B. W. Balleine and A. Dickinson, Goal-directed instrumental action: contingency and incentive learning and their cortical substrates, Neuropharmacology, vol.37, issue.4-5, pp.407-419, 1998.
DOI : 10.1016/S0028-3908(98)00033-1

URL : http://edouard-lopez.com/fac/SciCo - S4/modelisation neuroscience/textes/Balleine 1998 (1498).pdf

H. H. Yin and B. J. Knowlton, The role of the basal ganglia in habit formation, Nature Reviews Neuroscience, vol.9, issue.6, pp.464-76, 2006.
DOI : 10.3758/BF03199935

R. J. Dolan and P. Dayan, Goals and Habits in the Brain, Neuron, vol.80, issue.2, pp.312-325, 2013.
DOI : 10.1016/j.neuron.2013.09.007

G. Pezzulo, M. A. Van-der-meer, C. S. Lansink, and C. M. Pennartz, Internally generated sequences in learning and executing goal-directed behavior, Trends in Cognitive Sciences, vol.18, issue.12, pp.647-657, 2014.
DOI : 10.1016/j.tics.2014.06.011

K. Diba and G. Buzsáki, Forward and reverse hippocampal place-cell sequences during ripples, Nature Neuroscience, vol.40, issue.10, pp.1241-1242, 2007.
DOI : 10.3758/BF03197276

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2039924/pdf

A. Johnson and A. Redish, Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point, Journal of Neuroscience, vol.27, issue.45, pp.12176-12189, 2007.
DOI : 10.1523/JNEUROSCI.3761-07.2007

B. E. Pfeiffer and D. J. Foster, Hippocampal place-cell sequences depict future paths to remembered goals, Nature, vol.61, issue.7447, pp.74-83, 2013.
DOI : 10.1146/annurev.psych.60.110707.163508

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990408/pdf

D. Foster, R. Morris, and P. Dayan, A model of hippocampally dependent navigation, using the temporal difference learning rule, Hippocampus, vol.1, issue.1, pp.1-16, 2000.
DOI : 10.1038/16564

D. J. Foster and M. Wilson, Reverse replay of behavioural sequences in hippocampal place cells during the awake state, Nature, vol.21, issue.7084, pp.680-683, 2006.
DOI : 10.1016/S0896-6273(00)80629-7

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

B. L. Mcnaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M. Moser, Path integration and the neural basis of the 'cognitive map', Nature Reviews Neuroscience, vol.290, issue.8, pp.663-678, 2006.
DOI : 10.1126/science.290.5500.2319

C. J. Macdonald, K. Q. Lepage, U. T. Eden, and H. Eichenbaum, Hippocampal ???Time Cells??? Bridge the Gap in Memory for Discontiguous Events, Neuron, vol.71, issue.4, pp.737-749, 2011.
DOI : 10.1016/j.neuron.2011.07.012

B. Kraus, R. Robinson, J. White, H. Eichenbaum, and M. Hasselmo, Hippocampal ???Time Cells???: Time versus Path Integration, Neuron, vol.78, issue.6, pp.1090-1101, 2013.
DOI : 10.1016/j.neuron.2013.04.015

URL : https://doi.org/10.1016/j.neuron.2013.04.015

H. O. Cabral, Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control, Neuron, vol.81, issue.2, pp.402-415, 2014.
DOI : 10.1016/j.neuron.2013.11.010

URL : https://hal.archives-ouvertes.fr/hal-01542944

L. Rondi-reig, Impaired Sequential Egocentric and Allocentric Memories in Forebrain-Specific-NMDA Receptor Knock-Out Mice during a New Task Dissociating Strategies of Navigation, Journal of Neuroscience, vol.26, issue.15, pp.4071-4081, 2006.
DOI : 10.1523/JNEUROSCI.3408-05.2006

URL : https://hal.archives-ouvertes.fr/hal-00084273

C. Fouquet, Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior, PLoS ONE, vol.153, issue.6, 2013.
DOI : 10.1371/journal.pone.0067232.s004

URL : https://hal.archives-ouvertes.fr/hal-01159947

C. Fouquet, C. Tobin, and L. Rondi-reig, A new approach for modeling episodic memory from rodents to humans: The temporal order memory, Behavioural Brain Research, vol.215, issue.2, pp.172-179, 2010.
DOI : 10.1016/j.bbr.2010.05.054

K. Iglói, C. F. Doeller, A. Berthoz, L. Rondi-reig, and N. Burgess, Lateralized human hippocampal activity predicts navigation based on sequence or place memory, Proc. Natl. Acad. Sci. USA, pp.14466-14471, 2010.
DOI : 10.1016/j.neuron.2008.09.023

