Equation and shown in Figure

But ReLLU is now widely used for its simplicity and effectiveness. ReLLU, which stands for rectified linear unit, is
defined in Equation @l and is shown in Figure @ Note that, as some notation convention we use z as the name of
the variable of an activation function, as x is usually reserved for input variables.

1
i id(z) = = 5.
sigmoid(z) = o(z) e (5.9)
—
/
/
/
/
/
el
Fig. 5.8 Sigmoid function
e’ —e”

tanh(z) = ——— 5.10
anh(z) o ( )
ReLU(z) = max(0,z) (5.11)

5.2 Basic Building Block

The architectural representation (of multivariate linear regression with activation function) shown in Figure is
an instance (with 4 input nodes and 3 output nodes) of a basic building block of neural networks and deep learning
architectures. Although simple, this basic building block is actually a working neural network.

26 For each output node/variable. See more details in Section
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Fig. 5.9 Tanh function
Fig. 5.10 ReLU function
It has two layerﬂ

o The input layer, on the left of the figure, is composed of the input nodes x; and the bias node which is an implicit
and specific input node with a constant value of 1, therefore usually denoted as +1.
e The output layer, on the right of the figure, is composed of the output nodes y .

Training a basic building block is essentially the same as training a linear regression model, which has been de-
scribed in Section 5. 1.3

27 Although, as we will see in Section , it will be considered as a single-layer neural network architecture. As it has no hidden layer,
it still suffers from the linear separability limitation of the Perceptron.
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5.2.1 Feedforward Computation

After it has been trained, we can use this basic building block neural network for prediction. Therefore, we simply feed-
forward the network, i.e. provide input data to the network (feed in) and compute the output values. This corresponds

to Equation

§ = h(x) =AF(b+Wx) (5.12)

The feedforward computation of the prediction (for the architecture shown in Figure [5.5) is illustrated in Equa-
tion|5.13} where /;(x) (i.e. §;) is the prediction of the jth variable y;.

X1
X2
X3
X4

) = AF (b+Wx)

by Wi Wip Wiz Wig
=AF(| by | + Woi Wao Wo3 Woy | X )
b3 Ws.1 W32 Wiz Wiy

by Wi xi+Winoxa+Wizxs+Wiaxy | (5.13)

AF(| by | + | Waixi +Wanxo+Wazxs+Wauxy

b3 Wi 1x1+Wsox0+Ws3x3+Ws4x4 |

bi4+Wiixi+Wioxa+Wisxs+Wiaxs |
=AF(|by+Wa1x1+Waoxo+Wa3x3+Waaxs

b3 +Ws1x1+W3 2% +Wa3%x3+Wsax4 |

~—

~—

hi(x) ¥
= |hX)| =%
h3(x) 93

5.2.2 Computing Multiple Input Data Simultaneously

Feedforwarding simultaneously a set of examples is easily expressed as a matrix by matrix multiplication, by sub-
stituting the single vector example x in Equation [5.12] with a matrix of examples (usually notated as X), leading to
Equation[5.14]

Successive columns of the matrix of examples X correspond to the different examples. We use a superscript notation

X&) to denote the kth example, the kth column of the X matrix, to avoid confusion with the subscript notation x; which
is used to denote the ith input variable. Therefore, Xl@ denotes the ith input value of the kth example. The feedforward
computation of a set of examples is illustrated in Equation with predictions h(X(k>) being successive columns of
the resulting output matrix.

h(X) = AF (b+WX) (5.14)
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B (XY 1y (X®)) .oy (X))
= [ m(XD) ha(X®) L hp(X) | = [A(XO) AKX r(x)]
h3(X(1)) hs (X(Z)) ]’13(X(m))

Note that the main computation taking placeFE] is a product of matrices. This can be computed very efficiently,
by using linear algebra vectorized implementation libraries and furthermore with specialized hardware like graphics
processing units (GPUs).

5.3 Machine Learning

5.3.1 Definition

Let us now reflect a bit on the meaning of training a model, whether it is a linear regression model (Section [5.1.1)
or the basic building block architecture presented in Section [5.2] Therefore, let us consider what machine learning
actually means. Our starting point is the following concise and general definition of machine learning provided by
Mitchell in [[132]: “A computer program is said to learn from experience E with respect to some class of tasks 7 and
performance measure P, if its performance at tasks in 7', as measured by P, improves with experience E.”

At first, note that the word performance actually covers different meanings, specially regarding the computer music
context of the book:

1. the execution of (the action to perform) an action, notably an artistic act such as a musician playing a piece of
music;

2. ameasure (criterium of evaluation) of that action, notably for a computer system its efficiency in performing a task,
in terms of time and memor measurements; or

3. ameasure of the accuracy in performing a task, i.e. the ability to predict or classify with minimal errors.

In the remainder of the book, in order to try to minimize ambiguity, we will use the terms as following:

e performance as an act by a musician,
efficiency as a measure of computational ability, and
accuracy as a measure of the quality of a prediction or a classiﬁcatioﬂ

Thus, we could rephrase the definition as: “A computer program is said to learn from experience E with respect
to some class of tasks 7' and accuracy measure A, if its accuracy at tasks in 7', as measured by A, improves with
experience E.”

28 Apart from the computation of the AF activation function. In the case of ReLU this is fast.

29 With the corresponding analysis measurements, time complexity and space complexity, for the corresponding algorithms.

30 In fact, accuracy may not be a pertinent metric for a classification task with skewed classes, i.e. with one class being vastly more

represented in the data than other(s), e.g., in the case of the detection of a rare disease. Therefore a confusion matrix and additional metrics
like precision and recall, and possible combinations like F-score, are used (see, e.g., [63} Section 11.1] for details). We will not address
them in the book, because we are primarily concerned with content generation and not in pattern recognition (classification).
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5.3.2 Categories

We may now consider the three main categories of machine learning with regard to the nature of the experience
conveyed by the examples:

o supervised learning — the dataset is fixed and a correct (expected) answe is associated to each example, the
general objective being to predict answers for new examples. Examples of tasks are regression (prediction), classi-
fication and translation;

o unsupervised learning — the dataset is fixed and the general objective is in extracting information. Examples of
tasks are feature extraction, data compression (both performed by autoencoders, to be introduced in Section [5.6),
probability distribution learning (performed by RBMs, to be introduced in Section[5.7), series modeling (performed
by recurrent networks, to be introduced in Section[5.8)), clustering and anomaly detection; and

e reinforcement leaming@— the experience is incremental through successive actions of an agent within an environ-
ment, with some feedback (the reward) providing information about the value of the action, the general objective
being to learn a near optimal policy (strategy), i.e. a suite of actions maximizing its cumulated rewards (its gain).
Examples of tasks are game playing and robot navigation.

5.3.3 Components

In his introduction to machine learning [39]], Domingos describes machine learning algorithms through three compo-
nents:

e representation — the way to represent the model — in our case, a neural network, as it has been introduced and will
be further developed in the following sections;

e evaluation — the way to evaluate and compare models — via a cost function, that will be analyzed in Section
and

e optimization — the way to identify (search among models for) a best model.

5.3.4 Optimization

Searching for values (of the parameters of a model) that minimize the cost function is indeed an optimization problem.
One of the most simple optimization algorithms is gradient descent, as it has been introduced in Section

There are various more sophisticated algorithms, such as stochastic gradient descent (SGD), Nesterov accelerated
gradient (NAG), Adagrad, BFGS, etc. (see, for example, [63, Chapter 9] for more details).

5.4 Architectures

From this basic building block, we will describe in the following sections the main types of deep learning architectures
used for music generation (as well as for other purposes):

feedforward,

autoencoder,

restricted Boltzmann machine (RBM), and
recurrent (RNN).

311t is usually named a label in the case of a classification task and a target in the case of a prediction/regression task.
32 To be introduced in Section
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We will also introduce architectural patterns (see Section[5.13.1)) which could be applied to them:

convolutional,
conditioning, and
adversarial.

5.5 Multilayer Neural Network aka Feedforward Neural Network

A multilayer neural network, also named a feedforward neural network, is an assemblage of successive layers of basic
building blocks:

the first layer, composed of input nodes, is called the input layer;
the last layer, composed of output nodes, is called the output layer; and
any layer between the input layer and the output layer is named a hidden layer.

An example of a multilayer neural network with two hidden layers is illustrated in Figure[5.T1]
The combination of a hidden layer and a nonlinear activation function makes the neural network a universal ap-
proximator, able to overcome the linear separability limitatioﬂ

input layer #1 hidden layer #2 hidden layer output layer

v

flow of feedforward computation

Fig. 5.11 Example of a feedforward neural network (detailed)

5.5.1 Abstract Representation

Note that, in the case of practical (non-toy) illustrations of neural network architectures, in order to simplify the figures,
bias nodes are very rarely illustrated. With a similar objective, the sum units and the activation function units are also
almost always omitted, resulting in a more abstract view such as that shown in Figure

33 The universal approximation theorem [86] states that a feedforward network with a single hidden layer containing a finite number
of neurons can approximate a wide variety of interesting functions when given appropriate parameters (weights). However, there is no
guarantee that the neural network will be able to learn them!
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input layer #1 hidden layer #2 hidden layer  output layer

v

flow of feedforward computation

Fig. 5.12 Example of feedforward neural network (simplified)

We can further abstract each layer by representing it as an oblong form (by hiding its nodesfj] as shown in Fig-
ure

0

input layer #1 hidden layer #2 hidden layer  output layer

»
»

flow of feedforward computation

Fig. 5.13 Example of a feedforward neural network (abstract)

5.5.2 Depth

The architecture illustrated in Figure[5.13]is called a 3-layer neural network architecture, also indicating that the depth
of the architecture is three. Note that the number of layers (depth) is indeed three and not four, irrespective of the fact
that summing up the input layer, the output layer and the two hidden layers gives four and not three. This is because,
by convention, only layers with weights (and units) are considered when counting the number of layers in a multilayer
neural network; therefore, the input layer is not counted. Indeed, the input layer only acts as an input interface, without
any weight or computation.

In this book, we will use a superscript (power) notation| to denote the number of layers of a neural network
architecture. For instance, the architecture illustrated in Figure could be denoted as Feedforward?.

34 1t is sometimes pictured as a rectangle, see Figure v or even as a circle, notably in the case of recurrent networks, see Figure
35 The set of compact notations for expressing the dimension of an architecture or a representation will be introduced in Section
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The depth of the first neural network architectures was small. The original Perceptron [166]], the ancestor of neural
networks, has only an input layer and an output layer without any hidden layer, i.e. it is a single-layer neural network.
In the 1980s, conventional neural networks were mostly 2-layer or 3-layer architectures.

For modern deep networks, the depth can indeed be very large, deserving the name of deep (or even very deep)
networks. Two recent examples, both illustrated in Figure[5.14] are

e the 27-layer GoogleNet architecture [182]; and
o the 34-layer (up to 152-layer!) ResNet architecturePE] [74].

Note that depth does matter. A recent theorem [44] states that there is a simple radial functio on IRY, expressible
by a 3-layer neural network, which cannot be approximated by any 2-layer network to more than a constant accuracy
unless its width is exponential in the dimension d. Intuitively, this means that reducing the depth (removing a layer)
means exponentially augmenting the width (the number of units) of the layer left. On this issue, the interested reader
may also wish to review the analyses in [4] and [193]].

Note that for both networks pictured in Figure [5.14] the flow of computation is vertical, upward for GoogLeNet
and downward for ResNet. These are different usages than the convention for the flow of computation that we have
introduced and used so far, which is horizontal, from left to right. Unfortunately, there is no consensus in the literature
about the notation for the flow of computation. Note that in the specific case of recurrent networks, to be introduced in
Section[5.8] the consensus notation is vertical, upward.

5.5.3 Output Activation Function

We have seen in Section @] that, in modern neural networks, the activation function (AF’) chosen for introducing
nonlinearity at the output of each hidden layer is often the ReL.U function. But the output layer of a neural network
has a special status. Basically, there are three main possible types of activation function for the output layer, named in
the following, the output activation functio@

e identity — the case for a prediction (regression) task. It has continuous (real) output values. Therefore, we do not
need and we do not want a nonlinear transformation at the last layer;

e sigmoid — the case of a binary classification task, as in logistic regressio The sigmoid function (usually written
o) has been defined in Equation[5.9]and shown in Figure[5.8] Note its specific shape, which provides a “separation”
effect, used for binary decision between two options represented by values 0 and 1; and

e softmax — the most common approach for a classification task with more than two classes but with only one label
to be selecteﬂ (and where a one-hot encoding is generally used, see Section .

The softmax function actually represents a probability distribution over a discrete output variable with n possible
values (in other words, the probability of the occurrence of each possible value v, knowing the input variable x, i.e.
P(y = v|x)). Therefore, softmax ensures that the sum of the probabilities for each possible value is equal to 1. The
softmax function is defined in Equation [5.16] and an example of its use is shown in Equation Note that the &
notation is used for the softmax function, as for the sigmoid function, because softmax is actually the generalization
of sigmoid to the case of multiple values, being a variadic function, that is one which accepts a variable number of
arguments.

36 1t introduces the technique of residual learning, reinjecting the input between levels and estimating the residual function i(x) —x, a
technique aimed at very deep networks, see [74]] for more details.

37 A radial function is a function whose value at each point depends only on the distance between that point and the origin. More precisely,
it is radial if and only if it is invariant under all rotations while leaving the origin fixed.

38 A shorthand for output layer activation function.

39 For details about logistic regression, see, for example, [63, page 137] or [[73} Section 4.4]. For this reason, the sigmoid function is also
called the logistic function.

40 A very common example is the estimation by a neural network architecture of the next note, modeled as a classification task of a single
note label within the set of possible notes.
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Fig. 5.14 (left) GoogLeNet 27-layer deep network architecture. Reproduced from [182] with permission of the authors. (right) ResNet
34-layer deep network architecture. Reproduced from [[74]] with permission of the authors
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For a classification or prediction task, we can simply select the value with the highest probability (i.e. via the
argmax function, the indice of the one-hot vector with the highest value). But the distribution produced by the softmax
function can also be used as the basis for sampling, in order to add nondeterminism and thus content variability to the
generation (this will be detailed in Section [6.6)).

5.5.4 Cost Function

The choice of a cost (loss) function is actually correlated to the choice of the output activation function and to the
choice of the encoding of the target y (the true value). Table 5. If''| summarizes the main cases.

Task Type of the output (Y) |Encoding of |Output activation|Cost (loss)
the target (y)|function

Regression |Real R Identity (Linear) |Mean squared error
Classification|Binary {0, 1} Sigmoid Binary cross-entropy
Classification|Multiclass single label {One-hot Softmax Categorical cross-entropy
Classification|Multiclass multilabel [Many-hot [Sigmoid Binary cross-entropy
Multiple Multi Multi Sigmoid Binary cross-entropy
Classification|Multiclass single label {One-hot Multi Multi

Softmax Categorical cross-entropy

Table 5.1 Relation between output activation function and cost (loss) function

A cross-entropy function measures the difference between two probability distributions, in our case (of a classifi-
cation task) between the target (true value) distribution (y) and the predicted distribution (§). Note that there are two
types of cross-entropy cost functions:

binary cross-entropy, when the classification is binary (Boolean), and
categorical cross-entropy, when the classification is multiclass with a single label to be selected.

In the case of a classification with multiple labels, binary cross-entropy must be chosen joint with sigmoid (because
in such cases we want to compare the distributions independently, class per classEb and the costs for each class are
summed up.

In the case of multiple simultaneous classifications (multi multiclass single label), each classification is now inde-
pendent from the other classifications, thus we have two approaches: apply sigmoid and binary cross-entropy for each
element and sum up the costs, or apply softmax and categorical cross-entropy independently for each classification
and sum up the costs.

41 Inspired by Ronaghan’s concise pedagogical presentation in [163].
42 In case of multiple labels, the probability of each class is independent from the other class probabilities — the sum is greater than 1.
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5.5.5 Interpretation

Let us take some examples to illustrate these subtle but important differences, starting with the cases of real and binary
values in Figure They also include the basic interpretation of the resul@

Output type  Output activation function Output value (57) Cost  Target (true) value (Y) Interpretation Meaning

Real Identity 439.7 » | 440 Aq

Mean squared error

Binary Sigmoid 0.96 1 >0.5 True

) Binary cross-entropy !

Fig. 5.15 Cost functions and interpretation for real and binary values

e An example of use of the multiclass single label type is a classification among a set of possible notes for a mono-
phonic melody, therefore with only one single possible note choice (single label), as shown in Figure[5.16] See, for
example, the Bluesc system in Section[6.5.1.1]

e An example of use of the multiclass multilabel type is a classification among a set of possible notes for a single-
voice polyphonic melody, therefore with several possible note choices (several labels), as shown in Figure
See, for example, the Bi-Axial LSTM system in Section [6.9.3]

e An example of use of the multi multiclass single label type is a multiple classification among a set of possible notes
for multivoice monophonic melodies, therefore with only one single possible note choice for each voice, as shown
in Figure See, for example, the Bluesyc system in Section[6.5.1.2]

o Another example of use of the multi multiclass single label type is a multiple classification among a set of possible
notes for a set of time steps (in a piano roll representation) for a monophonic melody, therefore with only one single
possible note choice for each time step. See, for example, the DeepHear, system in Section [6.4.1.1]

e An example of use of a multi> multiclass single label type is a 2-level multiple classification among a set of possible
notes for a set of time steps for a multivoice set of monophonic melodies. See, for example, the MiniBach system
in Section

The three main interpretations use are

e argmax (the index of the output vector with the largest value), in the case of a one-hot multiclass single label (in
order to select the most likely note),

e sampling from the probability represented by the output vector, in the case of a one-hot multiclass single label (in
order to select a note sorted along its likelihood), and

° argsortE] (the indexes of the output vector sorted according to their diminishing values), in the case of a many-
hot multiclass multi label, filtered by some thresholds (in order to select the most likely notes above a probability
threshold and under a maximum number of simultaneous notes).

43 The interpretation is actually part of the strategy of the generation of music content. It will be explored in Chapter@ For instance,
sampling from the probability distribution may be used in order to ensure content generation variability, as will be explained in Section@

44 In various systems to be analyzed in Chapter
45 argsort is a numpy library Python function.
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Output type  Output activation function Output value (§’) Cost  Target (true) value (Y) Interpretation  Meaning

0.03 0

0.02 0

0.52 1

0.03

0.04

0.13

Multiclass single label Softmax L < - >
0.05 Categorical cross-entropy

0.02

0.03

0.07

0.04

Ol ]|]o|]ojo]]o]J]o|o

0.02

Fig. 5.16 Cost function and interpretation for a multiclass single label
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Output type  Output activation function Output value (57) Cost  Target (true) value (Y) Interpretation Meaning

0.07 < .| o
0.03] < .| o
0.54 | « o 1
0.03 |« | o
0.07 |« .| o
Multiclass multilabel Sigmoid 002+ g
0.45| < N
0.02] « >l 0
0.09 [« | o
0.63 | < o 4
0.12 | < 0
0.04 | < 0

Binary cross-entropy

Fig. 5.17 Cost function and interpretation for a multiclass multilabel
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Output type  Output activation function Output value (5\7) Cost  Target (true) value (Y) Interpretation Meaning

0.03 | « »| O

0.02 0

0.52 ] « »| 1 A,

0.03 | « >

0.04 ]« >

0.13 | « >

Argmax

0.05] < »
0.02] <« >
0.03 | « »

0.07 | < >

0.04 |« >

0.02] « >
Binary cross-entropy

ojojojo|o}jo]lo]|lo|o

Multi multiclass single label ~ Sigmoid

0.05] « >
0.02] « >

0.04 | « >

0.03] « >

0.02] « >

OSOjJoj|lo|lo]|]lo|©e

0.05] « >

Argmax
0.53 | « > 1 Fy

0.06
0.03] « >

0.09 | < >
0.03 | « >

ojlo|o}jo |o©

0.05] « >
Binary cross-entropy

Fig. 5.18 Cost function and interpretation for a multi multiclass single label

5.5.6 Entropy and Cross-Entropy

Mean squared error has been defined in Equation [5.2]in Section [5.1.3] Without getting into details about information
theory, we now introduce the notion and the formulation of cross-entrop

The intuition behind information theory is that the information content about an event with a likely (expected)
outcome is low, while the information content about an event with an unlikely (unexpected, i.e. a surprise) outcome is
high.

Let us take the example of a neural network architecture used to estimate the next note of a melody. Suppose that
the outcome is note = B and that it has a probability P(note = B). We can then introduce the self-information (notated
I) of that event in Equation [5.18]

46 With some inspiration from Preiswerk’s introduction in [156].
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I(note = B) = log(1/P(note = B)) = —log P(note = B) (5.18)

Remember that a probability is by definition within [0, 1] interval. If we look at -log function in Figure we
could see that its value is high for a low probability value (unlikely outcome) and its value is null for a probability value
equal to 1 (certain outcome), which corresponds to the objective introduced above. Note that the use of a logarithm
also makes self-information additive for independent events, i.e. I(P; P,) = I(P)) +1(P).

