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Abstract—Cyber-physical control systems (CPCS), and their
instantiation as autonomous robotic control architectures, are
notoriously difficult to specify, implement, test, validate and
verify. In this paper, we propose to integrate hybrid systems and
their declension as hybrid automata and DEVS simulation models
within a full-fledged and well-founded software component model
tailored for CPCS. We present how the resulting comprehensive
modeling tool can support the different phases of the software
development to provide more reliable, more robust and more
adaptable CPCS. The key concept is to provide components with
a modeling and simulation capability that seamlessly support
the software development process, from model-in-the-loop initial
validations, until deployment time actual system verification.

I. INTRODUCTION

Robotic and cyber-physical control systems (CPCS) are
very difficult to specify, implement, test, verify and validate
correctly. CPCS bring computational systems and physical
world phenomena tightly together, which they sense, control
and actuate. CPCS and autonomous robotic have grown in
complexity to a point where developing a correct control ar-
chitecture now requires novel software engineering techniques
and processes. Hence, computer scientists and roboticists are
in urgent need for cooperation to develop specific robust
software models and engineering processes.

Appopriately modeling CPCS requires behavioral models
that capture both the discrete nature of computational systems
and the continuous one of the physical world. Hybrid systems
have been developed in the last decades to provide such a
capability. However, this research has not yet reached software
engineering for CPCS and robot systems development.

In this paper, we propose to integrate hybrid systems and
software component models into a well-founded software
model addressing many of the issues raised by CPCS and
robot systems development: (1) behavioral specification, (2)
model-in-the-loop simulation and validation, (3) unit and in-
tegration testing through software-in-the-loop simulation, (4)
software verification and validation, deployment time system
identification, control law synthesis and hardware-in-the-loop
simulation for system validation and verification, (5) run time
verification and (6) run time system self-adaptation.

In the rest of the paper, we first look at hybrid systems
as introduced in mathematics. Then we introduce automata
models of hybrid systems providing a modular modeling
scheme. We next introduce our component model for CPCS.
The paper ends with a short survey of the related work
followed by a conclusion and a discussion of our perspectives.

II. HYBRID SYSTEMS

We now present hybrid systems [2], [3] as modeling tool
for CPCS and robotic control architectures [4].

A. Mathematical models of hybrid systems

Mathematicians have proposed several general models of
controlled hybrid systems. Branicky’s one [5] partition the
hybrid state space S = |J .o Xy % {¢} into a countable
set of discrete states Q = {qo, ¢1, ...}, each of them defining
a continuous state space X,,q € (). Jumps between discrete
states occur upon discrete events, either a change in the value
of discrete variable or a frontier condition met upon values of
discrete and continuous variables. The continuous dynamics,
controlled by control laws U, within each discrete state g, is
defined by a set of equations f, that may be of different types,
but often algebraic equations or differential ones such as:

(1) = f,(x(0), 1y (1))

As many real systems are stochastic, stochastic extensions
to hybrid system models have been proposed [6]. Randomness
can show up in Branicky’s model in different ways, such as:
(1) stochastic continuous behaviours modeled as brownian mo-
tions and stochastic differential equations [7] or (2) stochastic
jump transitions where the hybrid states after transitions follow
density probability functions that depend upon the current
hybrid state and the control signal.

B. Case study

Our illustrative case study is an application where a portable
computer exchanges large amounts of data with a server
through WiFi [8]. When the WiFi bandwith is low, the system
adapts itself by compressing the data. However, compression
uses more PC processor, which consumes more battery. Hence,
when the bandwith is high or the battery is too low, it stops
compressing. The objective is to get the best possible data
transfer rate, including the compression and decompression
times, while maintaining the PC autonomy as long as possible.
For the sake of simplicity, we consider only the components
that are exchanging the data. Note that our goal is to illustrate
the use of hybrid systems modeling for CPCS, not to provide
a faithful complete model for this application.

Two variables are under the influence of the control:

o d: the data transfer rate in kbits/s.

o b: the battery level in mAh.