V. Bellassen, K. Igloi, L. C. De-souza, B. Dubois, and L. Rondi-reig, Temporal Order Memory Assessed during Spatiotemporal Navigation As a Behavioral Cognitive Marker for Differential Alzheimer's Disease Diagnosis, Journal of Neuroscience, vol.32, issue.6, pp.1942-1952, 2012.
DOI : 10.1523/JNEUROSCI.4556-11.2012

URL : http://www.jneurosci.org/content/jneuro/32/6/1942.full.pdf

V. Villette, A. Malvache, T. Tressard, N. Dupuy, and R. Cossart, Internally Recurring Hippocampal Sequences as a Population Template of Spatiotemporal Information, Neuron, vol.88, issue.2, pp.357-366, 2015.
DOI : 10.1016/j.neuron.2015.09.052

Y. Wang, S. Romani, B. Lustig, A. Leonardo, and E. Pastalkova, Theta sequences are essential for internally generated hippocampal firing fields, Nature Neuroscience, vol.15, issue.2, pp.282-288, 2014.
DOI : 10.1016/j.neuron.2010.01.034

J. Wallis, The Dynamics of Learning and Behavioral Flexibility, Neuron, vol.71, issue.6, pp.959-961, 2011.
DOI : 10.1016/j.neuron.2011.09.003

D. Durstewitz, N. M. Vittoz, S. B. Floresco, and J. K. Seamans, Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning, Neuron, vol.66, issue.3, pp.438-448, 2010.
DOI : 10.1016/j.neuron.2010.03.029

URL : https://doi.org/10.1016/j.neuron.2010.03.029

V. Hok, E. Save, P. Lenck-santini, and B. Poucet, Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex, Proc. Natl. Acad. Sci. USA, pp.4602-4607, 2005.
DOI : 10.1093/cercor/13.5.444

C. M. Pennartz, R. Ito, P. F. Verschure, F. P. Battaglia, and T. W. Robbins, The hippocampal???striatal axis in learning, prediction and goal-directed behavior, Trends in Neurosciences, vol.34, issue.10, pp.548-559, 2011.
DOI : 10.1016/j.tins.2011.08.001

P. Voorn, L. J. Vanderschuren, H. J. Groenewegen, T. W. Robbins, and C. M. Pennartz, Putting a spin on the dorsal???ventral divide of the striatum, Trends in Neurosciences, vol.27, issue.8, pp.468-474, 2004.
DOI : 10.1016/j.tins.2004.06.006

M. R. Roesch, T. Singh, P. L. Brown, S. E. Mullins, and G. Schoenbaum, Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards, Journal of Neuroscience, vol.29, issue.42, pp.13365-13376, 2009.
DOI : 10.1523/JNEUROSCI.2572-09.2009

K. Iglói, Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation, Cerebral Cortex, vol.25, issue.11, pp.4146-4154, 2015.
DOI : 10.1093/cercor/bhu132

T. Hartley, . Maguire, . Ea, H. J. Spiers, and N. Burgess, The Well-Worn Route and the Path Less Traveled, Neuron, vol.37, issue.5, pp.877-888, 2003.
DOI : 10.1016/S0896-6273(03)00095-3

URL : https://doi.org/10.1016/s0896-6273(03)00095-3

G. Iaria, M. Petrides, A. Dagher, B. Pike, and V. D. Bohbot, Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice, J. Neurosci, vol.23, pp.5945-5952, 2003.

N. C. Voermans, Interaction between the Human Hippocampus and the Caudate Nucleus during Route Recognition, Neuron, vol.43, issue.3, pp.427-435, 2004.
DOI : 10.1016/j.neuron.2004.07.009

URL : https://doi.org/10.1016/j.neuron.2004.07.009

M. Khamassi and M. D. Humphries, Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies, Frontiers in Behavioral Neuroscience, vol.6, p.79, 2012.
DOI : 10.3389/fnbeh.2012.00079

URL : https://hal.archives-ouvertes.fr/hal-01219958

M. Van-der-meer, Z. Kurth-nelson, and A. D. Redish, Information Processing in Decision-Making Systems, The Neuroscientist, vol.3, issue.1, pp.342-59, 2012.
DOI : 10.1101/lm.81004

K. Doya, Complementary roles of basal ganglia and cerebellum in learning and motor control, Current Opinion in Neurobiology, vol.10, issue.6, pp.732-739, 2000.
DOI : 10.1016/S0959-4388(00)00153-7

A. S. Fermin, Model-based action planning involves cortico-cerebellar and basal ganglia networks, Scientific Reports, vol.8, issue.1, p.31378, 2016.
DOI : 10.1371/journal.pcbi.1002410