Fig. 5.19 -log function

Then, let us consider all possible outcomes note = Note;, each outcome having P(note = Note;) as its associated
probability, and P(note) being the probability distribution for all possible outcomes. The intuition is to define the
entropy (notated H) of the probability distribution for all possible outcomes as the sum of the self-information for each
possible outcome, weighted by the probability of the outcome. This leads to Equation[5.19]

H(P) =) P(note = Note;) I(note = Note;)
i=0
n
= — ) P(note = Note;) log P(note = Note;)
i=0

(5.19)

Note that we can further rewrite the definition by using the notion of expectatio which leads to Equation

H(P) = Epote~p [I(note)] = —Epote~p [log P(note)] (5.20)

47 An expectation, or expected value, of some function f(x) with respect to a probability distribution P(x), usually notated as Eyp[f(x)],
is the average (mean) value that f takes on when x is drawn from P, i.e. Exp [f(x)] = Xx P(x)f(x) (we are here considering the case of
discrete variables, which is the case for classification within a set of possible notes).
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Now, let us introduce in Equation [5.21| the Kullback-Leibler divergence (often abbreviated as KL-divergence, and
notated Dp ), as some measureF’E] of how different are two separate probability distributions P and Q over a same
variable (note).

Dx1(P||Q) = Enote~rp [log m]
]

]

Dk, may be rewritten as in Equation ﬁ where H(P,Q), named the categorical cross-entropy, is defined in

Equation [5.23]

= Enote~pr [log P(note) — log O(note (5.21)

(note)
= Enote~pr [log P(note)] — Epote~p [log Q(note)

Dk (P||Q) = —H(P)+ H(P.Q) (5.22)

H(P, Q) = —Eqote~pr [log Q(nOte)] (5.23)

Note that categorical cross-entropy is similar to KL-divergenceF_q while lacking the H(P) term. But minimizing
Dky.(P]|Q) or minimizing H (P, Q), with respect to Q, are equivalent, because the omitted term H (P) is a constant with
respect to Q.

Now, rememberF_r] that the objective of the neural network is to predict the § probability distribution, which is an
estimation of the y true ground probability distribution, by minimizing the difference between them. This leads to

Equations[5.24]and [5.23]

n
DL(y||9) = Ey [logy —log§] = } y; (logy; —log§,) (5.24)
i=0
n
H(y,9) = —Ey [log§] = =) y;log§; (5.25)
=0

As mentioned above, minimizing Dgp (y||§) or minimizing H(y,§), with respect to §, are equivalent, because the
omitted term H (y) is a constant with respect to §.

Last, deriving the binary cross-entropy (that we notate Hg) is easy, as there are only two possible outcomes, which
leads to Equation[5.26]

Hg(y,§) = —(yolog9o + y,log¥;) (5.26)

Because y; =1 —y, and §; =1 — ¥, (as the sum of the probabilities of the two possible outcomes is 1), this ends

up into Equation

Hg(y,9) = —(ylogy + (1 —y)log(1—-79)) (5.27)

More details and principles for the cost function can be found, for example, in [63, Section 6.2.1] and [63]
Section 5.5], respectively. In addition, the information theory foundation of cross-entropy as the number of bits needed
for encoding information is introduced, for example, in [37].

48 Note that it is not a true distance measure as it not symmetric.
49 By using H(P) definition in Equation
30 And, just like KL-divergence, it is not symmetric.

31 See Section
52 The underlying principle of maximum likelihood estimation, not explained here.
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5.5.7 Feedforward Propagation

Feedforward propagation in a multilayer neural network consists in injecting input datf_?] into the input layer and
propagating the computation through its successive layers until the output is produced. This can be implemented very
efficiently because it consists in a pipelined computation of successive vectorized matrix products (intercalated with
AF activation function calls).

Each computation from layer k — 1 to layer k is processed as in Equation which is a generalization of Equa-
tion , where ¥ and W[k] are respectively the bias and the weight matrix between layer k — 1 and layer &, and
where output[o] is the input layer, as shown in Figure

outputl = AF (b1 + Wt outputk—11) (5.28)

outputtd] outputl] outputl outputl3

(Lo [ Lo [ ] o
muUmuUT

input layer #1 hidden layer #2 hidden layer  output layer

»
»

flow of feedforward computation

Fig. 5.20 Example of a feedforward neural network (abstract) pipelined computation

Multilayer neural networks are therefore often also named feedforward neural networks or multilayer Perceptron
(MLPJ

Note that neural networks are deterministic. This means that the same input will deterministically always produce
the same output. This is a useful guarantee for prediction and classification purposes but may be a limitation for
generating new content. However, this may be compensated by sampling from the resultant probability distribution

(see Sections and|[6.6)).

5.5.8 Training

For the training phaseF_7l computing the derivatives becomes a bit more complex than for the basic building block (with
no hidden layer) presented in Section [5.1.4] Backpropagation is the standard method of estimating the derivatives
(gradients) for a multilayer neural network. It is based on the chain rule principle [[167], in order to estimate the
contribution of each weight to the final prediction error, that is the cost. See, for example, [63, Chapter 6] for more
details.

33 The x part of an example, for the generation phase as well as for the training phase.
3+ Feedforward computation for one layer has been introduced in Section

35 We use a superscript notation with brackets [ to denote the kth layer, to avoid confusion with the superscript notation with parentheses
(®) to denote the kth example and the subscript notation ; to denote the ith input variable.

36 The original Perceptron was a neural network with no hidden layer, and thus equivalent to our basic building block, with only one output
node and with the step function as the activation function.

57 Let us remember that this a case of supervised learning (see Section .
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Note that, in the most common case, the cost function of a multilayer neural network is not convex, meaning that
there may be multiple local minima. Gradient descent, as well as other more sophisticated heuristic optimization
methods, does not guarantee the global optimum will be reached. But in practice a clever configuration of the model
(notably, its hyperparameters, see Section 53)1 [) and well-tuned optimization heuristics, such as stochastic gradient
descent (SGD), will lead to accurate solution

5.5.9 Overfitting

A fundamental issue for neural networks (and more generally speaking for machine learning algorithms) is their
generalization ability, that is their capacity to perform well on yet unseen data. In other words, we do not want a
neural network to just perform well on the training datzf_g] but also on future date{g_ﬁl This is actually a fundamental
dilemma, the two opposing risks being

e underfitting — when the training error (error measure on the training data) is large; and
e overfitting — when the generalization error (expected error on yet unseen data) is large.

A simple illustrative example of underfit, good fit and overfit models for the same training data (the green solid
dots) is shown in Figure

y & y ® y
L @& e @

@ o—

&

x
a3

Underfit Good fit X Overfit

Fig. 5.21 Underfit, good fit and overfit models

In order to be able to estimate the potential for generalization, the dataset is actually divided into two portions, with
a ratio of approximately 70/30:

o the training set — which will be used for training the neural network; and
o the validation set, also named test se— which will be used to estimate the capacity of the model for generalization.

58 On this issue, see [24], which shows that 1) local minima are located in a well-defined band, 2) SGD converges to that band, 3) reaching
the global minimum becomes harder as the network size increases and 4) in practice this is irrelevant as the global minimum often leads to
overfitting (see next section).

39 Otherwise, the best and simpler algorithm would be a memory-based algorithm, which simply memorizes all (x, y) pairs. It has the best
fit to the training data but it does not have any generalization ability.

60 Future data is not yet known but that does not mean that it is any kind of (random) data, otherwise a machine learning algorithm would
not be able to learn and generalize well. There is indeed a fundamental assumption of regularity of the data corresponding to a task (e.g.,
images of human faces, jazz chord progressions, etc.) that neural networks will exploit.

61 Actually, a difference could (should) be made, as explained by Hastie ef al. in [[73] page 222]: “It is important to note that there are in
fact two separate goals that we might have in mind:

Model selection: estimating the performance of different models in order to choose the best one.

Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is to randomly divide the dataset into three parts: a training set,
a validation set, and a test set. The training set is used to fit the models; the validation set is used to estimate prediction error for model
selection; the test set is used for assessment of the generalization error of the final chosen model.” However, as a matter of simplification,
we will not consider that difference in the book.
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5.5.10 Regularization

There are various techniques to control overfitting, i.e., to improve generalization. They are usually named regulariza-
tion and some examples of well-known techniques are

weight decay (also known as L?), by penalizing over-preponderant weights;
dropout, by introducing random disconnections;
early stopping, by storing a copy of the model parameters every time the error on the validation set reduces, then
terminating after an absence of progress during a pre-specified number of iterations, and returning these parameters;
and

o dataset augmentation, by data synthesis (e.g., by mirroring, translation and rotation for images; by transposition
for music, see Section[d.12.1)), in order to augment the number of training examples.

We will not further detail regularization techniques, see, for example, [63 Section 7].

5.5.11 Hyperparameters

In addition to the parameters of the model, which are the weights of the connexions between nodes, a model also
includes hyperparameters, which are parameters at an architectural meta-level, concerning both structure and control.
Examples of structural hyperparameters, mainly concerned with the architecture, are

number of layers,
number of nodes, and
nonlinear activation function.

Examples of control hyperparameters, mainly concerned with the learning process, are

optimization procedure,
learning rate, and
regularization strategy and associated parameters.

Choosing proper values for (tuning) the various hyperparameters is fundamental both for the efficiency and the ac-
curacy of neural networks for a given application. There are two approaches for exploring and tuning hyperparameters:
manual tuning or automated tuning — by algorithmic exploration of the multidimensional space of hyperparameters
and for each sample evaluating the generalization error. The three main strategies for automated tuning are

e random search — by defining a distribution for each hyperparameter, sampling configurations, and evaluating them;

e grid search — as opposed to random search, exploration is systematic on a small set of values for each hyperparam-
eter; and

o model-based optimization — by building a model of the generalization error and running an optimization algorithm
over it.

The challenge of automated tuning is its computational cost, although trials may be run in parallel. We will not
detail these approaches here; however, further information can be found in [63) Section 11.4].

Note that this tuning activity is more objective for conventional tasks such as prediction and classification because
the evaluation measure is objective, being the error rate for the validation set. When the task is the generation of new
musical content, tuning is more subjective because there is no preexisting evaluation measure. It then turns out to be
more gualitative, for instance through a manual evaluation of generated music by musicologists. This evaluation issue
will be addressed in Section
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5.5.12 Platforms and Libraries

Various platform@ such as CNTK, MXNet, PyTorch and TensorFlow, are available as a foundation for developing
and running deep learning systemﬂ They include libraries of

basic architectures, such as the ones we are presenting in this chapter;
components, for example optimization algorithms;
runtime interfaces for running models on various hardware, including GPUs or distributed Web runtime facilities;
and
e visualization and debugging facilities.

Keras is an example of a higher-level framework to simplify development, with CNTK, TensorFlow and Theano
as possible backends. ONNX is an open format for representing deep learning models and was designed to ease the
transfer of models between different platforms and tools.

5.6 Autoencoder

An autoencoder is a neural network with one hidden layer and with an additional constraint: the number of out-
put nodes is equal to the number of input node@ The output layer actually mirrors the input layer. It is shown in
Figure[5.22] with its peculiar symmetric diabolo (or sand-timer) shape aspect.

Encoder Decoder

T — e i

e

input layer hidden layer output layer

Fig. 5.22 Autoencoder architecture

Training an autoencoder represents a case of unsupervised learning, as the examples do not contain any additional
label information (the effective value or class to be predicted). But the trick is that this is implemented using conven-
tional supervised learning techniques, by presenting output data equal to the input datﬂ In practice, the autoencoder

62 See, for example, the survey in [[154].

63 There are also more general libraries for machine learning and data analysis, such as the SciPy library for the Python language, or the
language R and its libraries.

4 The bias is not counted/considered here as it is an implicit additional input node.
95 This is sometimes called self-supervised learning [110].
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tries to learn the identity function. As the hidden layer usually has fewer nodes than the input layer, the encoder
component (shown in yellow in Figure [5.22) must compress information while the decoder (shown in purple) has to
reconstruct, as accurately as possible, the initial informatiorﬁ This forces the autoencoder to discover significant
(discriminating) features to encode useful information into the hidden layer nodes (also named the latent variable.
Therefore, autoencoders may be used to automatically extract high-level features [110]. The set of features extracted
are often named an embedding@ Once trained, in order to extract features from an input, one just needs to feedforward
the input data and gather the activations of the hidden layer (the values of the latent variables).

Another interesting use of decoders is the high-level control of content generation. The latent variables of an au-
toencoder constitute a compact representation of the common features of the learnt examples. By instantiating these
latent variables and decoding the embedding, we can generate a new musical content corresponding to the values of
the latent variables. We will explore this strategy in Section[6.4.1]

5.6.1 Sparse Autoencoder

A sparse autoencoder is an autoencoder with a sparsity constraint, such that its hidden layer units are inactive most of
the time. The objective is to enforce the specialization of each unit in the hidden layer as a specific feature detector.
For instance, a sparse autoencoder with 100 units in its hidden layer and trained on 10x 10 pixel images will learn
to detect edges at different positions and orientations in images, as shown in Figure [5.23] When applied to other input
domains, such as audio or symbolic music data, this algorithm will learn useful features for those domains too.
The sparsity constraint is implemented by adding an additional term to the cost function to be minimized, see more
details in [[141]] or [63| Section 14.2.1].

Fig. 5.23 Visualization of the input image motives that maximally activate each of the hidden units of a sparse autoencoder architecture.
Reproduced from [[141] with permission of the author

66 Compared to traditional dimension reduction algorithms, such as principal component analysis (PCA), this approach has two advantages:
1) feature extraction is nonlinear (the case of manifold learning, see [63 Section 5.11.3] and Section and 2) in the case of a sparse
autoencoder (see next section), the number of features may be arbitrary (and not necessarily smaller than the number of input parameters).
67 In statistics, latent variables are variables that are not directly observed but are rather inferred (through a mathematical model) from
other variables that are observed (directly measured). They can serve to reduce the dimensionality of data.

68 See the definition of embedding in Section
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5.6.2 Variational Autoencoder

A variational autoencoder (VAE) [102]] has the added constraint that the encoded representation, the latent variables,
by convention denoted by variable z, follow some prior probability distribution P(z). Usually, a Gaussian distributior@
is chosen for its generality.

This constraint is implemented by adding a specific term to the cost function, by computing the cross-entropy
between the values of the latent variables and the prior distributio For more details about VAEs, an example of
tutorial could be found in [38]] and there is a nice introduction of its application to music in [[162]].

As with an autoencoder, a VAE will learn the identity function, but furthermore the decoder part will learn the
relation between a Gaussian distribution of the latent variables and the learnt examples. As a result, sampling from the
VAE is immediate, one just needs to

sample a value for the latent variables z ~ P(z), i.e. z following distribution P(z);

input it into the decoder; and

feedforward the decoder to generate an output corresponding to the distribution of the examples, following P(x|z)
conditional probability distribution learnt by the decoder.

This is in contrast to the need for indirect and computationally expensive strategies such as Gibbs sampling for
other architectures such as RBM, to be introduced in Section

By construction, a variational autoencoder is representative of the dataset that it has learnt, that is, for any example
in the dataset, there is at least one setting of the latent variables which causes the model to generate something very
similar to that example [38]].

A very interesting characteristic of the variational autoencoder architecture for generation purposes — therefore
often considered as one type of a class of models named generative models — is in the meaningful exploration of the
latent space, as a variational autoencoder is able to learn a “smooth’m latent space mapping to realistic examples.
Note that this general objective is named manifold learning and more generally representation learning (8], that is
the learning of a representation capturing the topology of a set of examples. As defined in [63| Section 5.11.3], a
manifold is a connected set of points (examples) that can be approximated by a smaller number of dimensions, each
one corresponding to a local direction of variation. An intuitive example is a 2D map capturing the topology of cities
dispersed on the 3D earth, where a movement on the map corresponds to a movement on the earth.

To illustrate the possibilities, let us train a VAE with only two latent variables on the MNIST handwritten digits
database dataset [[113] (with 60.000 examples, each one being an image of 28 x28 pixels). Then, we scan the latent
two-dimension plane, sampling latent values for the two latent variables (i.e. sampling points within the 2-dimension
latent space) at regular intervals and generating the corresponding artificial digits by decoding the latent point
Figure [5.24] shows examples of artificial digits generated.

Note that training the VAE has forced it to compress information about the actual examples by splitting (though the
encoder) information in two subsets:

the specific (discriminative) part, encoded within the latent variables; and
the common part, encoded within the weights of the decoder, in order to be able to reconstruct as close as possible
each original datz{ﬂ

The VAE actually has been forced to find out dimensions of variations for the dataset examples. By looking at the
figure, we can guess that the two dimensions could be:

%9 Also named normal distribution.

70 The actual implementation is more complex and has some tricks (e.g., the encoder actually generates a mean vector and a standard
deviation vector) that we will not detail here.

71 That is, a small change in the latent space will correspond to a small change in the generated examples, without any discontinuity or
jump. For a more detailed discussion about which (and how) interesting effects (smoothness, parsimony and axis-alignment between data
and latent variability) a VAE has on the latent representation (the vector of latent variables) learnt, see, e.g., [206].

72 As proposed and implemented in [23].

73 Indeed, there is no magic here, the reversible compression from 28 x28 variables to 2 variables must have extracted and stored missing
information somewhere.

68



el ol 2 o Al ol all al i nd alabaS sl NN A A

Sl ol el vl el el el e S A kRl el AT A N N
pnll - il Al el S i i el wal aclh ol aath il AR AL N
b I TV R vl s 2l dlt gl rall el e il Al Sl S S AN &
VI v ol « S+ ol il il vandll ol <ol ol il el S S I A N
b4 s S o s Sl ol i el il sl ol ol o N o N o NI AN
3 iy s 2l ol ol el - ol s e N N L
[ S N

6 L7 LS 2.0

L

2.0 -19 -1.7 16 -1.4 13 -1.2 -1.0 0.9 408 06 05 03 02 01 01 62 03 05 06 08 09 Lo 12 L3 L4

z1l

Fig. 5.24 Various digits generated by decoding sampled latent points at regular intervals on the MNIST handwritten digits database

e from angular to round elements for the 1st variable (z;, horizontally represented), and

e the size of the compound element (circle or angle) for the second latent variable (z;, vertically represented).

Note that we cannot expect/force the VAE towards the semantics (meaning) of specific dimensions, as the VAE will
automatically extract them (this depends on the dataset as well as on the training configuration), and we can only try to
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interpret them a posterior Examples of possible dimensions for music generation could be: the number of note
the range (the distance from the lowest to the highest pitch), etc.

Once learnt by a VAE, the latent representation (a vector of latent variables) can be used to explore the latent space
with various operations to control/vary the generation of content. Some examples of operations on the latent space, as
proposed in [162] and [163]] for the MusicVAE system described in Section[6.12.] are

translation;

interpolation;

averaging of some points;

attribute vector arithmetics, by addition or subtraction of an attribute vector capturing a given characteristi

Figure[5.25]shows an interesting comparison of melodies resulting from

interpolation in the data space, that is the space of representation of melodies; and
interpolation in the latent space, which is then decoded into the corresponding melodies.

The interpolation in the latent space produces more meaningful and interesting melodies than the interpolation in
the data space (which basically just varies the ratio of notes from the two melodies), as can be heard in [161] and
[164]]. More details about these experiments will be provided in Section

Variational autoencoders are therefore elegant and promising models, and as a result they are currently among the
hot approaches explored for generating content with controlled variations. Application to music generation will be

illustrated in Sections [6.10.2.3]and [6.12.1]

5.6.3 Stacked Autoencoder

The idea of a stacked autoencoder is to hierarchically nest successive autoencoders with decreasing numbers of hidden
layer units. An example of a 2-layer stacked autoencode i.e. two nested autoencoders that we could notate as
Autoencoder?, is illustrated in Figure

The chain of encoders will increasingly compress data and extract higher-level features. Stacked autoencoders,
which are indeed deep networks, are therefore used for feature extraction (an example will be introduced in Sec-
tion[6.10.7.T). They are also useful for music generation, as we will see in Section[6.4.1] This is because the innermost
hidden layer, sometimes named the bottleneck hidden layer, provides a compact and high-level encoding (embedding)
as a seed for generation (by the chain of decoders).