Around these variables, the model also defines:

o p is the bandwith of the WiFi network in kbits/s.



e AB,. (resp. AB,) is the battery draining rate when no
compression (resp. compression) is used in mAh/s. They
are assumed to be deterministic.

e 7. is the rate of compression in kbits/s.

e 7, is the rate of uncompression in kbits/s.

e T is the compression factor, 0 < 7, < 1.

The dynamics of the system exhibits two important be-
haviours. First, the evolution of the remaining level of energy
in the PC battery, which has two modes depending on whether
compression (c) is used or not (nc):

b(t) = —AB. b(t) = —AB,,
Second, the bandwith is assumed to be stochastic and, for

the sake of simplicity, to follow a brownian motion expressed
by a stochastic differential equation of the form:

p(t) = p(p(t))dt + o(p(t))dB(t)
where u(p(t))dt represents a deterministic trajectory and
o(p(t))dB(t) a stochastic perturbation.

We know intuitively that a threshold bandwith exists over
which the data transfer rate is higher without compression
and under which it is higher with compression. From the
data transfer rates equations in the two cases, simple algebraic
manipulations show that this threshold p; is:

(I =T)rery
T T+ Tery

For example, for r. = 50 kbits/s, 7. = 0.4, r,, = 75 kbits/s,
ps & 23.68 kbits/s. A simple control law with hysteresis can
be adopted for the decision on the compression mode:

o If p> Py, > ps, go to the non compression mode;

o If p < Py < ps, g0 to the compression mode.

For this example, we may use Py, = 25 kbits/s and P,y =
21 kbits/s. To get a longer autonomy on battery, we use a
simple control law with a threshold B:

o If b > B, authorise the compression.

e If b < B, do not authorise the compression.

For example, if the battery has a capacity of B4, = 5000
mAbh, the threshold can be set to B = 2000 mAh.

The figure 1 presents a hybrid systems model for this use
case. The notation uses an automaton representation exhibiting
different modes of continuous behaviours with differential
equations and discrete transitions triggered by conditions on
the variables. Discrete states are identified by the values of
the discrete variable ¢, which can take three values: with
compression (C'), no compression (INC) and low battery (LB).
When a transition occurs, variables can be set to initial values
in the new discrete state. Hence, a transition has a trigger
part and a variable assignment part, separated by “/”. As
states can also express assertions on their variables, the symbol
“+" means assignment while “="is used in assertions. When
resetting variables at time ¢, the notations ¢~ and tt mean the
value right before and right after the transition, respectively.

III. HYBRID AUTOMATA

Hybrid automata models allow to break complex models
into smaller ones and compose them, providing modularity.

q(t) = NC

B(t) < p(p(t))dt + o(p(t))dB(t)
.p(t Z Finf

b(t) + —ABge

b(t) =2 B

b(t) > B Ap(t) < me/q(#y—c

b(t) > B Ap(t) > Psop
b(t) < B/q(tT)«LB

q(t) =C
p(t) « p(p(t))dt + o(p(t))dB(t)
p(t) < Psup
b(t) + —ABgec
b(t) > B

q(t) = LB
D(t) « p(p(t))dt + o(p(t))dB(t
b(t) + —ABge
0<b(t) < B

b(t) < B/q(tT)«LB

Fig. 1. Hybrid system baseline model for the data transfer use case.

A. HIOA and TIOA

Henzinger [9], [10] as well as Lynch and her team [11], [12]
were pionneers in the definition and study of hybrid automata.
Both lines of works have proposed slightly different models
and studied their properties, such as expressing progressive
behaviours e.g., that show no indefinite holds in the progres-
sion of time. Lynch’s team’s work provides a little more of the
modularisation features we are looking for. First they define a
hybrid automaton as follows [11]:

Definition. A hybrid automaton (HA) H is a
(W, X,Q,0,E, H, D, T) such that:

e A set W of external variables and a set X of internal

variables, disjoint from each other. Define V' 2WuUX.

o A set Q Cwal(X) of states.