URL : http://www.nature.com/articles/srep31378.pdf

S. Ohmae and J. Medina, Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice, Nature Neuroscience, vol.124, issue.12, pp.1-7, 2015.
DOI : 10.1007/BF00236404

W. Schultz, P. Dayan, and P. R. Montague, A Neural Substrate of Prediction and Reward, Science, vol.263, issue.5149, pp.1593-1599, 1997.
DOI : 10.1126/science.7508638

A. L. Wheeler, Identification of a Functional Connectome for Long-Term Fear Memory in Mice, PLoS Computational Biology, vol.5, issue.1, p.1002853, 2013.
DOI : 10.1371/journal.pcbi.1002853.s021

G. L. Poirier, E. Amin, and J. P. Aggleton, Qualitatively Different Hippocampal Subfield Engagement Emerges with Mastery of a Spatial Memory Task by Rats, Journal of Neuroscience, vol.28, issue.5, pp.1034-1045, 2008.
DOI : 10.1523/JNEUROSCI.4607-07.2008

A. Boucard, N. Mons, J. Micheau, and X. Noguès, Activating a memory system focuses connectivity toward its central structure, Behavioural Brain Research, vol.204, issue.1, pp.226-234, 2009.
DOI : 10.1016/j.bbr.2009.06.016

W. Tischmeyer and R. Grimm, Activation of immediate early genes and memory formation, Cellular and Molecular Life Sciences (CMLS), vol.55, issue.4, pp.564-574, 1999.
DOI : 10.1007/s000180050315

A. J. Enright, S. Van-dongen, and C. A. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, vol.30, issue.7, pp.1575-1584, 2002.
DOI : 10.1093/nar/30.7.1575

N. Burgess, S. Becker, J. A. King, and J. O-'keefe, Memory for events and their spatial context: models and experiments, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1413, pp.1493-1503, 2001.
DOI : 10.1098/rstb.2001.0948

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088531/pdf

P. Byrne, S. Becker, and N. Burgess, Remembering the past and imagining the future: A neural model of spatial memory and imagery., Psychological Review, vol.114, issue.2, pp.340-375, 2007.
DOI : 10.1037/0033-295X.114.2.340

S. D. Vann, J. P. Aggleton, and E. Maguire, What does the retrosplenial cortex do?, Nature Reviews Neuroscience, vol.14, issue.11, pp.792-802, 2009.
DOI : 10.1038/jcbfm.1992.52

G. Committeri, Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location, Journal of Cognitive Neuroscience, vol.23, issue.9, pp.1517-1535, 2004.
DOI : 10.1038/jcbfm.1992.127

URL : https://hal.archives-ouvertes.fr/hal-00349687

J. R. Whitlock, G. Pfuhl, N. Dagslott, M. B. Moser, and E. Moser, Functional Split between Parietal and Entorhinal Cortices in the Rat, Neuron, vol.73, issue.4, pp.789-802, 2012.
DOI : 10.1016/j.neuron.2011.12.028

D. A. Nitz, Spaces within spaces: rat parietal cortex neurons register position across three reference frames, Nature Neuroscience, vol.15, issue.10, pp.1365-1367, 2012.
DOI : 10.1038/382807a0

D. A. Nitz, Tracking Route Progression in the Posterior Parietal Cortex, Neuron, vol.49, issue.5, pp.747-756, 2006.
DOI : 10.1016/j.neuron.2006.01.037

A. A. Wilber, B. J. Clark, T. C. Forster, M. Tatsuno, and B. L. Mcnaughton, Interaction of Egocentric and World-Centered Reference Frames in the Rat Posterior Parietal Cortex, Journal of Neuroscience, vol.34, issue.16, pp.5431-5477, 2014.
DOI : 10.1523/JNEUROSCI.0511-14.2014

D. R. Euston, A. J. Gruber, and B. L. Mcnaughton, The Role of Medial Prefrontal Cortex in Memory and Decision Making, Neuron, vol.76, issue.6, pp.1057-70, 2012.
DOI : 10.1016/j.neuron.2012.12.002

S. L. Cowen, G. A. Davis, and D. A. Nitz, Anterior cingulate neurons in the rat map anticipated effort and reward to their associated action sequences, Journal of Neurophysiology, vol.107, issue.9, pp.2393-2407, 2012.
DOI : 10.1152/jn.01012.2011