5.7 Restricted Boltzmann Machine (RBM)

A restricted Boltzmann machine (RBM) [81] is a generative stochastic artificial neural network that can learn a prob-
ability distribution over its set of inputs. Its name comes from the fact that it is a restricted (constrained) for of a
(general) Boltzmann machine [82], named after the Boltzmann distribution in statistical mechanics, which is used in
its sampling function. The architectural restrictions of an RBM (see Figure are that

74 However, we will see that we can construct arbitrary characteristic attributes from a subset of examples and impose them on other
examples, by doing attribute vector arithmetics, as defined in the immediately following list, and as will be illustrated in Figure in
Section

75 This will be illustrated in Figure in Section|6.10.2.3
76 This attribute vector is computed as the average latent vector for a collection of examples sharing that attribute (characteristic).

77 Note that the convention in this case is to count and notate the number of nested autoencoders, i.e. the number of hidden layers. This is
different from the depth of the whole architecture, which is double. For instance, a 2-layer stacked autoencoder results in a 4-layer whole
architecture, as shown in Figure@

78 Which actually makes RBM practical, as opposed to the general form, which besides its interest suffers from a learning scalability
limitation.
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Fig. 5.25 Comparison of interpolations between the top and the bottom melodies by (left) interpolating in the data (melody) space and
(right) interpolating in the latent space and decoding it into melodies. Reproduced from [163]] with permission of the authors
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Encoder, Decoder,

bottleneck
hidden layer

input layer output layer

Fig. 5.26 A 2-layer stacked autoencoder architecture, resulting in a 4-layer full architecture

e itis organized in layers, just as for a feedforward network or an autoencoder, and more precisely two layers:

— the visible layer (analog to both the input layer and the output layer of an autoencoder); and
— the hidden layer (analog to the hidden layer of an autoencoder);

e as for a standard neural network, there cannot be connections between nodes within the same layer.

visible layer hidden layer

Fig. 5.27 Restricted Boltzmann machine (RBM) architecture

An RBM bears some similarity in spirit and objective to an autoencoder. However, there are some important differ-
ences:

e an RBM has no ouput — the input also acts as the output;
e an RBM is stochastic (and therefore not deterministic, as opposed to a feedforward network or an autoencoder);
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e an RBM is trained in an unsupervised learning manner, with a specific algorithm (named contrastive divergence,
see Section [5.7.1)), whereas an autoencoder is trained using a standard supervised learning method, with the same
data as input and output; and

e the values manipulated are boolean

RBMs became popular after Hinton designed a specific fast learning algorithm for them, named contrastive diver-
gence [79], and used them for pre-training deep neural networks [47] (see Section E])

An RBM is an architecture dedicated to learning distributions. Moreover, it can learn efficiently from only a few
examples. For musical applications, this is interesting for learning (and generating) chords, as the combinatorial nature
of possible notes forming a chord is large and the number of examples is usually small. We will see an example of

such an application in Section

5.7.1 Training

Training an RBM has some similarity to training an autoencoder, with the practical difference that, because there is no
decoder part, the RBM will alternate between two steps:

o the feedforward step — to encode the input (visible layer) into the hidden layer, by making predictions about hidden
layer node activations; and

e the backward step — to decode/reconstruct the input (visible layer), by making predictions about visible layer node
activations.

We will not detail here the learning technique behind RBMs, see, for example, [63, Section 20.2]. Note that the
reconstruction process is an example of generative learning (and not discriminative learning, as for training autoen-
coders which is based on regression

5.7.2 Sampling

After the training phase has been completed, in the generation phase, a sample can be drawn from the model by
randomly initializing visible layer vector v (following a standard uniform distribution) and running sampling[ir] until
convergence. To this end, hidden nodes and visible nodes are alternately updated (as during the training phase).

In practice, convergence is reached when the energy stabilizes. The energy of a configuration (the pair of visible
and hidden layers) is expresse in the Equation , where

E(v,h) = —a"v—b"h—v'Wh (5.29)

v and h, respectively, are column vectors representing the visible and the hidden layers;
W is the matrix of weights associated with the connections between visible and hidden nodes;
a and b, respectively, are column vectors representing the bias weights for visible and hidden nodes, with T and
bT being their respective transpositions into row vectors; and
e T is the transposition of v into a row vector.

79 Although there are extensions with multinoulli (categorical) or continuous values, see Section

80 See, for example, a nice introduction to generative learning (and the difference with discriminative learning) in [143]).
81 More precisely Gibbs sampling (GS), see [107]. Sampling will be introduced in Section

82 For more details, see, for example, (63} Section 16.2.4].
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5.7.3 Types of Variables

Note that there are actually three possibilities for the nature of RBM variables (units, visible or hidden):

e Boolean or Bernoulli — this is the case of standard RBMs, in which units (visible and hidden) are Boolean, with a
Bernoulli distribution (see |63, Section 3.9.2]);
multinoulli — an extension with multinoulli unit@ i.e. with more than two possible discrete values; and
continuous — another extension with continuous units, taking arbitrary real values (usually within the [0, 1] range).
An example is the C-RBM architecture analyzed in Section[6.10.5.1]

5.8 Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a feedforward neural network extended with recurrent connexions in order to
learn series of items (e.g., a melody as a sequence of notes). The input of the RNN is an element x,[gz-] of the sequence,
where ¢ represents the index or the time, and the expected output is next element X, 1. In other words the RNN will be
trained to predict the next element of a sequence.

In order to do so, the output of the hidden layer reenters itself as an additional input (with a specific corresponding
weight matrix). This way, the RNN can learn, not only based on the current item but also on its previous own state, and
thus, recursively, on the whole of the previous sequence. Therefore, an RNN can learn sequences, notably temporal
sequences, as in the case of musical content.

(]

flow

nodes ime

Fig. 5.28 Recurrent neural network (folded)

An example of RNN (with two hidden layers) is shown in Figure [5.28] Recurrent connexions are signaled with a
solid square, in order to distinguish them from standard connexions{gzl The unfolded version of the visual representation

83 As explained by Goodfellow et al. in [63] Section 3.9.2]: ““Multinoulli” is a term that was recently coined by Gustavo Lacerdo and
popularized by Murphy in [140]]. The multinoulli distribution is a special case of the multinomial distribution. A multinomial distribution is
the distribution over vectors in {0, ..., n}k representing how many times each of the k categories is visited when n samples are drawn from
a multinoulli distribution. Many texts use the term “multinomial” to refer to multinoulli distributions without clarifying that they refer only
to the n = 1 case.”

84 This x, notation — or sometimes s, to stress the fact that it is a sequence — is very common but unfortunately introduces possible confusion
with the notation of x; as the ith input variable. The context — recurrent versus nonrecurrent network — usually helps to discriminate, as well
as the use of the letter ¢ (for time) as the index. An example of an exception is the RNN-RBM system analyzed in Section@ which uses
the x(*) notation.

85 Actually, there are some variations of this basic architecture, depending on the exact nature and location of the recurrent connexions. The
most standard case is a recurrent connexion for each hidden unit, as shown in Figure@] But there are some other cases, see for example
in 63} Section 10.2]. An example of a music generation architecture with recurrent connexions from the output to a special context input
will be introduced in Section[6.8.2]
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time step t-2

time step t-71
time step ¢

flow

nodes time

Fig. 5.29 Recurrent neural network (unfolded)

is in Figure[5.29] with a new diagonal axis representing the time dimension, in order to illustrate the previous step value
of each layer (in thinner and lighter color). Note that, as for standard connexions (shown in yellow solid lines), recurrent
connexions (shown in purple dashed lines) fully connect (with a specific weight matrix) all nodes corresponding to the
previous step nodes to the nodes corresponding to the current step, as illustrated in Figure[5.30]

layerld time step t-1

layerl*Tl time step ¢ layer time step ¢
flow

nodes time

Fig. 5.30 Standard connexions versus recurrent connexions (unfolded)

An RNN can learn a probability distribution over a sequence by being trained to predict the next element at time
step ¢ in a sequence as being the conditional probability distribution P(s;|s;—1,...,s1), also notated as P(s;|s<;), that
is the probability distribution P(s,) given all previous elements generated sj, s, ... , $;—j. In summary, recurrent
networks (RNNs) are good at learning sequences and therefore are routinely used for natural text processing and for
music generation.
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5.8.1 Visual Representation

A more frequent visual representation for an RNN is actually showing the flow upwards and time rightwards, see the
folded version (of an RNN with only one hidden layer) in Figure[5.31]and the unfolded version in Figure[5.32] with h;
being the value of the hidden layer at step ¢, and X, and y; being the values of the input and output at step 7.

N
[ >

flow time

Fig. 5.31 Recurrent neural network (folded)

®

® ® @ ® ®

flow

time

Fig. 5.32 Recurrent neural network (unfolded)
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5.8.2 Training

A recurrent network is not trained in exactly the same manner as a feedforward network. The idea is to present an
example element of a sequence (e.g., a note within a melody) as the input x; and the next element of the sequence (the
next note) X, as the output y,. This will train the recurrent network to predict the next element of the sequence. In
practice, an RNN is rarely trained element by element but with a sequence as an input and the same sequence shifted
left by one step/item as the output. See an example in Figure E Therefore, the recurrent network will learn to
predic the next element for all successive elements of the sequence.

<end> ]

time

Fig. 5.33 Training a recurrent neural network

The backpropagation algorithm to compute gradients for feedforward networks, introduced in Section [5.5.8] has
been extended into a backpropagation through time (BPTT) algorithm for recurrent networks. The intuition is in
unfolding the RNN through time and considering an ordered sequence of input-output pairs, but with every unfolded
copy of the network sharing the same parameters, and then applying the standard backpropagation algorithm. More
details may be found, for example, in [63, Section 10.2.2].

86 The end of the sequence is marked by a special symbol.
87 Pictured as dashed arrows.
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Note that, a RNN has usually an output layer identical to its input 1aye1@ as a recurrent network predicts the next
item, which will be used iteratively as the next input in a recursive way in order to produce a sequence.

Note also that training a recurrent network is usually considered as a case of supervised learning as, for each item,
the next item is presented as the expected prediction, although it is not an additional label information (effective value
or class to be predicted) but only the recurrent information about the next item (intrinsically present within a sequence).

5.8.3 Long Short-Term Memory (LSTM)

Recurrent networks suffered from a training problem caused by the difficulty of estimating gradients because in back-
propagation through time recurrence brings repetitive multiplications, and could thus lead to over amplify or minimize
effect@ This problem has been addressed and resolved by the long short-term memory (LSTM) architecture, pro-
posed by Hochreiter and Schmidhuber in 1997 [83]]. As the solution has been quite effective, LSTM has become the
de facto standard for recurrent networks>"]

The idea behind LSTM is to secure information in memory cells, within a blocl@ protected from the standard
data flow of the recurrent network. Decisions about writing to, reading from and forgetting (erasing) the values of
cells within a block are performed by the opening or closing of gates and are expressed at a distinct control level
(meta-level), while being learnt during the training process. Therefore, each gate is modulated by a weight parameter,
and thus is suitable for backpropagation and standard training process. In other words, each LSTM block learns how
to maintain its memory as a function of its input in order to minimize loss.

See a conceptual view of an LSTM cell in Figure [5.34 We will not further detail here the inner mechanism of an
LSTM cell (and block) because we may consider it here as a black box (please refer to, for example, the original article
1830).

Note that a more general model of memory with access customized through training has recently been proposed:
neural Turing machines (NTM) [[66]. In this model, memory is global and has read and write operations with differ-
entiable controls, and thus is subject to learning through backpropagation. The memory to be accessed, specified by
location or by content, is controlled via an attention mechanism (introduced in next section).

5.8.4 Attention Mechanism

The motivation for an attention mechanism has been inspired by the human visual system ability to efficiently track
and recognize objects by focusing its attention. It has therefore been first introduced into neural network architectures
for image recognition, as for instance for object tracking [35]]. It has then been adapted to recurrent architectures for
natural language processing (and more specifically for translation tasks) and has showed significant improvement for
the management of long-term dependencies.

88 RNNs are actually more general and there are actually some rare cases of an RNN with an arbitrary output different from the input
(as for a feedforward network). An example is a RNN-based architecture to generate a chord-based accompaniment, to be analyzed in
Section[6.8.3] As Karpathy puts it in [98]: “Depending on your background you might be wondering: What makes Recurrent Networks so
special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too constrained: they accept
a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as output (e.g. probabilities of different classes). Not only
that: These models perform this mapping using a fixed amount of computational steps (e.g. the number of layers in the model). The core
reason that recurrent nets are more exciting is that they allow us to operate over sequences of vectors: Sequences in the input, the output,
or in the most general case both.”

89 This has been coined as the vanishing or exploding gradient problem and also as the challenge of long-term dependencies (see, for
example, 63} Section 10.7]).

9 Although, there are a few subsequent but similar proposals, such as gated recurrent units (GRUs). See a comparative analysis of LSTM
and GRU in [25].

91 Cells within the same block share input, output and forget gates. Therefore, although each cell might hold a different value in its memory,
all cell memories within a block are read, written or erased all at once [83].
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Fig. 5.34 LSTM architecture (conceptual)

The idea of an attention mechanism is to focus at each time step on some specific elements of the input sequence.
This is modeled by weighted connexions onto the sequence elements (or onto the sequence of hidden units). Therefore
it is differentiable and subject to backpropagation-based learning at a meta-level, as with LSTM gate control described
in previous section. For more details, see, for example, [63} Section 12.4.5.1].

Interestingly, a novel architecture for translation of sequences, named Transformer and which is solely based on an
attention mechanisrrp_zl, has recently being proposed and shows promising results [[198]]. Its very recent application to
music generation will be shortly discussed in Section

5.9 Convolutional Architectural Pattern

Convolutional neural network (CNN or ConvNet) architectures for deep learning have become common place for
image applications. The concept was originally inspired by both a model of human vision and the convolution mathe-
matical operato@ It has been carefully adapted to neural networks and improved by LeCun, at first for handwritten
character and object recognition [[111]]. This resulted in efficient and accurate architectures for pattern recognition,
exploiting the spatial local correlation present in natural images.

92 The architecture introduces multi-head attention which allows the model to jointly attend to information from different representation
subspaces at different positions [198].

93 In mathematics, a convolution is a mathematical operation on two functions sharing the same domain (usually noted f  g) that produces
a third function which is the integral (or the sum in the discrete case — the case of images made of pixels) of the pointwise multiplication of
the two functions varying within the domain in an opposing way. In the case of a continuous domain [low high]:

high
(F9)(= [ flx=0g(at
In the discrete case:
high
(fxg)m)= ), f(n—m)g(m)
m=Ilow
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5.9.1 Principles

The basic idea{g] is to

o slide a matrix (named a filter, a kernel or a feature detector) through the entire image (seen as the input matrix);
and
e for each mapping position:

— compute the dot product of the filter with each mapped portion of the image; and
— then sum up all elements of the resulting matrix;

e resulting in a new matrix (composed of the different sums for each sliding/mapping position), named convolved
feature, or also feature map.

The size of the feature map is controlled by three hyperparameters:

depth — the number of filters used;
stride — the number of pixels by which we slide the filter matrix over the input matrix; and
zero-padding — the padding of the input matrix with zeros around its borde@

ol1]1]1 JEVERED

1 0 1 0 1 0 ! 1 OXO 1X1 OXO {

ol1]0]o0 ol1]o0 o100, 1\'[’4

11114 1]0]1 NERERE 5|2
image filter convolution convolved feature

(feature map)

Fig. 5.35 Convolution, filter and feature map. Inspired by Karn’s data science blog post [97]

An example is illustrated in Figure [5.35] with some simple settings: depth = 1, stride = 1 and no zero-padding.
Various filter matrixes can be used with different objectives, such as detection of different features (e.g., edges or
curves) or other operations such as sharpening or blurring.

The parameter sharing used by the convolution (because of the shared fixed filter) brings the important property of
equivariance to translation, i.e. a motif in an image can be detected independently of its location [63, Chapter 9].

5.9.2 Stages

A convolution usually consists of three successive stages:

e a convolution stage, as described in Section[5.9.1}

e anonlinear rectification stage, sometimes named detector stage, which applies a nonlinear operation, usually ReLU;
and

e apooling stage, also named subsampling, to reduce the dimensionality.

9 Inspired by the nice intuitive explanation provided by Karn in [97]. For more technical details see, for example, [T17]] or [63] Chapter 9].

95 Zero-padding allows mapping of the filter up to the borders of the image. It also avoids shrinking the representation, which otherwise
would be problematic when using multiple consecutive convolutional layers [63} Section 9.5].
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5.9.3 Pooling

The motivation for pooling is to reduce the dimensionality of each feature map while retaining significant information.
Operations used for pooling are, for example, max, average and sum. In addition to reducing the dimensionality of data,
pooling brings the important property of the invariance to small transformations, distortions and translations in the
input image. This provides an overall robustness to the processing [97]. Like convolution, pooling has hyperparameters
to control the process. A simple example of max pooling with stride = 2 is illustrated in Figure[5.36]

11251
31628 W
4121110 1 8
110|315 4|5
rectified feature map max pooling

Fig. 5.36 Pooling. Inspired by Karn’s data science blog post [97]

5.9.4 Multilayer Convolutional Architecture

A typical example of a convolutional architecture with successive layers — each one including the three stages of
convolution, nonlinearity and pooling — is illustrated in Figure The final layer is a fully connected layer, like in
standard feedforward networks, and typically ends up in a softmax in order to classify image types.

[0

E\la.‘
~~ \._*ﬂb-. ar~ -~

convolution RelLU pooling 1 convolution 1 RelLU
image feature maps pooled feature maps feature maps pooled feature maps fully connected softmax

Fig. 5.37 Convolutional deep neural network architecture. Inspired by Karn’s data science blog post [97]

Note that a convolution is an architectural pattern, as it may be applied internally to almost any architecture listed.

5.9.5 Convolution over Time

For musical applications, it could be interesting to apply convolutions to the time dimensior@ in order to model
temporally invariant motives. Therefore, the convolution operation will share parameters across time [63| page 374],
like for RNN However, the sharing of parameters is shallow, as it applies only to a small number of temporal

96 This approach is actually the basis for time-delay neural networks [108]).
97 Indeed, RNNs are invariant in time, as remarked in [94].
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neighboring members of the input, in contrast to RNNs that share parameters in a deep way, for all time steps. RNNs
are indeed much more frequent than convolutional networks for musical applications.

That said, we have noticed the recent occurrence of some convolutional architectures as an alternative to RNN
architectures, following the pioneering WaveNet architecture for audio [[194], described in Section @ WaveNet
presents a stack of causal convolutional layers, somewhat analogous to recurrent layers. Another example is the C-
RBM architecture, described in Section [6.10.5.1}

If we now consider the pitch dimension, in most cases pitch intervals are not considered invariants, and thus convo-
lutions should not a priori apply to the pitch dimensioﬂ

This issue of convolution versus recurrence (recurrent networks) for musical applications will be further discussed
in Section

5.10 Conditioning Architectural Pattern

The idea of a conditioning (sometimes also named conditional) architecture is to parametrize the architecture based
on some extra conditioning information, which could be arbitrary, e.g., a class label or data from other modalities. The
objective is to have some control over the data generation process. Examples of conditioning information are

a bass line or a beat structure in the rhythm generation system to be described in Section [6.10.3.1}

a chord progression in the MidiNet system to be described in Section[6.10.3.3}

some positional constraints on notes in the Anticipation-RNN system to be described in Section[6.10.3.3} and
a musical genre or an instrument in the WaveNet system to be described in Section[6.10.3.2]

In practice, the conditioning information is usually fed into the architecture as an additional and specific input layer,
shown in purple in Figure [5.38]

00000

(000

input layer

Q00 - 00000

hidden layers

output layer

conditioning layer

Fig. 5.38 Conditioning architecture

8 An exception is Johnson’s architecture [94], analyzed in Section , which explicitly looks for invariance in pitch (although this seems
to be a rare choice) and accordingly uses an RNN over the pitch dimension.
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The conditioning layer could be

e asimple input layer. An example is a tag specifying a musical genre or an instrument in the WaveNet system to be

described in Section[6.10.3.2} or

e some output of some architecture, being

— the same architecture, as a way to condition the architecture on some historyiﬂ An example is the MidiNet
system to be described in Section [6.10.3.3] in which history information from previous measure(s) is injected
back into the architecture; or

— another architecture. An example is the Deepl system to be described in Section [6.10.3.4] in which two succes-
sive transformation layers of a style tag produce an embedding used as the conditioning input.

In the case of conditioning a time-invariant architecture — recurrent or convolutional over time — there are two
options

e global conditioning — if the conditioning input is shared for all time steps; and
e Jocal conditioning — if the conditioning input is specific to each time step.