o A nonempty set © C @) of start states.

o A set E of external actions and a set /I of internal actions,

disjoint from each other. Define A £ FUH.

e Aset D C@Q x A x Q of discrete transitions.

o A set T of trajectories 7(t) for V' such that the values of

the variables in X remain in @ for all ¢ € dom(7). O

Lynch et al. [11] distinguish continuous variables from
actions, assumed discrete. For modeling purposes, we adopt a
model of HA where actions are expressed as modifications of
discrete variables triggering transitions. Lynch et al. define the
composition H; || Hs, (and for this the compatibility of H;
and H2) by merging their variables, transitions and trajectories,
if they respect rules such as not sharing internal variables.

With the above definition, composing two HA imposes that
their external variables defined with the same name represent
in fact the same variable, which implies that the two HA define
the same trajectory for it. To avoid this complexity, Lynch et
al. introduce hybrid I/O automata, which further distinguish
among their external variables imported and exported ones,
and then impose a unique producer for each of them.
Definition. A hybrid I/O automaton (HIOA) A is a tuple
(H,U,Y, 1, O) where:

e H=(W,X,Q,0,E,H,D,T) is a hybrid automaton.

e U and Y partition W into input and output variables,

tuple

respectively.
e [ and O partition E into input and output actions,
respectively. (]

The next step is to define the composition of two HIOA:
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Fig. 2. Factorising the baseline model into HIOA, introducing the environment as a proper HIOA (U: imported continuous variables, Y': exported continuous
variables, X: internal continuous variables; I: imported discrete variables, O: exported discrete variables, H: internal discrete variables).

Definition. Let A4; = (Hl, Ui, Y1, 14, 01) and Ay = (Hg, Us,
Y3, I, O2), be two hybrid I/O automata, they are compatible
if H1 and H, are compatible and if Y1 NYs = O1 N Oy = 0.
If A; and A, are compatible, their composition A; || A is
the tuple A = (H,U,Y,1,0) where H = H; || H2 and:
e Y =Y UY5, e O=071UO0O,, and
oU:(UlLJUQ)ﬁY, UI:(IlL_JI2)mO.D
HIOA do not solve all the modularity concerns to model
software architectures. Indeed, sharing continuous variables
does not account for digital network communication, where
only discretised values can be punctually exchanged. To cater
for this restriction, Lynch’s team introduces timed I/O automa-
ton [12] i.e., HIOA with no external continuous variables:
Definition. A timed I/O automaton (TIOA) is a hybrid 1/O
automaton A = (H,U,Y,1,0) where U =@ and Y = 0. O
While HIOA express tightly coupled models of centralised
artefacts, TIOA express models of decentralised artefacts.

B. Case study: continued

With HIOA, we can decompose our model to reveal actual
components (Figure 2): the PC and server components, their
controllers (separated, to better align with a distributed archi-
tecture) and the environment that models the WiFi bandwith.
The five HIOA produce and consume external variables from
each others by composition. However, this composition shares
continuous variables between the HIOA, which makes the
whole model more tightly coupled than the expected dis-
tributed architecture. To introduce more decoupling, HIOA
must be turned to TIOA by replacing the sharing of continuous
variables by discrete ones. This can be done by explicitly
modeling sensors that convert a continuous signal into a
discrete one, and the network by imposing a copy delay of
discretised values (included as HIOA in Figure 3).

IV. CYBER-PHYSICAL SOFTWARE COMPONENT MODELS

In robotics, physical modelers can be seen as large sets
of reusable models. Computer scientists can learn from this
experience and use simulation to test and verify CPCS.

A. From hybrid systems to simulation models

From a semantics point of view, hybrid systems are ex-
pressed in a declarative way: they say what are the models but
not how to use them, aiming at formally proving properties. As

hybrid systems are difficult to assess formally, another use is to
simulate them i.e., to compute trajectories of state variables as
examples of realistic runs of the system. Simulation models
express an operational semantics i.e., how to perform these
computations by employing simulation engines and defining
simulation models that these engines can execute directly.