O. 'keefe, J. Nadel, and L. , The hippocampus as a cognitive map, 1978.

A. D. Redish, Beyond the cognitive map: from place cells to episodic memory. Cambridge, 1999.

A. Arleo and L. Rondi-reig, MULTIMODAL SENSORY INTEGRATION AND CONCURRENT NAVIGATION STRATEGIES FOR SPATIAL COGNITION IN REAL AND ARTIFICIAL ORGANISMS, Journal of Integrative Neuroscience, vol.23, issue.03, pp.327-366, 2007.
DOI : 10.1111/j.1460-9568.2004.03512.x

URL : https://hal.archives-ouvertes.fr/hal-00181154

O. Trullier, S. I. Wiener, A. Berthoz, and J. A. Meyer, BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS, Progress in Neurobiology, vol.51, issue.5, pp.483-544, 1997.
DOI : 10.1016/S0301-0082(96)00060-3

URL : https://hal.archives-ouvertes.fr/hal-00618346

E. A. Zilli and M. E. Hasselmo, Modeling the role of working memory and episodic memory in behavioral tasks, Hippocampus, vol.11, issue.2, pp.193-209, 2008.
DOI : 10.1002/hipo.20382

R. Apps and R. Hawkes, Cerebellar cortical organization: a one-map hypothesis, Nature Reviews Neuroscience, vol.522, issue.2, pp.670-81, 2009.
DOI : 10.1113/jphysiol.1983.sp014623

P. L. Strick, R. P. Dum, and J. A. Fiez, Cerebellum and Nonmotor Function, Annual Review of Neuroscience, vol.32, issue.1, pp.413-434, 2009.
DOI : 10.1146/annurev.neuro.31.060407.125606

P. Orban, The multifaceted nature of the relationship between performance and brain activity in motor sequence learning, NeuroImage, vol.49, issue.1, pp.694-702, 2010.
DOI : 10.1016/j.neuroimage.2009.08.055

T. A. Yakusheva, Purkinje Cells in Posterior Cerebellar Vermis Encode Motion in an Inertial Reference Frame, Neuron, vol.54, issue.6, pp.973-985, 2007.
DOI : 10.1016/j.neuron.2007.06.003

URL : https://doi.org/10.1016/j.neuron.2007.06.003

D. E. Angelaki, T. A. Yakusheva, A. M. Green, J. D. Dickman, and P. M. Blazquez, Computation of Egomotion in the Macaque Cerebellar Vermis, The Cerebellum, vol.978, issue.4, pp.174-182, 2010.
DOI : 10.1001/archopht.1952.00920010616007

D. Marr, A theory of cerebellar cortex, The Journal of Physiology, vol.202, issue.2, pp.437-470, 1969.
DOI : 10.1113/jphysiol.1969.sp008820

M. J. Wagner, T. H. Kim, J. Savall, M. J. Schnitzer, and L. Luo, Cerebellar granule cells encode the expectation of reward, Nature, vol.92, issue.7648, pp.96-100, 2017.
DOI : 10.1016/j.neuron.2016.09.021

J. E. Lisman, L. M. Talamini, and A. Raffone, Recall of memory sequences by interaction of the dentate and CA3: A revised model of the phase precession, Neural Networks, vol.18, issue.9, pp.1191-1201, 2005.
DOI : 10.1016/j.neunet.2005.08.008

R. P. Kesner, A process analysis of the CA3 subregion of the hippocampus, Frontiers in Cellular Neuroscience, vol.7, p.78, 2013.
DOI : 10.3389/fncel.2013.00078

K. Nakazawa, Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall, Science, vol.297, issue.5579, pp.211-219, 2002.
DOI : 10.1126/science.1071795

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877140/pdf

H. H. Pothuizen, M. Davies, M. M. Albasser, J. P. Aggleton, and S. D. Vann, Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats, European Journal of Neuroscience, vol.109, issue.5, pp.877-888, 2009.
DOI : 10.1007/978-1-4899-6704-6_17

L. L. Chen, L. H. Lin, E. J. Green, . Barnes, &. Ca et al., Head-direction cells in the rat posterior cortex, Experimental Brain Research, vol.331, issue.1, pp.8-23, 1994.
DOI : 10.1007/978-3-642-70573-1

J. P. Neunuebel, D. Yoganarasimha, G. Rao, and J. J. Knierim, Conflicts between Local and Global Spatial Frameworks Dissociate Neural Representations of the Lateral and Medial Entorhinal Cortex, Journal of Neuroscience, vol.33, issue.22, pp.9246-58, 2013.
DOI : 10.1523/JNEUROSCI.0946-13.2013

R. G. Heath and J. W. Harper, Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: Evoked potential and histological studies in monkeys and cats, Experimental Neurology, vol.45, issue.2, pp.268-287, 1974.
DOI : 10.1016/0014-4886(74)90118-6

A. Arrigo, Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebellolimbic pathway, In Front. Hum. Neurosci, vol.8, p.987, 2014.