The WaveNet architecture, which is convolutional over time (see Section @), offers the two options, as will be

analyzed in Section[6.10.3.2]

5.11 Generative Adversarial Networks (GAN) Architectural Pattern

A significant conceptual and technical innovation was introduced in 2014 by Goodfellow et al. with the concept of
generative adversarial networks (GAN) [64]. The idea is to train simultaneously two neural network@ as illustrated

in Figure[5.3%

Real '\'Norld
images

Latent
random
variable

Fig. 5.39 Generative adversarial networks (GAN) architecture. Reproduced from [158] with permission of O’Reilly Media

e a generative model (or generator) G, whose objective is to transform a random noise vector into a synthetic (faked)
sample, which resembles real samples drawn from a distribution of real images; and

9 This is close in spirit to a recurrent architecture (RNN).

100 I the original version, two feedforward networks are used. But we will see that other networks may be used, e.g., recurrent networks in
the C-RNN-GAN architecture (Section@) and convolutional feedforward networks in the MidiNet architecture (Section @
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e adiscriminative model (or discriminator) D, which estimates the probability that a sample came from the real data
rather than from the generator

This corresponds to a minimax two-player game, with one unique (final) solutio@ G recovers the training data
distribution and D outputs 1/2 everywhere. The generator is then able to produce user-appealing synthetic samples
from noise vectors. The discriminator may then be discarded.

The minimax relationship is defined in Equation[5.30}

min max V (G, D) = By, log D(X)] + E,p, log(1 - D(G(2)))] (5.30)

D(x) represents the probability that x came from the real data (i.e. the correct estimation by D); and
Exppu. 10g D(x)] is the expectatiorm of log D(x) with respect to x being drawn from the real data.

It is thus D’s objective to estimate correctly real data, that is to maximize the Ex . [log D(x)] term.

D(G(z)) represents the probability that G(z) came from the real data (i.e. the uncorrect estimation by D);
1 — D(G(z)) represents the probability that G(z) did not come from the real data, i.e. that it was generated by G
(i.e. the correct estimation by D); and

e E, ,,[log(1—D(G(z)))] is the expectation of log(1 — D(G(z))) with respect to G(z) being produced by G from
z random noise.

It is thus also D’s objective to estimate correctly synthetic data, that is to maximize the E, ., () [log(1 — D(G(z)))]
term.

In summary, it is D’s objective to estimate correctly both real data and synthetic data and thus to maximize both
Ex~ppye 10g D(x)] and E, ) [log(1 —D(G(z)))] terms, i.e. to maximize V (G, D). On the opposite side, G’s objective
is to minimize V (G, D). Actual training is organized with successive turns between the training of the generator and
the training of the discriminator.

One of the initial motivations for GAN was for classification tasks to prevent adversaries from manipulating deep
networks to force misclassification of inputs (this vulnerability is analyzed in detail in [183]]). However, from the
perspective of content generation (which is our interest), GAN improves the generation of samples, which become
hard to distinguish from the actual corpus examples.

To generate music, random noise is used as an input to the generator G, whose goal is to transform random noises
into the objective, e.g., melodie@ An example of the use of GAN for generating music is the MidiNet system, to be
described in Section[6.10.3.3]

101 1 some ways, a GAN represents an automated Turing test setting, with the discriminator being the evaluator and the generator being
the hidden actor.

102 Tt corresponds to the Nash equilibrium of the game. In game theory, the intuition of a Nash equilibrium is a solution where no player
can benefit by changing strategies while the other players keep theirs unchanged, see, for example, [[145].

103 The expectation has been introduced in Section

104 T that respect, generation from a GAN has some similarity with generation by decoding hidden layer variables of a variational au-
toencoder (Section @ as in both cases generation is done from latent variables. An important difference is that, by construction, a
variational autoencoder is representative of the whole dataset that it has learnt, that is, for any example in the dataset, there is at least one
setting of the latent variables which causes the model to generate something very similar to that example [38]. A GAN does not offer such
guarantee and does not offer a smooth generation control interface over the latent space (by, e.g., interpolation or attribute arithmetics,
see Section[5.6.2), but it can usually generate better quality (better resolution) images than a variational autoencoder [123]]. Note that the
resolution limitation for a VAE may be a problem too for audio generation of music, but it appears a priori less a direct concern in the case
of symbolic generation of music.
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5.11.1 Challenges

Training based on a minimax objective is known to be challenging to optimize [211]], with a risk of nonconverging
oscillations. Thus, careful selection of the model and its hyperparameters is important [63 page 701]. There are also
some newer techniques, such as feature matching@ among others, to improve training [169].

A recent proposed alternative both to GANs and to autoencoders is generative latent optimization (GLO) [9]. It is
an approach to train a generator without the need to learn a discriminator, by learning a mapping from noise vectors to
images. GLO can thus be viewed both as an encoder-less autoencoder, and as a discriminator-less GAN. It can also be
used, as for a VAE (variational autoencoder) introduced in Section[5.6.2] to control generation by exploring the latent
space. GLO has been tested on images but not yet on music and needs more evaluation.

5.12 Reinforcement Learning

Reinforcement learning (RL) may appear at first glance to be outside of our interest in deep learning architectures, as
it has distinct objectives and models. However, the two approaches have recently been combined. The first move, in
2013, was to use deep learning architectures to efficiently implement reinforcement learning techniques, resulting in
deep reinforcement learning [134]). The second move, in 2016, is directly related to our concerns, as it explored the
use of reinforcement learning to control music generation, resulting in the RL-Tuner architecture [93] to be described
in Section

Let us start with a reminder of the basic concepts of reinforcement learning, illustrated in Figure [5.40)

internal state

eward

environment

S
leaming rate o
inverse temperature
discount rate y

observation

Fig. 5.40 Reinforcement learning — conceptual model. Reproduced from [40]] with permission of SAGE Publications, Inc./Corwin

an agent within an environment sequentially selects and performs actions in an environment;
where each action performed brings it to a new state;
the agent receives a reward (reinforcement signal), which represents the fitness of the action to the environment
(current situation);

e the objective of the agent being to learn a near optimal policy (sequence of actions) in order to maximize its
cumulated rewards (named its gain).

105 Feature matching changes the objective for the generator (and accordingly its cost function) to minimize the statistical difference
between the features of the real data and the generated samples, see more details in [[169].
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Note that the agent does not know beforehand the model of the environment and the reward, thus it needs to balance
between exploring to learn more and exploiting (what it has learned) in order to improve its gain — this is the exploration
exploitation dilemma.

There are many approaches and algorithms for reinforcement learning (for a more detailed presentation, please re-
fer, for example, to [96]). Among them, Q-learning [203] turned out to be a relatively simple and efficient method, and
thus is widely used. The name comes from the objective to learn (estimate) the Q function Q*(s,a), which represents
the expected gain for a given pair (s,a), where s is a state and a an action, for an agent choosing actions optimally (i.e.
by following the optimal policy 7*). The agent will manage a table, called the Q-fable, with values corresponding to
all possible pairs. As the agent explores the environment, the table is incrementally updated, with estimates becoming
more accurate.

A recent combination of reinforcement learning (more specifically Q-learning) and deep learning, named deep
reinforcement learning, has been proposed [134] in order to make learning more efficient. As the Q-table could be
huge{TE], the idea is to use a deep neural network in order to approximate the expected values of the Q-table through
the learning of many replayed experiences.

A further optimization, named double Q-learning [196] decouples the action selection from the evaluation, in order
to avoid value overestimation. The task of the first network, named the Target Q-Network, is to estimate the gain (Q),
while the task of the Q-Network is to select the next action.

Reinforcement learning appears to be a promising approach for incremental adaptation of the music to be generated,
e.g., based on the feedback from listeners (this issue will be addressed in Section[6.16). Meanwhile, a significant move
has been made in using reinforcement learning to inject some control into the generation of music by deep learning
architectures, through the reward mechanism, as described in Section @

5.13 Compound Architectures

Often compound architectures are used. Some cases are homogeneous compound architectures, combining various
instances of the same architecture, e.g., a stacked autoencoder (see Section [5.6.3), and most cases are heterogeneous
compound architectures, combining various types of architectures, e.g., an RNN Encoder-Decoder which combines an
RNN and an autoencoder, see Section

5.13.1 Composition Types

We will see that, from an architectural point of view, various types of compositio may be used:
e Composition — at least two architectures, of the same type or of different types, are combined, such as

— a bidirectional RNN (Section [5.13.2)) combining two RNNs, forward and backward in time; and
— the RNN-RBM architecture (Section[5.13.5)) combining an RNN architecture and an RBM architecture.

e Refinement — one architecture is refined and specialized through some additional constraint(s such as

— asparse autoencoder architecture (Section[5.6.1)); and
— avariational autoencoder (VAE) architecture (Section [5.6.2).

e Nested — one architecture is nested into the other one, for example

106 Because of the high combinatorial nature when the number of possible states and possible actions is huge.

107 We are taking inspiration from concepts and terminology in programming languages and software architectures [172]], such as refine-
ment, instantiation, nesting and pattern [53]].

108 Both cases are refinements of the standard autoencoder architecture through additional constraints, in practice adding an extra term onto
the cost function.
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— astacked autoencoder architecture (Section[5.6.3)); and
— the RNN Encoder-Decoder architecture (Section [5.13.3)), where two RNN architectures are nested within the
encoder and decoder parts of an autoencoder, which we could therefore also notate as Autoencoder(RNN, RNN).

e Pattern instantiation — an architectural pattern is instantiated onto a given architecture(s), for example

— the C-RBM architecture (Section that instantiates the convolutional architectural pattern onto an RBM
architecture, which we could notate as Convolutional(RBM);

— the C-RNN-GAN architecture (Section [6.10.2.4), where the GAN architectural pattern is instantiated onto an
RNN architecture, which we could notate as GAN(RNN, RNN); and

— the Anticipation-RNN architecture (Section[6.10.3.5) that instantiates the conditioning architectural pattern onto
an RNN with the output of another RNN as the conditioning input, which we could notate as Conditioning(RNN,
RNN).

5.13.2 Bidirectional RNN

Bidirectional recurrent neural networks (bidirectional RNNs) were introduced by Schuster and Paliwal [[171] to handle
the case when the prediction depends not only on the previous elements but also on the next elements, as for instance
with speech recognition. In practice, a bidirectional RNN combines{n_gl

o a first RNN that moves forward through time and begins from the start of the sequence; and
e asecond symmetric RNN that moves backward through time and begins from the end of the sequence.

The output y; of the bidirectional RNN at step # combines

the output htf at step ¢ of the hidden layer of the “forward RNN”, and
the output h%it 41 atstep N —r+1 of the hidden layer of the “backward RNN”.

An illustration is in Figure[5.41] Examples of use are

the BLSTM architecture (Section[6.8.3);
the C-RNN-GAN architecture (Section [6.10.2.4) that encapsulates a bidirectional RNN into the discriminator of a
GAN; and

e the MusicVAE architecture (Section [6.12.1)) that encapsulates a bidirectional RNN into the encoder of a VAE
(variational autoencoder).

5.13.3 RNN Encoder-Decoder

The idea of encapsulating two identical recurrent networks (RNNs) into an autoencoder, named the RNN Encoder-
Decode was initially proposed in [20] as a technique to encode a variable length sequence learnt by a recurrent
network into another variable length sequence produced by another recurrent networklﬂ__rl The motivation and applica-
tion target is the translation from one language to another, resulting in sentences of possibly different lengths.

The idea is to use a fixed-length vector representation as a pivot representation between an encoder and a decoder
architecture, see the illustration in Figure The hidden layer(s) i of the encoder will act as a memory which

109 See more details in [T71].
110 We could also notate it as Autoencoder(RNN, RNN).
' This is named sequence-to-sequence learning [181]].
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Fig. 5.41 Bidirectional RNN architecture

Fig. 5.42 RNN Encoder-Decoder architecture. Inspired from [20]
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e iteratively accumulates information about some input sequence of length N, while reading its successive x; ele-
ments{E resulting in a final state hg;;
which is passed to the decoder as the summary c of the whole input sequence; and
the decoder then iteratively generates the output sequence of length M, by predicting the next item y, given its
hidden state h? and the summary (as a conditioning additional input)

The two components of the RNN Encoder-Decoder are jointly trained to minimize the cross-entropy between
input and output. See in Figure [5.43]the example of the Audio Word2Vec architecture for processing audio phonetic
structures [26]].

Learning Targets

I I I I Acoustic Features
Ww Audio Segment

Fig. 5.43 RNN Encoder-Decoder audio Word2 Vec architecture. Reproduced from [26] with permission of the authors

One limitation of the RNN Encoder-Decoder approach is the difficulty for the summary to memorize very long
sequences{ﬂ__ﬂ Two possible directions are

e using an attention mechanisrr@ and
e using a hierarchical model, as proposed in the MusicVAE architecture, to be introduced in Section|6.12.1

5.13.4 Variational RNN Encoder-Decoder

An interesting development is a variational version of the RNN Encoder-Decoder, in other words a variational autoen-
coder (VAE) encapsulating two RNNs. We could notate it as Variational(Autoencoder(RNN, RNN)). The objective is
to combine

o the variational property of the VAE for controlling the generatio and
o the sequence generation property of the RNN.

112 The end of the sequence is marked by a special symbol, as when training an RNN, see Sectionm

113 As noted by Goodfellow ef al. in [63] Section 10.4], an alternative is to use the summary c only to initialize the initial hidden state of
the decoder hg . This is, for instance, the strategy chosen in the GLSR-VAE architecture described in Section|6.10.2.3

114 In text translation applications, sentences have a limited size.
115 Introduced in Section
116 See Section
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Examples of its application to music generation will be introduced in Section [6.10.2.3]

5.13.5 Polyphonic Recurrent Networks

The RNN-RBM architecture, to be introduced in Section[6.9.1] combines an RBM architecture and a recurrent (LSTM)
architecture by coupling them to associate the vertical perspective (simultaneous notes) with the horizontal perspective
(temporal sequences of notes) of a polyphony to be generated.

5.13.6 Further Compound Architectures

It is possible to further combine architectures that are already compound, for example

e the WaveNet architecture (Section @]) which is a conditioning convolutional feedforward architecture with
some tag as the conditioning input, which we could notate as Conditioning(Convolutional(Feedforward), Tag); and

e the VRASH architecture (Section [6.10.3.6), which is a variational autoencoder encapsulating RNNs with the de-
coder being conditioned on history, which we could notate as Variational(Autoencoder(RNN, Conditioning(RNN,
History))).

There are also some more specific (ad hoc) compound architectures, for example

e Johnson’s Hexahedria architecture (Section[6.9.2)), which combines two layers recurrent on the time dimension with
two other layers recurrent on the pitch dimension, as an integrated alternative to the RNN-RBM architecture; and

e The DeepBach architecture (Section [6.14.2), which combines two feedforward architectures with two recurrent
architectures.

5.13.7 The Limits of Composition

There is a natural tendency to explore possible combinations of different architectures with the hope of combining
their respective features and merits. An example of a sophisticated compound architecture is the VRASH architecture

(Section[6.10.3.6), which combines

variational autoencoder;
recurrent networks; and
conditioning (on the decoder).

However, note that

e not all combinations make sense. For instance, recurrence and convolution over the time dimension would compete,
as discussed in Section[5.9} and
e there is no guarantee that combining a maximal variety of types will make a sound and accurate architectur

We will see in Chapter|[6|that an important additional design dimension is the strategy, which governs how an archi-
tecture will process representations in order to reach a given objective with some expected properties (the challenges).

117 As in the case of a good cook, whose aim is not to simply mix all possible ingredients but to discover original successful combinations.

90



Chapter 6
Challenge and Strategy

We are now reaching the core of this book. This chapter will analyze in depth how to apply the architectures presented
in Chapter [5] to learn and generate music. We will first start with a naive, straightforward strategy, using the basic
prediction task of a neural network to generate an accompaniment for a melody.

We will see that, although this simple direct strategy does work, it suffers from some limitations. We then will study
these limitations, some relatively simple to solve, some more difficult and profound — the challenges. We will analyze
various strategie{-] for each challenge, and illustrate them though different systemsﬂ taken from the relevant literature.
This also provides an opportunity to study the possible relationships between architectures and strategies.

6.1 Notations for Architecture and Representation Dimensions

At first, let us introduce some compact notations for the dimension of an architecture and for the size of a representa-
tion:

o Architecture-type” for a n-layer architectureﬂ e.g., Feedforward? for the 2-layer feedforward architecture of the
MiniBach system to be introduced in Section[6.2.2]

e Architecture-type xn for a n-instance compound architecture, e.g., RNNx2 for the double RNN compound archi-
tecture of RL-Tuner to be introduced in Section and

e One-hotxn for a multi-one-hot encoding representation, such as:

— an-time steps one-hot encoding, e.g., One-hotx 64 for the 64-time steps representation of the DeepHeary, system
to be introduced in Section[6.4.1.1]

— an-voice one-hot encoding, e.g., One-hotx 2 for the melody+chords representation of the Bluesys¢c system to be
introduced in Section[6.5.1.2} or

— a combination of a multi-time steps encoding and a multivoice encoding, e.g., One-hotx64 x(1+3) for the 64-
time steps 1-voice input and 3-voices output representation of the MiniBach system to be introduced in Sec-

tion

An example of a combination of the two notations is LSTM? x 2 for the double 2-layer RNN compound architecture
of the Anticipation-RNN system to be introduced in Section[6.10.3.3]

! Remember, and this will be important for the following sections, that, as stated in Chapter we consider here the strategy related to the
generation phase and not the training phase (which could be different).

2 As proposed in Chapter we use the term systems for various proposals — architectures, models, prototypes, systems and related experi-
ments — for deep learning-based music generation, collected from the related literature.

3 This notation has actually already been introduced in Section
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6.2 An Introductory Example

6.2.1 Single-Step Feedforward Strategy

The most direct strategy is using the prediction or the classification task of a neural network in order to generate musical
content. Let us consider the following objective: for a given melody we want to generate an accompaniment, for exam-
ple, a counterpoint. We will consider a dataset of examples, each one being a pair (melody, counterpoint melody(ies)).
We then train a feedforward neural network architecture in a supervised learning manner on this dataset. Once trained,
we can choose an arbitrary melody and feedforward it into the architecture in order to produce a corresponding coun-
terpoint accompaniment, in the style of the dataset. Generation is completed in a single-step of feedforward processing.
Therefore, we have named this strategy the single-step feedforward strategy.

6.2.2 Example: MiniBach Chorale Counterpoint Accompaniment Symbolic Music Generation
System

Let us consider the following objective: generating a counterpoint accompaniment to a given melody for a soprano
voice, through three matching parts, corresponding to alto, tenor and bass voices. We will use as a corpus the set
of J. S. Bach’s polyphonic chorales [5]. As we want this first introductory system to be simple, we consider only 4
measures long excerpts from the corpus. The dataset is constructed by extracting all possible 4 measures long excerpts
from the original 352 chorales, also transposed in all possible keys. Once trained on this dataset, the system may be
used to generate three counterpoint voices corresponding to an arbitrary 4 measures long melody provided as an input.
Somehow, it does capture the practice of J. S. Bach, who chose various melodies for a soprano and composed the three
additional voices melodies (for alto, tenor and bass) in a counterpoint manner.

First, we need to decide the input as well as the output representations. We represent four measures of 4/4 music.
Both the input and the output representations are symbolic, of the piano roll type, with one-hot encoding for each
voice, i.e. a multi-one-hot encoding for the output representation. The three first voices (soprano, alto and tenor) have
a scope of 20 possible notes plus an additional token to encode a holcﬂ while the last voice (bass) has a scope of 27
possible notes plus the hold symbol. Time quantization (the value of the time step) is set at the sixteenth note, which is
the minimal note duration used in the corpus. The input representation has a size of 21 possible notes x 16 time steps
x 4 measures, i.e. 21 x 16 x 4 = 1,344, while the output representation has a size of (21 421+ 28) x 16 x 4 = 4,480.

The architecture, a feedforward network, is shown in Figure[6.1] As explained previously and because of the map-
ping between the representation and the architecture, the input layer has 1,344 nodes and the output layer 4,480. There
is a single hidden layer with 200 unitﬂ The nonlinear activation function used for the hidden layer is ReLU. The
output layer activation function is sigmoid and the cost function used is binary cross-entropy (this is a case of multi’
multiclass single label, see Section[5.5.4).

The detail of the architecture and the encoding is shown in Figure [6.2] It shows the encoding of successive music
time slices into successive one-hot vectors directly mapped to the input nodes (variables). In the figure, each blackened
vector element as well as each corresponding blackened input node element illustrate the specific encoding (one-hot
vector index) of a specific note time slice, depending of its actual pitch (or a hold in the case of a longer note, shown
with a bracket). The dual process happens at the output. Each grey output node element illustrates the chosen note (the
one with the highest probability), leading to a corresponding one-hot index, leading ultimately to a sequence of notes
for each counterpoint voice.