In simulation, DEVS [13] offers modular models capabil-
ities. DEVS is based on discrete event simulation, splitting
models into (1) atomic models representing monolithic models
that input and output events and (2) couped models composing
models by connecting outputs of ones to inputs of others.

DEVS defines a unique simulation protocol through which
models are coordinated and activated repeatedly to perform
their next transition while ensuring the order of the transitions
and the communication of the external events. DEVS also
proposes different ways to coordinate models:

o for MIL, an explicitly synchronised protocol where coor-
dinators enforce a global simulation clock by distributing
events and activating model transitions in strict order;

o for SIL and HIL, an implicitly synchronised one forcing
the model local clocks to strictly follow the real time
[14], models exchanging events directly as messages.

B. From simulation models to CPS software components

Control engineering and robotics tell us that three major
types of simulations are useful in CPCS development: (1)
model-in-the-loop (MIL) simulations using models only to
assess formal correctness; (2) software-in-the-loop (SIL) sim-
ulations using models with the software to validate it; and (3)
hardware-in-the-loop (HIL) simulations using models for the
environment only to verify the full system.

Our objective is to support these three kinds of simulations
to cater for a seamless process going from a MIL simulation
at the earlier stages to validate the specification of the system,
to SIL simulations to perform unit testing, and then integration
testing of the software and to HIL simulations, both at design
and deployment time, to verify the system. To achieve this
goal, we propose to build the simulation capability into the
software architecture by making components able to hold
and execute DEVS models packaged as plug-ins that can be
easily switched on and off. They implement the DEVS models
and simulation engines and automatise the deployment of the
simulation architecture and the execution of runs.
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C. Case study: continued

The figure 3 illustrates how HIOA/TIOA models are turned
into DEVS models implemented on their corresponding soft-
ware components. The four major components are imple-
menting the PC side and server side data exchangers and
their respective controllers. The figure shows the TIOA of
Fig. 2 represented as round corner rectangles, with the ports
presenting discrete variable values exchanged among the sim-
ulators. Round corner rectangles also represent TIOA which
are composed of HIOA with internal round corner rectangles
with their own internal flow of variable values.

For unit and integration testing through SIL simulations,
the environment model capturing the bandwith evolution is
implemented as a simulation model in the Environment com-
ponent. Also, the Network component is introduced only for
the purpose of MIL and SIL simulations to ease the testing.
Indeed, for HIL, the network transmissions would pass through
the actual network and exhibit this network real delays.

V. RELATED WORK

Masaccio [10] proposes a component-oriented reformulation
of hybrid automata but where “components” are modular
models. Co-simulation, understood as the joint execution of
a simulation with a software system, has been proposed to
provide a form of SIL [14]-[16]. Robotics has produced an
extensive literature on the joint use of software/hardware and
simulation to test robots too large to cite here. None of these
works consider the integration of software components and
modular simulation models, but rather keeps them separated.

Most of the related works on the simulation of CPCS targets
MIL for verification, yet some of them also consider SIL for
software testing. However, none tries to define a full-fledged
testing process. The most comprehensive work on this subject
we know of is the Zohaib Igbal’s et al. [17], though they only
consider discrete systems and keep software and simulators
separated. De Roo et al. [18] propose the only work that we
found addressing the integration of software and simulation,
but they only use the continuous part of the modeling language
and do not tackle the composability of models.

VI. CONCLUSIONS AND PERSPECTIVES

We have discussed and illustrated how hybrid systems, hy-
brid automata and DEVS simulation models can be leveraged
to propose a software component model tailored for CPCS

Component model for the use case, with the flow of DEVS simulation models variables (v: discretised variable; v: delayed variable).

and we illustrated it through a real-world case study. Such
a model can support a full-fledged software engineering for
CPS addressing many crucial issues for practioners. We are
currently developing this component model for large-scale
distributed CPCS in Java with integrated HIOA/TIOA and
DEVS modeling and simulation capabilities. Afterwards, we
will attack the software engineering processes per se.
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