P. Obiang, P. Coulon, C. Rochefort, and L. Rondi-reig, Characterization of the anatomical pathway connecting the cerebellum to the hippocampus, FENS Meet, 2014.

M. L. Shapiro, P. J. Kennedy, and J. Ferbinteanu, Representing episodes in the mammalian brain, Current Opinion in Neurobiology, vol.16, issue.6, pp.701-709, 2006.
DOI : 10.1016/j.conb.2006.08.017

C. Rochefort, J. M. Lefort, and L. Rondi-reig, The cerebellum: a new key structure in the navigation system, Frontiers in Neural Circuits, vol.7, p.35, 2013.
DOI : 10.3389/fncir.2013.00035

URL : https://hal.archives-ouvertes.fr/hal-01542948

L. Rondi-reig, A. Paradis, J. M. Lefort, B. M. Babayan, and C. Tobin, How the cerebellum may monitor sensory information for spatial representation, Frontiers in Systems Neuroscience, vol.17, issue.32, p.205, 2014.
DOI : 10.1002/hipo.20266

URL : https://hal.archives-ouvertes.fr/hal-01542946

J. N. Crawley, What's Wrong With My Mouse?: Behavioral Phenotyping of Transgenic and Knockout Mice: Second Edition. What's Wrong With My Mouse? Behav. Phenotyping Transgenic Knockout Mice Second Ed, p.9780470119051, 2006.
DOI : 10.1002/0470119055

C. Fouquet, Early detection of age-related memory deficits in individual mice, Neurobiology of Aging, vol.32, issue.10, pp.1881-1895, 2011.
DOI : 10.1016/j.neurobiolaging.2009.11.001

URL : https://hal.archives-ouvertes.fr/hal-00490010

F. Jarlier, A Navigation Analysis Tool (NAT) to assess spatial behavior in open-field and structured mazes, Journal of Neuroscience Methods, vol.215, issue.2, pp.196-209, 2013.
DOI : 10.1016/j.jneumeth.2013.02.018

URL : https://hal.archives-ouvertes.fr/hal-01542947

G. Paxinos and K. Franklin, The Mouse Brain in Stereotaxic Coordinates, Compact | 978-0-12-374244-5|Elsevier, 2008.

A. Mouse and B. Atlas, Seattle (WA): Allen Institute for Brain Science. c Available from: http://mouse.brain-map.org, 2009.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, vol.52, issue.3, pp.1059-1069, 2010.
DOI : 10.1016/j.neuroimage.2009.10.003

E. J. Sondik, The optimal control of partially observable Markov processes, 1971.

J. Mouret, S. Doncieux, and . Sferesv2, Evolvin' in the multi-core world. in WCCI, IEEE World Congr. Comput. Intell. Congr. Evol. Comput, pp.4079-4086, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687633

J. Mouret and S. Doncieux, Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study, Evolutionary Computation, vol.341, issue.1, pp.91-133, 2012.
DOI : 10.1016/0020-0190(92)90136-J

URL : https://hal.archives-ouvertes.fr/hal-00687609

S. Palminteri, V. Wyart, and E. Koechlin, The Importance of Falsification in Computational Cognitive Modeling, Trends in Cognitive Sciences, vol.21, issue.6, 2017.
DOI : 10.1016/j.tics.2017.03.011

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, vol.57, pp.289-300, 1995.

A. We, T. S. Laroche, B. Poucet, M. Khamassi, A. Hay et al., Amoroso and members of the Rondi-Reig laboratory for discussions and comments on the manuscript, This work was supported by the Fondation pour la Recherche Médicale DEQ. 20120323730-France, by the National Agency for Research

B. France, H. The-ville-de-paris, and . Emergence, This work also received support under the program Investissements d' Avenir launched by the French Government and implemented by the ANR, with the references, PER-SU (LRR) ANR-10-LABX-BioPsy (LRR) and ANR-11-LABX-65-SMART (BG) The group of LRR is member of the Labex Bio-Psy and ENP Foundation. The group of BG is member of the Labex SMART. Labex are supported by French State funds managed by the ANR within the Investissements d' Avenir programme under reference ANR-11-IDEX-0004-02, BMB was funded by the Ministère de l'Enseignement Supérieur et de la Recherche, France. GV was funded by the Observatoire B2V des Mémoires

A. Contributions, L. R. Designed-the-project, B. G. Wrote-the-grants, L. R. Designed-the-experiments, A. W. Collected-the-data et al., designed the models, built them and ran the simulations