4 See Section Note that, as a simplification, MiniBach does not consider rests.
5 This is an arbitrary choice.
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Fig. 6.1 MiniBach architecture

The characteristics of this system, named MiniBacIﬂ are summarized in our multidimensional conceptual frame-
work (as defined in Chapter |2| Method) in Table The notatiorﬂ One-hotx 64 x(1+3) means an encoding with 1
input + 3 output voices, each with 64 (for 4 measures of 16 time steps each) one-hot encodings of notes. The notation
Feedforward” means a 2-layer feedforward architecture (with 1 hidden layer). An example of a chorale counterpoint
generated from a soprano melody is shown in Figure[6.3]

Objective Accompaniment; Counterpoint; Chorale; Bach
Representation|Symbolic; Piano roll; One-hotx 64 x (143); Hold
Architecture  |Feedforward”

Strategy Single-step feedforward

Table 6.1 MiniBach summary

6.2.3 A First Analysis
The chorales produced by MiniBach look convincing at first glance. But, independently of a qualitative musical eval-
uation, where an expert could detect some defects, objective limitations of MiniBach appear:

e A structural limitation is that the music produced (as well as the input melody) has a fixed size (one cannot produce
a longer or shorter piece of music).

6 MiniBach is actually a strong simplification — but with the same objective, corpus and representation principles — of the DeepBach system
to be introduced in Section[6.14.2}

7 These notations, introduced in Section will be summarized in Section
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Fig. 6.2 MiniBach architecture and encoding

e The same melody will always produce exactly the same accompaniment because of the deterministic nature of a
feedforward neural network architecture.

e The generated accompaniment is produced in a single atomic step, without any possibility of human intervention
(i.e. without incrementality and interactivity).

94



70| I I —
T o | T
Soprano [t 4 £ » o @ P o 5 H F  » I F ¢ o 1
A1V “x | I | | 1] | I | [ 1 L) ! I i I 1]
o : : ' [ i | ; | |
fH 1! y . | . y
i S ——— — — i ’  — = —1— !
Ao |Hs> %559 o o 5 ®
Y] i f l
- . —
Tenor Wp:ﬁ—i"_—f—d = I! i I T
AN1Y 4 =% I 1| | 17 I [ 1 I 1 | I | 1 1]
¢ | [ ' 1 I ' f | ' f i
} o f ] f !
T \% e+ 1 !

Fig. 6.3 Example of a chorale counterpoint generated by MiniBach from a soprano melody

6.3 A Tentative List of Limitations and Challenges

Let us now introduce a tentative list of limitations (in most cases, properties not fulfilled) and challengeﬂ

Ex nihilo generation (vs accompaniment);
Length variability (vs fixed length);
Content variability (vs determinism);
Expressiveness (vs mechanization);
Melody-harmony consistency;

Control (e.g., tonality conformance, maximum number of repeated notes. . .

Style transfer;

Structure;

Originality (vs imitation);

Incrementality (vs one-shot generation);

Interactivity (vs automation);

Adaptability (vs no improvement through usage); and
Explainability (vs black box).

We will analyze them with possible matching solutions and illustrate them through various examples systems.

6.4 Ex Nihilo Generation

The MiniBach system is good at generating an accompaniment (a counterpoint composed of three distinct melodies)
matching an input melody. This is an example of supervised learning, as training examples include both an input (a
melody) and a corresponding output (accompaniment).
Now suppose that our objective is to generate a melody on its own — not as an accompaniment of some input
melody — while being based on a style learnt from a corpus of melodies. A standard feedforward architecture and
its companion single-step feedforward strategy, such as those used in MiniBach (described in Section [6.2.2), are not
appropriate for such an objective.

8 Our shallow distinction between a limitation and a challenge is as follows: limitations have relatively well-understood solutions, whereas
challenges are more profound and still the subject of open research.
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Let us introduce some strategies to generate new music content ex nihilo or from minimal seed information, such
as a starting note or a high-level description.

6.4.1 Decoder Feedforward

The first strategy is based on an autoencoder architecture. As explained in Section[5.6] through the training phase an
autoencoder will specialize its hidden layer into a detector of features characterizing the type of music learnt and its
Variationsﬂ One can then use these features as an input interface to parameterize the generation of musical content.
The idea is then to:

e choose a seed as a vector of values corresponding to the hidden layer units;
e insert it in the hidden layer; and
e feedforward it through the decoder.

This strategy, that we name decoder feedforward, will produce a new musical content corresponding to the features,
in the same format as the training examples.

In order to have a minimal and high-level vector of features, a stacked autoencoder (see Section [5.6.3) is often
used. The seed is then inserted at the bottleneck hidden layer of the stacked autoencodem and feedforwarded through
the chain of decoders. Therefore, a simple seed information can generate an arbitrarily long, although fixed-length,
musical content.

6.4.1.1 #1 Example: DeepHear Ragtime Melody Symbolic Music Generation System

An example of this strategy is the DeepHear system by Sun [180]]. The corpus used is 600 measures of Scott Joplin’s
ragtime music, split into 4 measures long segments. The representation used is piano roll with a multi-one-hot encod-
ing. The quantization (time step) is a sixteenth note, thus the representation includes 4 x 16 = 64 time steps (notated
as One-hotx64). The number of input nodes is around 5,000, which provides a vocabulary of about 80 possible note
values. The architecture is shown in Figure [6.4|and is a 4-layer stacked autoencoder (notated as Autoencoder*) with a
decreasing number of hidden units, down to 16 units.

e e g | Output - ~5000 bits ]
2 Aut 4 #1 Decoder I Wf
e . 1024 neurons
r- #2Decodsr[ | l w,"
#3 Autoencoder 256 neurons I

s Auosncoser P Ve T T
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Ij—>| 16 neurons l Bottleneck Layer
#4 Encoder

T twsr——3| G4neurons | ..
--------------------- > 256 neurons
_______________ BECnoooer :|> | 1024 neurons | | W
#1 Encoder WI
et E| Input - ~5000 bits ]

Fig. 6.4 DeepHear stacked autoencoder architecture. Extension of a figure reproduced from [180] with permission of the author

9 To enforce this specialization, sparse autoencoders are often used (see Section .
10 1 other words, at the exact middle of the encoder/decoder stack, as shown in Figure
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After a pre-training phaseEl, final training is performed, with each provided example used both as an input and as
an output, in the self-supervised learning manner (see Section [5.6) shown in Figure[6.5]

Output = Input

| Output - ~5000 bits |

Training 1024 neurons

256 neurons L w
2
1024 neurons |
w,
| Input - ~5000 bits |
Input

Fig. 6.5 Training DeepHear. Extension of a figure reproduced from [[180] with permission of the author

Generation is performed by inputing random data as the seed into the 16 bottleneck hidden layer units{lzl (shown
within a red rectangle) and then by feedforwarding it into the chain of decoders to produce an output (in the same
4 measures long format as the training examples), as shown in Figure [6.6f We summarize the characteristics of

DeepHear in Table

Generation ulput
I Output - ~5000 bits | wr
} 1024 neurons !w ' '
i 256 neurons ] 8

l 64 neurons ‘

Input  =—reeeeeee> | 16 neuronsﬂ Bottleneck Layer

[ 64 neurons [
| 256 neurons ] W,
[ 1024 neurons }
: w,
[ input - ~5000 bits |

Fig. 6.6 Generation in DeepHear. Extension of a figure reproduced from [180] with permission of the author

T 'We do not detail pre-training here, please refer to, for example, [63] page 528].
12 The units of the hidden layer represent an embedding (see Section , of which an arbitrary instance is named by Sun a label.

13 We notate DeepHeary, this DeepHear melody generation system, where M stands for melody, because another experiment with the same
DeepHear architecture but with a different objective will be presented later on in Section[6.10.4.1}
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Objective Melody; Ragtime
Representation|Symbolic; Piano roll; One-hot x 64
Architecture  |Stacked autoencoder = Autoencoder®
Strategy Decoder feedforward

Table 6.2 DeepHeary, summary

In [180], Sun remarks that the system produces a certain amount of plagiarism. Some generated music is almost
recopied from the corpus. He states that this is because of the small size of the bottleneck hidden layer (only 16 nodes)
[L80]. He measured the similarity (defined as the percentage of notes in a generated piece that are also in one of the
training pieces) and found that, on average, it is 59.6%, which is indeed quite high, although it does not prevent most
of generated pieces from sounding different.

6.4.1.2 #2 Example: deepAutoController Audio Music Generation System

The deepAutoController system, by Sarroff and Casey [170], is similar to DeepHear (see Section[6.4.1.1)) in that it also
uses a stacked autoencoder. But the representation is audio, more precisely a spectrum generated by Fourier transform,
see [[170] for more details. The dataset is composed of 8,000 songs of 10 musical genres, leading to 70,000 frames
of magnitude Fourier transformﬂ The entire data is normalized to the [0, 1] range. The cost function used is mean
squared error. The architecture is a 2-layer stacked autoencoder, the bottleneck hidden layer having 256 units and the
input and output layers having 1,000 nodes. The authors report that increasing the number of hidden units does not
appear to improve the model performance.

The system, summarized in Table [6.3] also provides a user interface, analyzed in Section [6.13] to interactively
control the generation, e.g., selecting a given input (to be inserted at the bottleneck hidden layer), generating a random
input, and controlling (by scaling or muting) the activation of a given unit.

Objective Audio; User interface
Representation|Audio; Spectrum

Architecture  |Stacked autoencoder = Autoencoder?
Strategy Decoder feedforward

Table 6.3 deepAutoController summary

6.4.2 Sampling

Another strategy is based on sampling. Sampling is the action of generating an element (a sample) from a stochastic
model according to a probability distribution.

6.4.2.1 Sampling Basics
The main issue for sampling is to ensure that the samples generated match a given distribution. The basic idea is to

generate a sequence of sample values in such a way that, as more and more sample values are generated, the dis-
tribution of values more closely approximates the target distribution. Sample values are thus produced iteratively,

14 As the authors state in [170]: “We chose to use frames of magnitude FFTs (Fast Fourier transforms) for our models because they may be
reconstructed exactly into the original time domain signal when the phase information is preserved, the Fourier coefficients are not altered,
and appropriate windowing and overlap-add is applied. It was thus easier to subjectively evaluate the quality of reconstructions that had
been processed by the autoencoding models.”
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with the distribution of the next sample being dependent only on the current sample value. Each successive sample
is generated through a generate-and-test strategy, i.e. by generating a prospective candidate, accepting or rejecting it
(based on a defined probability density) and, if needed, regenerating it. Various sampling strategies have been pro-
posed: Metropolis-Hastings algorithm, Gibbs sampling (GS), block Gibbs sampling, etc. Please see, for example, [63}
Chapter 17] for more details about sampling algorithms.

6.4.2.2 Sampling for Music Generation

For musical content, we may consider two different levels of probability distribution (and sampling):

e item-level or vertical dimension — at the level of a compound musical item, e.g., a chord. In this case, the distribution
is about the relations between the components of the chord, i.e. describing the probability of notes to occur together;
and

e sequence-level or horizontal dimension — at the level of a sequence of items, e.g., a melody composed of successive
notes. In this case, the distribution is about the sequence of notes, i.e. it describes the probability of the occurrence
of a specific note after a given note.

An RBM (restricted Boltzmann machine) architecture is generallused to model the vertical dimension, i.e. which
notes should be played together. As noted in Section an RBM architecture is dedicated to learning distributions
and can learn efficiently from few examples. This is particularly interesting for learning and generating chords, as
the combinatorial nature of possible notes forming a chord is large and the number of examples is usually small. An
example of a sampling strategy applied on an RBM for the horizontal dimension will be presented in Section

An RNN (recurrent neural network) architecture is often used for the horizontal dimension, i.e. which note is likely
to be played after a given note, as will be described in Section [6.5.1] As we will see in Section [6.6.1} a sampling
strategy may be also added to enforce variability.

We will see in Section m that a compound architecture named RNN-RBM may combine and articulatﬁ these
two different approaches:

e an RBM architecture with a sampling strategy for the vertical dimension; and
e an RNN architecture with an iterative feedforward strategy for the horizontal dimension.

An alternative approach is to use sampling as the unique strategy for both dimensions, as witnessed by the DeepBach
system to be analyzed in Section [6.14.2]

6.4.2.3 Example: RBM-based Chord Music Generation System

In [[11], Boulanger-Lewandowski et al. propose to use a restricted Boltzmann machine (RBM) [81] to model poly-
phonic music. Their objective is actually to improve the transcription of polyphonic music from audio. But prior to
that, the authors discuss the generation of samples from the model that has been learnt as a qualitative evaluation and
also for music generation [12]]. In their first experiment, the RBM learns from the corpus the distribution of possible
simultaneous notes, i.e. a repertoire of chords.

The corpus is the set of J. S. Bach’s chorales (as for MiniBach, described in Section[6.2.2)). The polyphony (number
of simultaneous notes) varies from O to 15 and the average polyphony is 3.9. The input representation has 88 binary
visible units that span the whole range of piano from A to Cg, following a many-hot encoding. The sequences are
aligned (transposed) onto a single common tonality (e.g., C major/minor) to ease the learning process.

One can sample from the RBM through block Gibbs sampling, by performing alternative steps of sampling the
hidden layer nodes (considered as variables) from the visible layer nodes (see Section [5.7). Figure [6.7] shows various

15 A counterexample is the C-RBM convolutional RBM architecture, to be introduced in Section|6.10.5.1{ which models both the vertical
dimension (simultaneous notes) and the horizontal dimension (sequence of notes) for single-voice polyphonies.

16 This issue of how to articulate vertical and horizontal dimensions, i.e. harmony with melody, will be further analyzed in Section
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examples of samples. The vertical axis represents successive possible notes. Each column represents a specific sample
composed of various simultaneous notes, with the name of the chord written below when the analysis is unambiguous.
Table summarizes this RBM-based chord generation system, which we notate RBM¢ (where C stands for chords).
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Fig. 6.7 Samples generated by the RBM trained on J. S. Bach chorales. Reproduced from [[11] with permission of the authors

Objective Simultaneous notes (Chord)
Representation|Symbolic; Many-hot
Architecture |RBM

Strategy Sampling

Table 6.4 RBM¢ summary

6.5 Length Variability

An important limitation of the single-step feedforward strategy (Section[6.2.1)) and of the decoder feedforward strategy
(Section [6.4.1)) is that the length of the music generated (more precisely the number of times steps or measures) is
fixed. It is actually fixed by the architecture, namely the number of nodes of the output laye To generate a longer
(or shorter) piece of music, one needs to reconfigure the architecture and its corresponding representation.

6.5.1 Iterative Feedforward

The standard solution to this limitation is to use a recurrent neural network (RNN). The typical usage, as initially
described for text generation by Graves in [[63]], is to

e select some seed information as the first item (e.g., the first note of a melody);

e feedforward it into the recurrent network in order to produce the next item (e.g., next note);

e use this next item as the next input to produce the next next item; and

e repeat this process iteratively until a sequence (e.g., of notes, i.e. a melody) of the desired length is produced.

17 In the case of an RBM, the number of nodes of the input layer (which also has the role of an output layer).
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Note the iterative aspect of the generation, processed element by element. Therefore, we name this approach the
iterative time step feedforward strategy, abbreviated as the iterative feedforward strategy. Actually, a recursion —
current output reenters as the next input — is also often present. However, there are a few rare exceptions, as we will
see, e.g., in Sequential (Section [6.8.2) and in BLSTM (Section [6.8.3) architectures, where there is an iteration but no
recursion.

Note that the iterative feedforward strategy, as the decoder feedforward strategy (Section [6.4.1)), is one kind of
seed-based generation (see Section [6.4), as the full sequence (e.g., a melody) is generated iteratively from an initial
seed item (e.g., a starting note).

6.5.1.1 #1 Example: Blues Chord Sequence Symbolic Music Generation System

In [43]], Eck and Schmidhuber describe a double experiment undertaken with a recurrent network architecture using
LSTM In their first experiment, the objective is to learn and generate chord sequences. The format of representation
is piano roll, with two types of sequences: melody and chords, although chords are represented as notes. The melodic
range as well as the chord vocabulary is strongly constrained, as the corpus consists of 12 measures long blues and is
handcrafted (melodies and chords). The 13 possible notes extend from middle C (C4) to tenor C (Cs). The 12 possible
chords extend from C to B.

A one-hot encoding is used. Time quantization (time step) is set at the eighth note, half of the minimal note duration
used in the corpus, which is a quarter note. With 12 measures long music this equates to 96 time steps. An example of
chord sequence training example is shown in Figure[6.8]
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Fig. 6.8 A chord training example for blues generation. Reproduced from [43] with permission of the authors

The architecture for this first experiment is: an input layer with 12 nodes (corresponding to a one-hot encoding of
the 12 chord vocabulary), a hidden layer with four LSTM blocks containing two cells eaclﬁ and an output layer with
12 nodes (identical to the input layer).

Generation is performed by presenting a seed chord (represented by a note) and by iteratively feedforwarding the
network, producing the prediction of the next time step chord, using it as the next input and so on, until a sequence
of chords has been generated. The architecture and the iterative generation is illustrated in Figure [6.9] This system,
which we notate Bluesc (where € stands for chords), is summarized in Table[6.3]

Objective Chord sequence; Blues
Representation|Symbolic; One-hot; Note end; Chord as note
Architecture  |LSTM

Strategy Iterative feedforward

Table 6.5 Bluesc summary

18 This was actually the first experiment in using LSTMs to generate music.
19 See in Section for the difference between LSTM cells and blocks.
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Fig. 6.9 Blues chord generation architecture

6.5.1.2 #2 Example: Blues Melody and Chords Symbolic Music Generation System

In Eck and Schmidhuber’s second experiment [43], the objective is to simultaneously generate melody and chord
sequences. The new architecture is an extension of the previous one: it has an input layer with 25 nodes (corresponding
to a one-hot encoding of the 12 chord vocabulary and to a one-hot encoding of the 13 melody note vocabulary), a
hidden layer with eight LSTM blocks (four chord blocks and four melody blocks, as we will see below), containing
two cells each, and an output layer with 25 nodes (identical to the input layer).

The separation between chords and melody is ensured as follows:

chord blocks are fully connected to the input nodes and to the output nodes corresponding to chords;
melody blocks are fully connected to the input nodes and to the output nodes corresponding to melody;
chord blocks have recurrent connections to themselves and to the melody blocks; and

melody blocks have recurrent connections only to themselves.

Generation is performed by presenting a seed (note and chord) and by recursively feedforwarding it into the net-
work, producing the prediction of the next time step note and chord, and so on, until a sequence of notes with chords
is generated. Figure |6.10| shows an example of the melody and chords generated. Table summarizes this second
system, which we notate Bluessc (where MC stands for melody and chords).

Objective Melody + Chords; Blues
Representation|Symbolic; One-hotx2; Note end; Chord as note
Architecture  |LSTM

Strategy Iterative feedforward

Table 6.6 Bluesy,c summary

This second experiment is interesting in that it simultaneously generates melody and chords. Note that in this
second architecture, recurrent connexions are asymmetric as the authors wanted to ensure the preponderant role of
chords. Chord blocks have recurrent connexions to themselves but also to melody blocks, whereas melody blocks do
not have recurrent connexions to chord blocks. This means that chord blocks will receive previous step information
about chords and melody, whereas melody blocks cannot use previous step information about chords. This somewhat
ad hoc configuration of the recurrent connexions in the architecture is a way to control the interaction between harmony
and melody in a master-slave manner. The control of the interaction and consistency between melody and harmony is
indeed an effective issue and it will be further addressed in Section [6.9] where we will analyze alternative approaches.
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Fig. 6.10 Example of blues generated (excerpt). Reproduced with permission of the authors

6.6 Content Variability

A limitation of the iterative feedforward strategy on an RNN, as illustrated by the blues generation experiment de-
scribed in Section is that generation is deterministic. Indeed, a neural network is deterministiﬂ As a conse-
quence, feedforwarding the same input will always produce the same output. As the generation of the next note, the
next next note, etc., is deterministic, the same seed note will lead to the same generated series of note@ Moreover,
as there are only 12 possible input values (the 12 pitch classes), there are only 12 possible melodies.

6.6.1 Sampling

Fortunately, as we will see, the usual solution is quite simple. The assumption is that the output representation of the
melody is one-hot encoded. In other words, the output representation is of a piano roll type, the output activation layer
is softmax and generation is modeled as a classification task. See an example in Figure where P(x; = C|x<)
represents the conditional probability for the element (note) x, at step ¢ to be a C given the previous elements X, (the
melody generated so far).

The default deterministic strategy consists in choosing the class (the note) with the highest probability, i.e.
argmax, P(X;|X<), that is Ab in Figure @ We can then easily switch to a nondeterministic strategy, by sampling
the output which corresponds (through the softmax function) to a probability distribution between possible notes. By
sampling a note following the distribution generateﬂ we introduce stochasticity in the process and thus variability
in the generation.

20 There are stochastic versions of artificial neural networks — an RBM is an example — but they are not mainstream.
2! The actual length of the melody generated depends on the number of iterations.

22 The chance of sampling a given class/note is its corresponding probability. In the example shown in Figure , Ab has around one
chance in two of being selected and Bb one chance in four.
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Note Note Probability
(one-hot)

P(x;=B |x4)=0.05
P(x,=Bb| x,) =0.24
P(x;=A |x,)=0.07

P(x;=Ab | x,)=0.53

P(x;=C | x,)=0.03

hidden layer  output layer
(softmax)

Fig. 6.11 Sampling the softmax output

6.6.1.1 #1 Example: CONCERT Bach Melody Symbolic Music Generation System

CONCERT (an acronym for CONnectionist Composer of ERudite Tunes) developed by Mozer [139] in 1994, was
actually one of the first systems for generating music based on recurrent networks (and before LSTM). It is aimed at
generating melodies, possibly with some chord progression as an accompaniment.

The input and output representation includes three aspects of a note: pitch, duration and harmonic chord accompa-
niment. The representation of a pitch, named PHCCCH, is inspired by the psychological pitch representation space of
Shepard [173], and is based on five dimensions, as illustrated in Figure@

Cs
Bs

Dy
C#q
Cs

Pitch Height Chroma Circle Circle of Fifths

Fig. 6.12 CONCERT PHCCCH pitch representation. Inspired by [173]] and [[139]

The three main components are as follows:

o the pitch height (PH),
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e the (modulo) chroma circle (CC) cartesian coordinates, and
e the (harmonic) circle of fifths (CH) cartesian coordinates.

The motivation is in having a more musically meaningful representation of the pitch by capturing the similarity
of octaves and also the harmonic similarity between a note and its fifth. The proximity of two pitches is determined
by computing the Euclidean distance between their PHCCCH representations, that distance being invariant under
transposition. The encoding of the pitch height is through a scalar variable scaled to range from -9.798 for C; to
+9.798 for Cs. The encoding of the chroma circle and of the circle of fifths is through a six binary value vector, for the
reasons detailed in [139]]. The resulting encoding includes 13 input variables, with some examples shown in Table[6.7]
Note that a rest is encoded as a pitch with a unique code.

Pitch|| PH cc CH

Cp |[-9.798||+1|+1|+1|-1|-1|-1|{-1[-1[-1|+1[+1[+1
Fiy [|-7.349(| -1 |-1|-1[+1[+1|+1||+1|{+1|+1|-1|-1]-1
Gy |[-2.041|-1|-1|-1|-1|+1|+1|{-1[-1|-1|-1[+1|+1
Cs 0 +1|+1[+1]-1|-1|-1(|-1|-1[-1[+1|+1|+1
Di3 |[1.225 |[+1|+1|+1|+1{+1|{+1|[+1|{+1|+1|+1|+1[+1
E3 1.633 || -1 |+1|+1|+1|{+1|+L|[+1|-1|-1|-1|-1|-1
Ay |[8.573 ||-1|-1|-1|-1|-1|-1|[-1|-1|-1{-1[-1{-1
Cs  |[9.798 ||+1|+1|+1|-1|-1|-1|{-1[-1[-1[+1|+1|+1
Rest ||0 +1[-1|+1|-1[+1|-1||+1|-1|{+1]|-1|+1]-1

Table 6.7 Examples of PHCCCEF pitch representation

Durations are considered at a very fine-grain level, each beat (a quarter note) being divided into twelfths, thus
having a duration of 12/12. This choice allows to represent binary (two or four divisions) as well as ternary (three
divisions) rhythms. In a similar way to the representation of pitch, a duration is represented through a scalar and
two circle coordinates, for 1/4 and 1/3 beat cycles, as illustrated in Figure [6.13] resulting in five dimensions directly
encoded through a five binary value vector (see more details in [139]). The temporal scope is a note step, that is the
granularity of processing by the architecture is a not

96/12
48/12
24/12

12/12

0

Duration Height 1/3 Beat Circle 1/4 Beat Circle

Fig. 6.13 CONCERT duration representation. Inspired by [139]

Chords are represented in an extensional way as a triad or a tetrachord, through the root, the third (major or minor)
and the fifth (perfect, augmented or diminished), with the possible addition of a seventh component (minor or major).
To represent the next note to be predicted, the CONCERT system actually uses both this rich and distributed repre-
sentation (named next-node-distributed, see Figure [6.14) and a more concise and traditional representation (named
next-node-local), in order to be more intelligible. The activation function is the sigmoid function rescaled to the
[—1,+1] range and the cost function is mean squared error.

23 And not a fixed time step as for most of recurrent architectures, e.g., in Section|6.5.1.1} The various types of temporal scope have been
introduced in Section[F-8T}
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Fig. 6.14 CONCERT architecture. Reproduced from [139]] with permission of Taylor & Francis (www.tandfonline.com)

In the generation phase, the output is interpreted as a probability distribution over a set of possible notes as a basis
for deciding the next note in a nondeterministic way, following the sampling strategy.

CONCERT has been tested on different examples, notably after training with melodies of J. S. Bach. Figure
shows an example of a melody generated based on the Bach training set. Although now a bit dated, CONCERT has
been a pioneering model and the discussion in the article about representation issues is still relevant.

Note also that CONCERT (which is summarized in Table [6.8)) is representative of the early generation systems,
before the advent of deep learning architectures, when representations were designed with rich handcrafted features.
One of the benefits of using deep learning architectures is that this kind of rich and deep representation may be
automatically extracted and managed by the architecture.

Objective Melody + Chords
Representation|Symbolic; Harmonics; Harmony; Beat
Architecture  |RNN

Strategy Iterative feedforward; Sampling

Table 6.8 CONCERT summary

6.6.1.2 #2 Example: Celtic Melody Symbolic Music Generation System

Another representative example is the system by Sturm ef al. to generate Celtic music melodies [[179]. The architecture
used is a recurrent network with three hidden layers, which we could notateFE] as LSTM?, with 512 LSTM cells in each
layer.

24 Note that, as explained in Section v we notate the number of hidden layers without considering the input layer.
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Fig. 6.15 Example of melody generation by CONCERT based on the J. S. Bach training set. Reproduced from [139]] with permission of
Taylor & Francis (www.tandfonline.com)
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The corpus comprises folk and Celtic monophonic melodies retrieved from a repository and discussion platform
named The Session [99]]. Pieces that were too short, too complex (with varying meters) or contained errors were
filtered out, leaving a dataset of 23,636 melodies. All melodies are aligned (transposed) onto the single C key. One of
the specificities is that the representation chosen is textual, namely the token-based folk-rnn notation, a transformation
of the character-based ABC notation (see Section[4.7.3)). The number of input and output nodes is equal to the number
of tokens in the vocabulary (i.e. with a one-hot encoding), in practice equal to 137. The output of the network is a
probability distribution over its vocabulary.

Training the recurrent network is done in an iterative way, as the network learns to predict the next item. Once
trained, the generation is done iteratively by inputing a random token or a specific token (e.g., corresponding to
a specific starting note), feedforwarding it to generate the output, sampling from this probability distribution, and
recursively using the selected vocabulary element as a subsequent input, in order to produce a melody element by
element.

The final step is to decode the folk-rnn representation generated into a MIDI format melody to be played. See in
Figure [6.16] for an example of a melody generated. One may also see and listen to results on [178]]. The results are
very convincing, with melodies generated in a clear Celtic style. The system is summarized in Table[6.9]

As observed in [67]]: “It is interesting to note that in this approach the bar lines and the repeat bar lines are given
explicitly and are to be predicted as well. This can cause some issues, since there is no guarantee that the output
sequence of tokens would represent a valid song in ABC format. There could be too many notes in one bar for
example, but according to the authors, this rarely occurs. This would tend to show that such an architecture is able to
learn to count.

Objective Melody

Representation|Symbolic; Text; Token-based; One-hot
Architecture  |LSTM?

Strategy Iterative feedforward; Sampling

Table 6.9 Celtic system summary

25 On this issue, see also [60].
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Fig. 6.16 Score of “The Mal’s Copporim” automatically generated. Reproduced from [[179]] with permission of the authors

6.7 Expressiveness

One limitation of most existing systems is that they consider fixed dynamics (amplitude) for all notes as well as
an exact quantization (a fixed tempo), which makes the music generated too mechanical, without expressiveness or
nuance.

A natural approach resides in considering representations recorded from real performances and not simply scores,
and therefore with musically grounded (by skilled human musicians) variations of tempo and of dynamics, as discussed
in Section

Note that an alternative approach is to automatically augment the generated music information (e.g., a standard
MIDI piece) with slight transformations on the amplitude and/or the tempo. An example is the Cyber-Jodo system [30],
which performs bossa nova guitar accompaniment with expressiveness, through automatic retrievaFE] and application
of rhythmic pattern

As noted in Section % [0.3] in the case of an audio representation, expressiveness is implicit to the representation.
However, it is difficulf™®|to separately control the expressiveness (dynamics or tempo) of a single instrument or voice
as the representation is global.

6.7.1 Example: Performance RNN Piano Polyphony Symbolic Music Generation System

In [[174]], Simon and Oore present their architecture and methodology named Performance RNN. It is an LSTM-based
recurrent neural network architecture. One of the specificities is in the dataset characteristics, as the corpus is composed
of recorded human performances, with records of exact timing as well as dynamics for each note played. The corpus
used is the Yamaha e-Piano Competition dataset, whose participants MIDI performance records are made available to
the public [210]. It captures more than 1,400 performances by skilled pianists. To create additional training examples,
some time stretching (up to 5% faster or slower) as well as some transposition (up to a major third) is applied.

26 By a mixed use of production rules and case-based reasoning (CBR).

27 These patterns have been manually extracted from a corpus of performances by the guitarist and singer Jodo Gilberto, one of the inventors
of the Bossa nova style. One could also consider automatic extraction, as, for example, in [32].

28 But not impossible to achieve, regarding recent achievements made on audio source separation through deep learning techniques, as has
been pointed out in Section [#.10.3]
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The representation is adapted to the objective. At first look, it resembles a piano roll with MIDI note numbers but
it is actually a bit different. Each time slice is a multi-one-hot vector of the possible values for each of the following
possible events:

start of a new note — with 128 possible values (MIDI pitches),

end of a note — with 128 possible values (MIDI pitches),

time shift — with 100 possible values (from 10 miliseconds to 1 second), and
dynamics — with 32 possible values (128 MIDI velocities quantized into 32 bin.

An example of a performance representation is shown in Figure[6.17}

Fig. 6.17 Example of Performance RNN representation. Reproduced from [[174]] with permission of the authors

Some control is made available to the user, referred to as the remperature, which controls the randomness of the
generated events in the following way:

e atemperature of 1.0 uses the exact distribution predicted,
e avalue smaller than 1.0 reduces the randomness and thus increases the repetition of patterns, and
e alarger value increases the randomness and decreases the repetition of patterns.

Examples are available on the web page [[174]]. Performance RNN is summarized in Table [6.10}

Objective Polyphony; Performance control
Representation|Symbolic; One-hot x4; Time shift; Dynamics
Architecture  |LSTM

Strategy Iterative feedforward; Sampling

Table 6.10 Performance RNN summary

6.8 RNN and Iterative Feedforward Revisited

As we saw in previous examples, the iterative feedforward strategy is based on the idea of the recurrent neural network
(RNN) architecture to iteratively generate successive item of a sequence. It looks like a recurrent neural network

29 See the description of the binning transformation in Sectionm
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architecture and the iterative feedforward strategy are strongly coupled. Indeed, almost all RNN-based systems use an
iterative feedforward strategy and recursively reenter the output produced (next time step generated) into the input.
But we will introduce in this section some exceptions.

6.8.1 #1 Example: Time-Windowed Melody Symbolic Music Generation System

The experiments by Todd in [[190] were one of the very first attempts (in 1989) at exploring how to use artificial neural
networks to generate music. Although the architectures he proposed are not directly used nowadays, his experiments
and discussion were pioneering and are still an important source of information.

Todd’s objective was to generate a monophonic melody in some iterative way. He has experimented with different
choices for representing the notes (see Section and the durations, but finally had decided to use a conventional
pitch note representation with a one-hot encoding and a time step temporal scope approach. The time step is set at the
duration of an eighth note. In most of experiments, input melodies used for the training are 34 time steps long (that is,
four measures and a half long), padded at the end with rests. A note begin is represented with a specific token and is
encoded as an additional value encoding node (see Sections[4.9.1]and[.T1.7). Rests are not encoded explicitly but as
the absence of a note, i.e. as the note one-hot encoding being all filled with null values (see Section4.11.7).

The first experiment is what the author named Time-Windowed architecture, where a sliding window of successive
time-periods of fixed size is considered. In practice this sliding window of a melody segment is one measure long, i.e.
8 time steps. Its representation may be considered as a piano roll, like in the MiniBach architecture (see Section[6.2.2),
with the successive one-hot encodings of notes for the 8 successive time steps, notated as One-hot x 8.

The architecture is a feedforward network (and not an RNN), with a melody segment as its input, the next melody
segment as its output and with a single hidden layer. Generation is conducted iteratively (and recursively), melody
segment by melody segment. The architecture is illustrated in Figure

For each time step of the melody segment, the predicted note is the one with the highest probability. Because of the
zero-hot encoding of a rest (i.e. as all values being null), there is an ambiguity between the case of every possible note
has a low probability and the case of a rest (see Section[4.11.7). For that reason, a probability threshold is introduced,
namely 0.5. Thus, the predicted note is the one with the highest probability if it is greater than 0.5 and is a rest
otherwise.

The network is trained in a supervised way by presenting a melody segment as an input and its corresponding
next segment as the output, and repeating this for various segments. Note that, as the architecture is not recurrent,
although the network will learn the pairwise correlations between two successive melody segments{ﬂ there is no
explicit memory for learning long term correlations such as in the case of a recurrent network architecture. Thus,
although the author does not show a comparison with its next experiment (see next section), the architecture appears
to have a low ability to learn long term correlations. The Time-Windowed architecture is summarized in Table [6.11]

Objective Melody

Representation|Symbolic; Piano roll; One-hot x 8; Note begin; Implicit rest
Architecture  |Feedforward

Strategy Iterative feedforward

Table 6.11 Time-Windowed summary

30 In that respect, the Time-Windowed model is analog to an order 1 Markov model (considering only the previous state) at the level of a

melody measure.
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Fig. 6.18 Time-Windowed architecture. Inspired from [190]

6.8.2 #2 Example: Sequential Melody Symbolic Music Generation System

In [190]], Todd proposed another architecture, that he named Sequential, as notes are generated in a sequence. It is
illustrated in Figure

The input layer is divided in two parts, named the context and the plan. The context is the actual memory (of the
melody generated so far) and consists in units corresponding to each note (D4 to Cg), plus a unit about the note begin
information (notated as “nb” in Figure[6.19). Therefore, it receives information from the output layer which produces
next note, with a reentering connexion corresponding to each uniﬂ In addition, as Todd explains it: “A memory of
more than just the single previous output (note) is kept by having a self-feedback connection on each individual context
unit. P2

The plan represents a melody (among many) that the network has learnt. Todd has experimented with various
encodings, one-hot or distributed (through a many-hot embedding).

31 Note that the output layer is isomorphic to the context layer.

32 Thisis a peculiar characteristic of this architecture, as in a standard recurrent network architecture recurrent connexions are encapsulated
within the hidden layer (see Figures[5.30|and[5.34). The argument by Todd in [190] is that context units are more interpretable than hidden
units: “Since the hidden units typically compute some complicated, often uninterpretable function of their inputs, the memory kept in the
context units will likely also be uninterpretable. This is in contrast to [this] design, where, as described earlier, each context unit keeps a
memory of its corresponding output unit, which is interpretable.”
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Fig. 6.19 Sequential architecture. Inspired from [190]

Training is done by selecting a plan (melody) to be learnt. The activations of the context units are initialized to 0 in
order to begin with a clean empty context. The network is then feedforwarded and its output, corresponding to the first
time step note, is compared to the first time step note of the melody to be learnt, resulting in adjustment of the weights.
The output valuesE;] are passed back to the current context. And then, the network is feedforwarded again, leading to
the next time step note, again compared to the melody target, and so on until the last time step of the melody. This
process is then repeated for various plans (melodies).

Generation of new melodies is conducted by feedforwarding the network with a new plan embedding, correspond-
ing to a new melody (not part of the training plans/melodies). The activations of the context units are initialized to O in
order to begin with a clean empty context. The generation takes place iteratively, time step after time step. Note that, as
opposed to most cases of the iterative feedforward strategy (Section[6.5.1)), in which the output is explicitly reentered
(recursively) into the input of the architecture, in Todd’s Sequential architecture the reentrance is implicit because of
the specific nature of the recurrent connexions: the output is reentered into the context units while the input — the plan
melody — is constant.

After having trained the network on a plan melody, various melodies may be generated by extrapolation by inputing
new plans, as shown in Figure[6.20] A repeat sign : indicates when the network output goes into a fixed loop.

One could also do interpolation between several (two or more) plans melodies that have been learn@ Examples
are shown in Figure The Sequential architecture is summarized in Table

33 Actually, as an optimization, Todd proposes in the following of his description to pass back the target values and not the output values.

34 Note that this way of doing is actually some precursor of doing interpolation on embeddings of melodies to be generated by combining
a decoder feedforward strategy and an iterative feedforward strategy, such as for example in the VRAE or the MusicVAE systems, to be

described in Sections[6.10.2.3|and [6.12.T} respectively.
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Fig. 6.20 Examples of melodies generated by the Sequential architecture. (o) Original plan melody learnt. (e; and e;) Melodies generated
by extrapolating from a new plan melody. Inspired from [[190]

Fig. 6.21 Examples of melodies generated by the Sequential architecture. (04 and op) Original plan melodies learnt. (i; and i) Melodies
generated by interpolating between o4 plan and op plan melodies. Inspired from [190]

Objective Melody

Representation|Symbolic; Piano roll; One-hot; Note begin; Implicit rest
Architecture |RNN

Strategy Iterative feedforward

Table 6.12 Sequential architecture summary

6.8.3 #3 Example: BLSTM Chord Accompaniment Symbolic Music Generation System

The BLSTM (Bidirectional LSTM) chord accompaniment system by Lim et al. [120] is a rare and interesting cas
of an accompaniment system based on a recurrent architecture. The objective is to generate a progression (sequence)
of chords as an accompaniment to a melody (specified symbolically).

The corpus is imported from a now defunct lead sheet public data base. The authors selected 2,252 selected lead
sheets of various western modern music (rock, pop, country, jazz, folk, R&B, children’s song, etc.), all in major key
and the majority with a single chord per measure (otherwise only the first chord is considered). This results in a training
set of 1,802 songs (making a total of 72,418 measures) and a test set of 450 songs (17,768 measures). All songs are
transposed (aligned) to C major key.

Desired characteristics are extracted from the original XML files and converted to a CSVFE] (spreadsheet) matrix
format, as shown in Figure The specificities (simplifications) of the representation are as follows:

e for the melodyf’’} only pitch classes are considered (and octaves are not), resulting in a 12 notes one-hot encoding
(named 12-semitone-vector) plus the rest; and

e for the chords, only their primary triads are considered, with only two types: major and minor, resulting in a 24
chords one-hot encoding.

35 As noted in Sections and
36 CSV stands for Comma-separated values.

37 And obviously also for the chords.
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Fig. 6.22 Example of extracted data from a single measure. Reproduced from [120] under a CC BY 4.0 licence

The architecture is a bidirectional LSTM with two LSTM layers, each one with 128 units. The motivation is to
provide the network with the musical context backward and also forward in time. The time step considered by the
architecture is four measures long, as shown in Figure [6.23] The tanh function is used as the non linear activation
function for the hidden layers and softmax is used as the output layer activation function, with categorical cross-
entropy as its associated cost function.

Training is done with various four measures long samples as input and their associated four chords as output, gener-
ated by sliding a four measures long window over each training song. Generation is done by iteratively feedforwarding
successive four measures long melody fragments (time slices) of a song and concatenating the resulting four measures
long chord progression fragments.

The architecture is peculiar in that, although recurrent, generation is not recursive and the output data has a different
nature and structure (chords) than the input data (notes). Furthermore, note that, although the strategy is iterative and
the architecture is recurrent, the granularity of each iterative step is quite coarse as it is 4 measures long, as opposed
to most of systems based on recurrent architectures and iterative feedforward strategy which consider the time step
at the level of the smallest notre duration (see, e.g., the system analyzed in Section [6.5.1.1). This kind of mixed
architecture/strategy between forward/single step and recurrent/iterative may have been motivated by the objective of
capturing sufficiently the history of horizontal correlations (between notes of the melody and between chords of the
accompaniment) as the LSTM cells focus on capturing the history of vertical correlations (between notes and chords).

The system has been evaluated by comparing to some hidden Markov model (HMM) model and to some deep
neural network—HMM hybrid model (named DNN-HMM, see details in [[199]), both quantitatively (by comparing the
accuracies and through confusion matrixes), and qualitatively (through a web-based survey of 25 musically untrained
participants). Results are showing a better accuracy and preference for the BLSTM model, see a simple example in
Figure The authors note that the evaluation also shows that, when songs are unknown, the preference for the
BLSTM model is weaker. They conjecture that this is because BLSTM often generates a more diverse chord sequence
than the original. The BLSTM system is summarized in Table

Objective Accompaniment; Chord sequence; Western modern music
Representation|Symbolic; CSV; One-hotx (12x* + 24 x4); Rest
Architecture  |LSTM?

Strategy Iterative feedforward

Table 6.13 BLSTM summary
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Fig. 6.23 BLSTM architecture. Reproduced from [[120] under a CC BY 4.0 licence

6.8.4 Summary

In summary, we have seen that an RNN architecture is usually coupled to an iterative feedforward strategy, which
allows a recursive seed-based variable length generation, as discussed in Section[6.5] However, there are some excep-
tions:

e the Time-Windowed system by Todd (Section[6.8.1)) uses an iterative feedforward strategy on a feedforward archi-
tecture in order to generate a melody, and

o the BLSTM system (Section uses an iterative feedforward strategy on a recurrent architecture in order to
generate a chord accompaniment to a melody.
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HMM F F ¥ F

DNN-HMM F C F F
BLSTM F C Dm Bb
Original F C Dm Eb

Fig. 6.24 Comparison of generated chord progressions (HMM, DNN-HMM, BLSTM and original). Reproduced from [120] under a CC
BY 4.0 licence

We will see further (with the VRAE system to be described in Section[6.10.2.3) the use of an RNN Encoder-Decoder
compound architecture (Section [5.13.3)), as a way to decouple the length of the input sequence with the length of the
output sequence, by combining the decoder feedforward strategy with the iterative feedforward strategy.

Some other examples of couplings between architectures and strategies, or between challenges, will be discussed
in Section [6.18] Before that, we will continue to analyze challenges and possible solutions or directions.

6.9 Melody-Harmony Interaction

When the objective is to generate simultaneously a melody with an accompaniment, expressed through some harmony
or counterpoinl@ an issue is the musical consistency between the melody and the harmony. Although a general
architecture such as MiniBach (Section is supposed to have learnt correlations, interactions between vertical
and horizontal dimensions are not explicitly considered.

We have analyzed in Section [6.5.1.2] an example of a specific architecture to generate simultaneously melody and
chords, with explicit relations between them (i.e. chords can use previous step information about melody but not the
opposite). However, this architecture is a bit ad hoc. In the following sections, we will analyze some more general
architectures having in mind interactions between melody and harmony.

6.9.1 #1 Example: RNN-RBM Polyphony Symbolic Music Generation System

In [11]], Boulanger-Lewandowski et al. have associated to the RBM-based architecture introduced in Section
a recurrent network (RNN) in order to represent the temporal sequence of notes. The idea is to couple the RBM to a
deterministic RNN with a single hidden layer, such that

o the RNN models the temporal sequence to produce successive outputs, corresponding to successive time steps,
e which are parameters, more precisely the biases, of an RBM that models the conditional probability distribution
of the accompaniment notes, i.e. which notes should be played together.

3 Harmony and counterpoint are dual approaches of accompaniment with different focus and priorities. Harmony focuses on the ver-
tical relations between simultaneous notes, as objects on their own (chords), and then considers the horizontal relations between them
(e.g., harmonic cadences). Conversely, counterpoint focuses on the horizontal relations between successive notes for each simultaneous
melody (a voice), and then considers the vertical relations between their progression (e.g., to avoid parallel fifths). Note that, although their
perspectives are different, the analysis and control of relations between vertical and horizontal dimensions are their shared objectives.
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In other words, the objective is to combine a horizontal view (temporal sequence) and a vertical view (combination
of notes for a particular time step). The resulting architecture named RNN-RBM is shown in Figure [6.25] and can be
interpreted as follows:

Fig. 6.25 RNN-RBM architecture. Reproduced from [[12] with permission of the authors

e the bottom line represents the temporal sequence of RNN hidden units @ u®, . u® where u®) notation
meang’’| the value of the RNN hidden layer u at time (index) ¢; and
o the upper part represents the sequence of each RBM instance at time 7, which we could notate RBM (), with

— v( its visible layer with bst) its bias,

— h its hidden layer with bl(f) its bias, and
— W the weight matrix of connexions between the visible layer v(*) and the hidden layer h).

There is a specific training algorithm, which we will not detail here, please refer to [11]]. During generation, each ¢
time step of processing is as follows:

e compute the biases bs,l) and bl(f) of RBM(), via Equations and respectively,

e sample from RBM") by using block Gibbs sampling to produce v\*), and

o feedforward the RNN with v() as the input, using the RNN hidden layer value u~"), in order to produce the RNN
new hidden layer value u® via Equation where

— W,y is the weight matrix and b, the bias for the connexions between the input layer of the RBM and the hidden
layer of the RNN; and
— Wy, is the weight matrix for the recurrent connexions of the hidden layer of the RNN.

bE/t) =by +Wuvu([7l) (6.1
b = by + Wypu (6.2)
l](t> = tanh(bu + Wuuu(t_l) + WVUV(I)) (63)

Note that the biases bf,t) and bff) of RBM) are variable for each time step, in other words they are time dependent,
whereas the weight matrix W for the connexions between the visible and the hidden layer of RBM() is shared for all
time steps (for all RBMs), i.e. it is time independenm

39 Note that the usual notation would be u;, as the ul”) notation is usually reserved to index dataset examples (fth example), see Section
40 Wy, Wans Wau and Way weight matrices are also shared and thus time independent.
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Four different corpora have been used in the experiments: classical piano, folk tunes, orchestral classical music and
J. S. Bach chorales. Polyphony varies from 0 to 15 simultaneous notes, with an average value of 3.9. A piano roll
representation is used with many-hot encoding of 88 units representing pitches from Ag to Cg. Discretization (time

step) is a quarter note. All examples are aligned onto a single c

ommon tonality: C major or minor. An example of a

sample generated in a piano roll representation is shown in Figure[6.26] The quality of the model has made RNN-RBM,

summarized at Table[6.14] one of the reference architectures for

_generated piano-roil

polyphonic music generation.
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Fig. 6.26 Example of a sample generated by RNN-RBM trained on J. S.
authors

Objective Polyphony
Representation|Symbolic; Many-hot
Architecture  |RBM-RNN

Strategy Iterative feedforward; Sampling

Table 6.14 RNN-RBM summary

6.9.1.1 Other RNN-RBM Systems

Bach chorales. Reproduced from [12] with permission of the

There have been a few systems following on and extending the RNN-RBM architecture, but they are not significantly
different and furthermore they have not been thoroughly evaluated. However, it is worth mentioning the following:

e the RNN-DBN architecture{ﬂ using multiple hidden layers [61]]; and
e the LSTM-RTRBM architecture, using an LSTM instead of an RNN [121]].

41 This is apparently the state of the art for the J. S. Bach Chorales dataset in terms of cross-entropy loss.
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6.9.2 #2 Example: Hexahedria Polyphony Symbolic Music Generation Architecture

The system for polyphonic music proposed by Johnson in his Hexahedria blog [94] is hybrid and original in that it
integrates into the same architecture

a first part made of two RNNs (actually LSTM) layers, each with 300 hidden units, recurrent over the time dimen-
sion, which are in charge of the temporal horizontal aspect, that is the relations between notes in a sequence. Each
layer has connections across time steps, while being independent across notes; and

a second part made of two other RNN (LSTM) layers, with 100 and 50 hidden units, recurrent over the note
dimension, which are in charge of the harmony vertical aspect, that is the relations between simultaneous notes
within the same time step. Each layer is independent between time steps but has transversal directed connexions
between notes.

We can notate this architecture as LSTM?*2 in order to highlight the two successive 2-level recurrent layers, re-

current in two different dimensions (time and note). The architecture is actually a kind of integration within a single
architecture@ of the RNN-RBM architecture described in previous section. The main originality is in using recurrent
networks not only on the time dimension but also on the note dimension, more precisely on the pitch class dimension.
This latter type of recurrence is used to model the occurence of a simultaneous note based on other simultaneous notes.
Like for the time relation, which is oriented towards the future, the pitch class relation is oriented towards higher pitch,
from C to B.

apN

~

®0 6000
1

!

Fig. 6.27 Hexahedria architecture (folded). Reproduced from [94]] with permission of the author

The resulting architecture is shown in its folded form in Figure and in its unfolded for in Figure|6.28] with

three axes represented:

the flow axis, shown horizontally and directed from left to right, represents the flow of (feedforward) computation
through the architecture, from the input layer to the output layer;

the note axis, shown vertically and directed from top to bottom, represents the connexions between units corre-
sponding to successive notes of each of the two last (note-oriented) recurrent hidden layers; and

42 We will see in Section an alternative architecture, named Bi-Axial LSTM, where each of the 2-level time-recurrent layers is
encapsulated into a different architectural module.

43 Our unfolded pictorial representation of an RNN shown in Figure was actually inspired by Johnson’s Hexahedria pictorial repre-
sentation.
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Fig. 6.28 Hexahedria architecture (unfolded). Reproduced from [94] with permission of the author

e the time axis, only in the unfolded Figure [6.28] shown diagonally and directed from top left to bottom right, repre-
sents the time steps and the propagation of the memory within a same unit of the two first (time-oriented) recurrent
hidden layers.

The dataset is constructed by extracting 8 measures long parts from MIDI files from the Classical piano MIDI
database [103]]. The input representation used is piano roll, with the pitch represented as the MIDI note number. More
specific information is added: the pitch class, the previous note played (as a way to represent a possible hold), how
many times a pitch class has been played in the previous time step and the beat (the position within the measure,
assuming a 4/4 time signature). The output representation is also a piano roll, in order to represent the possibility of
more than one note at the same time. Generation is done in an iterative way (i.e. following the iterative feedforward
strategy), as for most recurrent networks. The system is summarized in Table

Objective Polyphony
Representation|Symbolic; Piano roll; Hold; Beat
Architecture  |LSTM>*>

Strategy Iterative feedforward; Sampling

Table 6.15 Hexahedria summary

6.9.3 #3 Example: Bi-Axial LSTM Polyphony Symbolic Music Generation Architecture

Johnson recently proposed an evolution of his original Hexahedria architecture, described in Section [6.9.2] named
Bi-Axial LSTM (or BALSTM) [95].

The representation used is piano roll, with note hold and rest tokens added to the vocabulary. Various corpora are
used: the JSB Chorales dataset, a corpus of 382 four-part chorales by J. S. Bach [[1]]; the MuseData library, an electronic
classical music library from CCARH in Stanford [[77]; the Nottingham database, a collection of 1,200 folk tunes in
ABC notation [54]; and the Classical piano MIDI database [105]]. Each dataset is transposed (aligned) into the key of
C major or C minor.
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The probability of playing a note depends on two types of information:

e all notes at previous time steps — this is modeled by the time-axis module; and
e all notes within the current time step that have already been generated (the order being lowest to highest) — this is
modeled by the note-axis module.

There is an additional front end layer, named ‘“Note Octaves”, which transforms each note into a vector of all
its possible corresponding octave notes (i.e. an extensional version of pitch classes). The resulting architecture is
illustrated in Figure The “x2” represents the fact that each module is stacked twice (i.e. has two layers).

The time-axis module is recurrent in time (as for a classical RNN), the LSTM weights being shared across notes in
order to gain note transposition invariance. The note-axis module{z_g]is recurrent in note. For each note input of the note-
axis module, & represents the concatenation of the corresponding output from the time-axis module with the already
predicted lower notes. Sampling (into a binary value, by using a coin flip) is applied to each note output probability in
order to compute the final prediction (whether that note is played or not).

As pointed out by Johnson [95]], during the training phase, as all the notes at all time steps are known, the training
process may be accelerated by processing each layer independently (e.g., on a GPU), by running input through the
two time-axis layers in parallel across all notes, and using the two note-axis layers to compute probabilities in parallel
across all time steps.

The generation phase is sequential for each time step (by following both the iterative feedforward strategy and the
sampling strategy). An excerpt of music generated is shown in Figure[6.30]

The Bi-Axial LSTM system, summarized in Table [6.16] has been evaluated and compared to some other archi-
tectures. The author reports noticeably better results with Bi-Axial LSTM, the greatest improvements being on the
MuseData [77] and the Classical piano MIDI database [105] datasets, and states in 93] that: “It is likely due to the
fact that those datasets contain many more complex musical structures in different keys, which are an ideal case for a
translation-invariant architecture.” Note that an extension of the Bi-Axial LSTM architecture with conditioning, named
DeepJ, will be introduced in Section[6.10.3.4]

Objective Polyphony
Representation|Symbolic; Piano roll; Hold; Rest
Architecture  |Bi-Axial LSTM = LSTM? x2
Strategy Iterative feedforward; Sampling

Table 6.16 Bi-Axial LSTM summary

6.10 Control

A deep architecture generates musical content matching the style learnt from the corpus. This capacity of induction
from a corpus without any explicit modeling or programming is an important ability, as discussed in Chapter [I] and
also in [52]]. However, like a fast car that needs a good steering wheel, control is also needed as musicians usually
want to adapt ideas and patterns borrowed from other contexts to their own objective and context, e.g., transposition
to another key, minimizing the number of notes, finishing with a given note, etc.

4 This figure comes from the description of another system based on the Bi-Axial LSTM architecture, named DeeplJ, which will be
described in Section[6.10.3.4}

4 Note that, as opposed to Johnson’s first architecture (that we refer to as Hexahedria, and which has been introduced in Section ,
which integrates the 2-level time-recurrent layers with the 2-level note-recurrent layers within a single architecture and therefore notated as
LSTM?*2, the Bi-Axial LSTM architecture explicitly separates each 2-level time-recurrent layers into distinct architectural modules and is
therefore notated as LSTM? x2.
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Fig. 6.29 Bi-Axial LSTM architecture. Reproduced from [127] with permission of the authors

6.10.1 Dimensions of Control Strategies

Arbitrary control is a difficult issue for deep learning architectures and techniques because neural networks have not
been designed to be controlled. In the case of Markov chains, they have an operational model on which one can attach
constraints to control the generatioﬂ However, neural networks do not offer such an operational entry point and the
distributed nature of their representation does not provide a clear relation to the structure of the content generated.
Therefore, as we will see, most of strategies for controlling deep learning generation rely on external intervention at
various entry points (hooks) and levels:

input,

output,

input and output, and
encapsulation/reformulation.

Various control strategies can be employed:

46 Two examples are Markov constraints [149]] and factor graphs [148].
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Fig. 6.30 Example of Bi-Axial LSTM generated music (excerpt). Reproduced from [95]

sampling,
conditioning,

input manipulation,
reinforcement, and
unit selection.

We will also see that some strategies (such as sampling, see Section are more bottom-up and others (such
as structure imposition, see Section or unit selection, see Section are more fop-down. Lastly, there
is also a continuum between partial solutions (such as conditioning/parametrization, see Section and more
general approaches (such as reinforcement, see Section [6.10.6).

6.10.2 Sampling

Sampling from a stochastic architecture (such as a restricted Boltzmann machine (RBM), see Section [6.4.2), or from
a deterministic architecture (in order to introduce variability, see Section [6.6.1), may be an entry point for control if
we introduce constraints into the sampling process. This is called constrained sampling, see for example the C-RBM
system in Section

Constrained sampling is usually implemented by a generate-and-test approach, where valid solutions are picked
from a set of random samples generated from the model. But this could be a very costly process and, moreover, with
no guarantee of success. A key and difficult issue is therefore how to guide the sampling process in order to fulfill the
constraints.
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6.10.2.1 Sampling for Iterative Feedforward Generation

In the case of an iterative feedforward strategy on a recurrent network, some refinements in the sampling procedure
can be made.

In Section [6.6.1] we introduced the technique of sampling the softmax output of a recurrent network in order to
introduce content variability. However, this may sometimes lead to the generation of an unlikely note (with a low
probability). Moreover, as noted in [[67]], generating such a “wrong” note can have a cascading effect on the remaining
of the generated sequence.

A counter measure consist in adjusting a learnt RNN model (conditional probability distribution P(s;|s<;), as de-
fined in Section [5.8) by not considering notes with a probability under a certain threshold. The new model, with a
probability distribution Py esnord (St]s<t), is defined in Equationfollowing [204], where:

0 if P(s/|s<;)/maxs, P(s;|s<;) < threshold,

6.4
P(s/|s<;)/z otherwise. ©4

Pthresh()ld(st|s<t) = {
e max, P(s¢]s<;) is the note maximum probability,
e threshold is the threshold hyperparameter, and
e 7 is a normalization constant.

A slightly more sophisticated version interpolates between the original distribution P(s;[s<) and the argmaxy P(s;[s<)

deterministic Varian with some temperature user control hyperparameter (see more details in [67, Section 4.1.1.3]).
This technique will be further generalized and combined with the conditioning strategy in order to control the
generation of notes at specific positions via positional constraints. This will be exemplified by the Anticipation-RNN

system to be introduced in Section

6.10.2.2 Sampling for Incremental Generation

In the case of an incremental generation (to be introduced in Section [6.14)), the user may select

e on which part (e.g., a given part of a melody and/or a given voice) sampling will occur (or reoccur), and
e the interval of possible values on which sampling will occur.

In the case of the DeepBach system (to be introduced in Section [6.15.2)), this will be the basis for introducing user
control on the generation, notably to regenerate only some parts of a music, to restrict note range, and to impose some
basic rhythm.

6.10.2.3 Sampling for Variational Decoder Feedforward Generation

Another interesting case is the use of sampling for generative models, such as variational autoencoders (VAEs) and
generative adversarial networks (GANSs), to be introduced in Section We will see that some nice control of
the sampling, e.g., to produce an interpolation, averaging or attribute modification, will produce meaningful variations
in the content generated by the decoder feedforward strategy. Moreover, as has been discussed in Section [5.6.2] a
variational autoencoder (VAE) is interesting for its ability for controlling generation over significant dimensions that
have been learnt.

#1 Example: VRAE Video Game Melody Symbolic Music Generation System

In [50], Fabius and van Amersfoort propose the extension of the RNN Encoder-Decoder architecture to the case of
a variational autoencoder (VAE), which is therefore named a variational recurrent autoencoder (VRAE). Both the

47 See Sectionm
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encoder and the decoder encapsulate an RNN (actually an LSTM), as has been explained in Section [5.13.3] In terms
of strategy, the VRAE combines the iterative feedforward strategy with the decoder feedforward strategy and the
sampling strategy.

The corpus used in the experiment is a set of MIDI files of eight video game songs from the 1980s and 1990s
(Sponge Bob, Super Mario, Tetris. . . ), which are divided into various shorter parts of 50 time steps. A one-hot encoding
of 49 possible pitches is used (pitches with too few occurrences of notes were not considered). Experiments have been
conducted with 2 or 20 hidden layer units (latent variables). Training takes place as for training recurrent networks,
i.e. for each input note presenting the next note as the output.

After the training phase, the latent space vector can be sampled and used by the RNN encapsulated within the
decoder to generate iteratively a melody. This could be done by random sampling or also by interpolating between the
values of the latent variables corresponding to different songs that have been learnt, creating a sort of “medley” of these
songs. Figure [6.31] visualizes the organisation of the encoded data in the latent space, each color representing the data
points from one song. The result is positive, but the low musical quality of the corpus hampers a careful evaluation.
The VRAE system is summarized in Table

Data in latent space

@-@® spongebob
@-@® pokemonsurf __|
@®-@® mariounderwater
@®-® mario

@®-@® mariokart

@-@ mariounderworld
@-@® pokemoncenter
@@ tetris

Fig. 6.31 Visualization of the VRAE latent space encoded data. Extended from [S0] with permission of the authors

Objective Melody; Video game songs

Representation|Symbolic; MIDI; One-hot

Architecture | Variational(Autoencoder(LSTM, LSTM))

Strategy Decoder feedforward; Iterative feedforward; Sampling

Table 6.17 VRAE summary

#2 Example: GLSR-VAE Melody Symbolic Music Generation System

The architecture proposed by Hadjeres and Nielsen in [69] is based on a variational autoencoder (VAE) architecture
(Section[5.6.2)), but it proposes an improvement in the control of the variation in the generation, named geodesic latent
space regularization (GLSR), with a system named GLSR-VAE.

The starting point is that a straight line between two points in the latent space will not necessarily produce the best
interpolation in the generated content domain space. The idea is to introduce a regularization to relate variations in the
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latent space to variations in the attributes of the decoded elements. The details of the definition of the added cost term
may be found in [69].

The experiment consists in generating chorale melodies in the style of J. S. Bach. The dataset comprises mono-
phonic soprano voices from the J. S. Bach chorales corpus [J5].

GLSR-VAE shares the principles of representation initiated by the DeepBach system (Section [6.14.2)), that is

one-hot encoding of a note,
with the addition to the vocabulary of the hold symbol “__
repetition and a rest (see Section[d.11.7), and

e using the names of the notes (with no enharmony, e.g., Ff and Gb are considered to be different, see Section .

s

> and the rest symbol to specify, respectively, a note

Quantization is at the level of a sixteenth note. The latent variable space is set to 12 dimensions (12 latent variables).

In the experiments conducted, regularization is executed on a first dimension which has been foun to represent
the number of notes (named z). Figure[6.32] shows the organisation of the encoded data in the latent space, with the
number of notes z; being the abscissa axis, with from left to right an effective progressive increase in the number of
notes (shown with scales of colors). Figure [6.33] shows examples of the melodies generated (each 2 measures long,
separated by double bar lines) while increasing z;, showing a progressive correlated densification of the melodies
generated.

Number of

Q
21
(a) Without geodesic latent space regularization (b) With geodesic latent space regularization

Fig. 6.32 Visualization of GLSR-VAE latent space encoded data. Reproduced from [69] with permission of the authors

GLSR-VAE is summarized in Table [6.18] More examples of sampling from variational autoencoders will be de-
scribed in Section[6.12.1]

Objective Melody; Bach

Representation|Symbolic; Piano roll; One-hot; Hold; Rest; Fermata; No enharmony
Architecture | Variational(Autoencoder(LSTM, LSTM)); Geodesic regularization
Strategy Decoder feedforward; Sampling

Table 6.18 GLSR-VAE summary

48 See Sectionm
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Fig. 6.33 Examples of 2 measures long melodies (separated by double bar lines) generated by GLSR-VAE. Reproduced from [69] with
permission of the authors

6.10.2.4 Sampling for Adversarial Generation

Another example of a generative model is a generative adversarial networks (GAN) architecture. In such an architec-
ture, after having trained the generator in an adversarial way, generation of content is done by sampling latent random
variables.

Example: Mogren’s C-RNN-GAN Classical Polyphony Symbolic Music Generation System

The objective of Mogren’s C-RNN-GAN [135]] system is the generation of single voice polyphonic music. The repre-
sentation chosen is inspired by MIDI and models each musical event (note) via four attributes: duration, pitch, intensity
and time elapsed since the previous event, each attribute being encoded as a real value scalar. This allows the repre-
sentation of simultaneous notes (in practice up to three). The musical genre of the corpus is classical music, retrieved
in MIDI format from the Web and contains 3,697 pieces from 160 composers.

C-RNN-GAN is based on a generative adversarial networks (GAN) architecture, with both the generator and the
discriminator being recurrent network more precisely each having two LSTM layers with 350 units each. A speci-
ficity is that the discriminator (but not the generator) has a bidirectional recurrent architecture, in order to take context
from both the past and the future for its decisions. The architecture is shown in Figure [6.34] and summarized in Ta-
ble

The discriminator is trained, in parallel to the generator, to classify if a sequence input is coming from the real data.
Similar to the case of the encoder part of the RNN Encoder-Decoder, which summarizes a musical sequence into the
values of the hidden layer (see Section[5.13.3)), the bidirectional RNN decoder part of the C-RNN-GAN summarizes
the sequence input into the values of the two hidden layers (forward sequence and backward sequence) and then
classifies them.

An example of generated music is shown in Figure The author conducted a number of measurements on the
generated music. He states that the model trained with feature matchin achieves a better trade-off between structure
and surprise than the other variants. Note that this is consonant with the use of the feature matching regularization
technique to control creativity in MidiNet (to be introduced in Section [6.10.3.3). C-RNN-GAN is summarized in
Table

49 This generative GAN architecture encapsulates two recurrent networks, in the same spirit that the generative VRAE variational autoen-
coder architecture encapsulates two recurrent networks as explained in Section@}

30 A regularization technique for improving GANs, see Section|5.11.1
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Fig. 6.34 C-RNN-GAN architecture. Reproduced from [135]] with permission of the authors
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Fig. 6.35 C-RNN-GAN generated example (excerpt). Reproduced from [[135] with permission of the authors

Objective Polyphony
Representation|Symbolic; MIDI; Value encoding x4
Architecture  |GAN(Bidirectional-LSTM?, LSTM?)
Strategy Iterative feedforward; Sampling51|

Table 6.19 C-RNN-GAN summary

6.10.2.5 Sampling for Other Generation Strategies

Sampling may also be combined with other strategies for content generation, as for instance

e Conditioning, as a way to parametrize generation with constraints, in Section[6.10.3.3] or
e [nput manipulation, as a way to correct the manipulation performed in order to realign the samples with the learnt
distribution, in Section
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6.10.3 Conditioning

The idea of conditioning (sometimes also named conditional architecture) is to condition the architecture on some
extra information, which could be arbitrary, e.g., a class label or data from other modalities. Examples are

e abass line or a beat structure, in the rthythm generation architecture (Section [6.10.3.1),

a chord progression, in the MidiNet architecture (Section [6.10.3.3),

the previously generated note, in the VRASH architecture (Section [6.10.3.6),

some positional constraints on notes, in the Anticipation-RNN architecture (Sectlon
a musical genre or an instrument, in the WaveNet architecture (Section[6.10.3.2)), and

a musical style, in the Deep] architecture (Section[6.10.3.4).

In practice, the conditioning information is usually fed into the architecture as an additional input layer (for ex-
ample, see Figure [5.38). This distinction between standard input and conditioning input follows a good architectural
modularity principleg ﬂ Conditioning is a way to have some degree of parametrized control over the generation process.

The conditioning layer could be

e a simple input layer. An example is a tag specifying a musical genre or an instrument in the WaveNet system

(Section|6.10.3.2)),

e some output of some architecture, being

— the same architecture, as a way to condition the architecture on some histo — an example is the MidiNet
system (Section [6.10.3.3) in which history information from previous measure(s) is injected back into the archi-
tecture, or

— another architecture — examples are the rhythm generation system (Section [6.10.3.1)) in which a feedforward
network in charge of the bass line and the metrical structure information produces the conditioning input, and
the DeeplJ system (Section in which two successive transformation layers of a style tag produce an
embedding used as the conditioning input.

If the architecture is time-invariant — i.e. recurrent or convolutional over time —, there are two options

global conditioning — if the conditioning input is shared for all time steps, or
local conditioning — if the conditioning input is specific to each time step.

The WaveNet architecture, which is convolutional over time (see Section @, offers the two options, as will be

analyzed in Section[6.10.3.7]

6.10.3.1 #1 Example: Rhythm Symbolic Music Generation System

The system proposed by Makris et al. [[123]] is specific in that it is dedicated to the generation of sequences of rhythm.
Another specificity is the possibility to condition the generation relative to some particular information, such as a given
beat or bass line.

The corpus includes 45 drum and bass patterns, each 16 measures long in 4/4 time signature, from three differ-
ent rock bands and converted to MIDI. The representation of drums is described in Section .11.8] and summarized
as follows. Different drum components (kick, snare, toms, hi-hat, cymbals) are considered as distinct simultaneous
voices, following a many-hot approach, and encoded in text as a binary word of length 5, e.g., 10010 represents the
simultaneous playing of kick and high-hat.

The representation also includes a condensed representation of the bass line part. It captures the voice leading
perspective of the bas by specifying the pitch difference direction for the bass between two successive time steps.

52 Note that we do not consider conditioning as a strategy because we consider that the essence of conditioning relates to the conditioning
architecture. Generation uses a conventional strategy (e.g., single-step feedforward, iterative feedforward. . . ) depending on the type of the
architecture (e.g., feedforward, recurrent. . .).

53 This is close in spirit to a recurrent architecture (RNN).
34 The voice leading of the bass has proven a valuable aspect in harmonization systems, see, e.g., [72].
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This is represented in a binary word of length 4, the first digit specifying the existence of a bass event (1) or a rest
event (0), while the three remaining digits specify the 3 possible directions for voice leading: steady (000), upward
(010) and downward (001). Last, the representation includes some additional information representing the metrical
structure (the beat structure), also through binary words. See further details in [123]].

The architecture is a combination of a recurrent network (more precisely, an LSTM) and a feedforward network,
representing the conditioning layer. The LSTM (two stacked LSTM layers with 128 or 512 units) is in charge of the
drums part, while the feedforward network is in charge of the bass line and the metrical structure information. The
outputs of these two networks are then mergedﬂ resulting in the architecture illustrated in Figure The authors
report that the conditioning layer (bass line and beat information) improves the quality of the learning and of the
generation. It may also be used in order to mildly influence the generation. More details may be found in the article
[123]]. The architecture is summarized in Table [6.20]

An example of a rhythm pattern generated is shown in Figure with in Figure [6.38] the use of a specific and
more complex bass line as a conditioning input which produces a rhythm more elaborate. The piano roll like visual
representation shows in its five successive lines (downwards) the kick, snare, toms, hi-hat and cymbals components
events.

oput 1

Fig. 6.36 Rhythm generation architecture. Reproduced from [[123] with permission of the authors

Fig. 6.37 Example of a rhythm pattern generated. The five lines of the piano roll correspond (downwards) to: kick, snare, toms, hi-hat and
cymbals. Reproduced from [[123]] with permission of the authors

35 Note that in this system, the conditioning layer is added to the main architecture at its output level and not at its input level. Therefore
an additional feedforward merge layer is introduced. We could notate the resulting architecture as Conditioning(Feedforward(LSTM?),
Feedforward).
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Fig. 6.38 Example of a rhythm pattern generated with a specific bass line as the conditioning input. Reproduced from [123]] with permission
of the authors

Objective Multivoice; Rhythm; Drums

Representation|Symbolic; Beat; Drums; Many-hot; Bass line; Note; Rest; Hold
Architecture Conditioning(Feedforward(LSTM2), Feedforward)

Strategy Iterative feedforward; Sampling

Table 6.20 Rhythm system summary

6.10.3.2 #2 Example: WaveNet Speech and Music Audio Generation System

WaveNet, by van der Oord et al. [194], is a system for generating raw audio waveforms, quite innovative in that respect.
It has been tested in three audio domains: multi-speaker, text-to-speech (TTS) and music.

The architecture is based on a convolutional feedforward network with no pooling layer. Convolutions are con-
strained in order to ensure that the prediction only depends on previous time steps, and are therefore named causal
convolutions. The actual implementation is optimized through the use of dilated convolution (also called “a trous”),
where the convolution filter is applied over an area larger than its length by skipping input values with a certain step.
Incrementally dilated successive convolution layerﬂ enable networks to have very large receptive fields with just a
few layers while preserving the input resolution throughout the network as well as computational efficiency (see [[194]
for more details). The architecture is illustrated in Figure

Another specificity of WaveNet is in the training/generation asymmetry: during the training phase, predictions for
all time steps can be made in parallel, whereas during the generation phase, predictions are sequential (following the
iterative feedforward strategy).

The WaveNet architecture is made conditioning, as a way to guide the generation, by adding an additional tag as a
conditioning input. We could thus notate the architecture as Conditioning(Convolutional(Feedforward), Tag).

There are actually two options:

e global conditioning, if the conditioning input is shared for all time steps; and
e Jocal conditioning, if the conditioning input is specific to each time step.

An example of conditioning for a text-to-speech application domain is to feed in linguistic features from different
speakers, e.g., North American or Mandarin Chinese English speakers, in order to generate speech with a specific
prosody.

The authors also conducted preliminary work on conditioning models to generate music given a set of tags specify-
ing, for example, genre or instruments. They state (without further details) that their preliminary attempt is promising
[194]. WaveNet is summarized in Table [6.21]

Last, let us mention, a recent proposal as an offspring from WaveNet, which uses a symbolic representation (as-
sociated to the audio input) as the conditioning model/input, in order to better guide and structure the generation of
(audio) music (see details in [126])).

56 The dilation is doubled for every layer up to a limit and then repeated, e.g., 1,2,4,...,512,1,2,4,...,512, ...
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Bilation=8

Hidden Layer
Dilation=4

Hiddden Layer
Bilation=2

Higden Layer
Dilation = 1

Fig. 6.39 WaveNet architecture. Reproduced from [194] with permission of the authors

Objective Audio

Representation| Audio; Waveform

Architecture  |Conditioning(Convolutional(Feedforward), Tag); Dilated convolutions
Strategy Iterative feedforward; Sampling

Table 6.21 WaveNet summary

6.10.3.3 #3 Example: MidiNet Pop Music Melody Symbolic Music Generation System

In [212], Yang et al. propose the MidiNet architecture, which is both adversarial and convolutional, for the generation
of single or multitrack pop music monophonic melodies.

The corpus used is a collection of 1,022 pop music songs from the TheoryTatFl] online database [83] that provides
two channels per tab, one for the melody and the other for the underlying chord progression. This allows two versions
of the system: one with only the melody channel and another that additionally uses chords to condition melody gener-
ation. After all the preprocessing steps, the dataset is composed of 526 MIDI tabs (representing 4,208 measures). Data
augmentation is then performed by circularly shifting all melodies and chords to any of the 12 keys, leading to a final
dataset of 50,496 measures of melody and chord pairs for training.

The representation is obtained by transforming each channel of MIDI files into a one-hot encoding of 8 measures
long piano roll representations, using one of the encodings to represent silence (rest) and neglecting the velocity of the
note events. The time step is set at the smallest note, a sixteenth note. All melodies have been transposed in order to
fit within the two-octave interval [Cy, Bﬂ@ Note that the current representation does not distinguish between a long
note and two short repeating notes, and the authors mention considering future extensions in order to emphasize the
note onsets.

For chords, instead of using a many-hot vector extensional representation of dimension 24 (for the two octaves),
the authors state that they found it more efficient to use an intensional representation of dimension 13: 12 for the
pitch-class (key) and 1 for the chord type (major or minor).

The architectureF_g]is illustrated in Figures and It is composed of a generator and a discriminator, which
are both convolutional networks. The generator includes two fully-connected layers (with 1,024 and 512 units respec-
tively) followed by four convolutional layers. Generation takes place iteratively, by sampling one measure after one
measure until reaching 8 measures. The generator is conditioned by a module (named Conditioner CNN in Figure[6.40)
which includes four convolutional layers with a reverse architecture. The conditioning mechanism incorporates

37 Tabs are piano roll-like leadsheets, including melody, lyrics and notation of chords.

58 However, the authors considered all the 128 MIDI note numbers (corresponding to the [Cy, Gyo] interval) in a one-hot encoding and
state in [212] that: “In doing so, we can detect model collapsing more easily, by checking whether the model generates notes outside these
octaves.”

39 The architecture is complex, please see further details in [212].
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e history information from previous measures (as a memory mechanism, analog to a RNN), and
e the chord sequence (only for the generator). The discriminator includes two convolutional layers followed by some
fully connected layers and the final output activation function is cross-entropy.

The discriminator is also conditioned, but without specific conditioner layers. We could thus notate the architecture

as
GAN(Conditioning(Convolutional(Feedforward),

Convolutional(Feedforward(History, Chord sequence))),
Conditioning(Convolutional(Feedforward), History)).

Conditioner CNN

conv1 conv2 conv3 conv4

transposed  transposed transposed transposed

project and reshape convi conv2 conv3 convd conv1 conv2 fully connected output
Generator CNN Discriminator CNN

Fig. 6.40 MidiNet architecture. Reproduced from [212] with permission of the authors

The conditioning information could be

only about the previous measure — named “1D conditions” (shown in yellow in Figures[6.40| and [6.41)); or
about various previous measures — named ‘“2D conditions” (shown in blue).

Both cases are illustrated in Figure[6.40] The authors report experiments performed with different variants:

e melody generation with conditioning on the previous measure (with previous measure as 2D conditions for the
generator and as 1D conditions for the discriminator@b;

e melody generation with conditioning on the previous measure and on the chord sequence (with chord sequence as
1D conditions for the generator, or alternatively also as 2D conditions only for its last convolutional layer in order
to highlight the chord condition); and

e melody generation with conditioning on the previous measure and on the chord sequence in a creative mode (with
chord sequence as 2D conditions for all convolutional layers of the generator).

For the second variant, which they name stable mode, the authors report that the generation is more chord-dominant
and stable, in other words it closely follows the chord progression and seldom generates notes violating chord con-
straints. For the third variant, named creative modeEI, the generator sometimes violates the constraint imposed by
the chords, to better adhere to the melody of the previous measure. In other words, the creative mode allows a better
balance between melody following over chord following. The authors state in that: “Such violations some-
times sound unpleasant, but can be sometimes creative. Unlike the previous two variants, we need to listen to several
melodies generated by this model to handpick good ones. However, we believe such a model can still be useful for
assisting and inspiring human composers.”

MidiNet is summarized in Table[6.22]

%0 To ensure that the discriminator distinguishes between real and generated melodies only from the present measure.
61 On the challenge of creativity, see Section
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Conditioner CNN

conv3 conv4

“convl  conv2

project and reshape \\

transposed transposed transposed transposed
convi conv2 conv3 conv4

Generator CNN

Fig. 6.41 Architecture of the MidiNet generator. Reproduced from [212] with permission of the authors

project and reshape

Objective Melody + Chords; Pop music; Melody vs chords following balance

Representation|Symbolic; Chords; Piano roll; One-hot; Rest

Architecture  |GAN(Conditioning(Convolutional(Feedforward),
Convolutional(Feedforward(History, Chord sequence))),

Conditioning(Convolutional(Feedforward), History))

Strategy Iterative feedforward; Sampling

Table 6.22 MidiNet summary

6.10.3.4 #4 Example: DeepJ Style-Specific Polyphony Symbolic Music Generation System

In [127], Mao et al. propose a system named DeepJ, with the objective of being able to control the style of music gener-
ated. In their experiment, they consider 23 styles, each corresponding to a different composer (from Johann Sebastian
Bach to Pyotr Ilyich Tchaikovsky) with his/her specific styl@ They encode the style — or a combination of style@
— as a many-hot representation over all possible styles (i.e. composers). Composers are grouped into musical genres.
Thus a genre is specified (extensionally) as an equal combination of the styles (composers) of that genre. For example,
if the Baroque genre is defined by composers 1 to 4, the Baroque style would be equal to [0.25,0.25,0.25,0.25,0,0, ...].
We will see below, when detailing the architecture, that this somewhat simplistic user-defined style encoding will be
automatically transformed through the learning phase into an adaptive distributed representation.

62 In other words, they identify a style to a composer.
63 In the case of a combination of several styles, the vector must be normalized in order for its sum to be equal to 1.
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The foundation of the architecture is the Bi-Axial LSTM architecture proposed by Johnson in [95] (see Sec-
tion [6.9.3). Music representation is based on piano roll, modeling a note through its MIDI note number, within a
truncated range (originally within the {0,1,... 127} discrete set, truncated to {36,37,... 84}, i.e. four octaves) in
order to reduce note input dimensionality. Quantization is 16 time steps per measure, i.e. a time step with the value of
a sixteenth note. The representation is similar to that for Bi-Axial LSTM. DeeplJ representation uses a replay matrix,
dual to the piano roll matrix of notes, in order to distinguish between a held note and a replayed note. DeeplJ repre-
sentation also includes information about dynamics through a scalar variable[a_zf] within the [0, 1] interval. But the main
addition is the use of style conditioning, via global conditioninﬂ as in WaveNet.

As has been noted, the user-defined style encoding is too simplistic to be used as it is. Musical styles are not
necessarily orthogonal to each other and may share many characteristics. The first transformation layer linearly trans-
forms the user-defined many-hot encoding of the style into a first embedding (a set of hidden/latent variables, pictured
as the yellow Embedding box in Figure . The second transformation layer transforms this first embedding in a
nonlinear way (through a tanh activatior%r?to a second embedding of the style (pictured as the lower yellow Fully-
Connected box) to be added as a conditioning input to the time-axis module. A similar transformation and conditioning
is performed for the note-axis module. Further details and discussion may be found in [127]. Deep] is summarized in
Table

The authors have conducted an initial subjective evaluation with human listeners comparing music generated by
DeepJ (an example is shown in Figure [6.43) and by Bi-Axial LSTM. They report that Deep] compositions were
usually preferred and they comment that the style conditioning makes generated music more stylistically consistent.
They also conducted a second subjective evaluation in order to verify whether DeepJ can generate stylistically distinct
music (correctly identified by human listeners). The authors report no statistically significant differences between the
classification accuracy for DeepJ] music and real composers music. A more objective analysis has also been undertaken
by visualizing the style embedding space, shown in Figure[6.44] with each composer pictured as a dot and each cluster
as a color (blue, yellow and red are for baroque, classical a