
HAL Id: hal-01668625
https://hal.sorbonne-universite.fr/hal-01668625

Submitted on 20 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A finite fracture model for the analysis of multi-cracking
in woven ceramic matrix composites

J. Li, E. Martin, D. Leguillon, C. Dupin

To cite this version:
J. Li, E. Martin, D. Leguillon, C. Dupin. A finite fracture model for the analysis of multi-
cracking in woven ceramic matrix composites. Composites Part B: Engineering, 2018, 139, pp.75-83.
�10.1016/j.compositesb.2017.11.050�. �hal-01668625�

https://hal.sorbonne-universite.fr/hal-01668625
https://hal.archives-ouvertes.fr


 

 
 
A FINITE FRACTURE MODEL FOR THE ANALYSIS OF MULTI-
CRACKING IN WOVEN CERAMIC MATRIX COMPOSITES 

 
J. Li1, E. Martin2*, D. Leguillon3, C. Dupin2,4 
 
 
1 Laboratoire des Sciences des Procédés et des Matériaux, CNRS UPR 3407, Institut Galilée, 
Université Paris 13, F-93430 Villetaneuse, France. 

2 Laboratoire des Composites Thermo-Structuraux, CNRS UMR 5801, Université de Bordeaux, 
F-33600, Pessac, France.  

3 Institut Jean le Rond d'Alembert, CNRS UMR 7190, Sorbonne Universités, UPMC Université 
Paris 06, F-75005 Paris, France. 

4 Nexter-Systems, F-18023, Bourges, France 

 

 

 
Abstract : 
 
A finite fracture approach based on the Coupled Criterion is used to analyze multi-cracking in 
a woven ceramic matrix composite. In-situ micrographic observations obtained during tensile 
and bending tests performed on chemical vapor infiltrated SiC/SiC samples are utilized to 
identify cracking mechanisms. A two dimensional finite element model is generated to 
approximate the actual specimen section geometry including matrix, fiber tows and porosity. 
Numerical simulations are carried out with a dedicated algorithm to simulate nucleation and 
propagation of cracks. Comparing the simulation results with experimental ones shows that the 
model captures the main cracking features.  
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1. Introduction 
 
Ceramic matrix composites (CMCs) are considered attractive and promising materials for 

hot parts in advanced fission reactors and gas turbine engines [1]. Their utilization is also 

assessed for thermal protection systems submitted to very severe environments [2,3]. All-oxide 

CMCs (typically alumina fibers in porous alumina matrices) are now produced to be used in 

engine exhaust structures. Non-oxide CMCs, like those consisting of a SiC-based matrix 

reinforced with SiC fibers, can be used at temperatures up to 1250°C. Low density, high 

strength and toughness make them candidate to replace superalloys in gas turbine engines in 

aircrafts [4]. SiC/SiC composites are usually reinforced with two-dimensional fiber fabrics but 

tri-dimensional geometries have been developed with the help of weaving and braiding 

techniques to overcome the occurrence of delamination observed within laminated architectures 

[5]. Various routes can be used to process SiC/SiC composites including a gas phase route like 

chemical vapor infiltration (CVI) and liquid phase routes like reactive melting infiltration and 

polymer impregnation and pyrolysis [6]. Depending on this process, a SiC/SiC composite may 

exhibit significant residual porosity (typically 10-15% for the CVI route) at the microscale 

(several micrometers) between fibers within the tows and at the mesoscale (i.e. a fraction of a 

millimeter) between plies [7]. Macro-pores are clearly visible in Fig. 1 which depicts a 

representative cross-section of a thin SiC/SiC composite elaborated by CVI.  

 

 
 

Fig. 1. Cross-sectional optical micrograph of a thin SiC/SiC composite elaborated by CVI 
[62]. White regions represent the SiC layers and the darker zones are SiC fiber bundles. 

 
The tensile behavior of SiC/SiC composites at room temperature has been well 

characterized [8-9]. The stress strain curve exhibits a nonlinear behavior which results from the 

progressive development of various crack networks. This damage tolerant feature is strongly 

related to the intensity of the fiber/matrix interface which must be optimized to promote matrix 

crack deflection [1]. An interphase is deposited onto the fibers in order to control this 

toughening mechanism [10]. Acoustic emission technique reveals as an appropriate tool to 



detect micro-cracking in such materials [11]. Micrographic observations at the mesoscale reveal 

the development of cracks in the components (matrix, longitudinal and transverse tows) of the 

composite. Matrix cracking, debonding of the fiber/matrix interface and fiber breaks are also 

observed within tows at the micro-scale. Fig. 2a shows the cracking of transverse tows within 

a thin SiC/SiC composite submitted to tensile loading. Final failure is controlled by the strength 

of the longitudinal tows.  Analysis of the bending behavior also indicates cracking that initiates 

from the tensile side [12]. Compressive cracking of transverse tows is noticed (Fig. 2b) if the 

tows are located on the outmost compressive side of a specimen submitted to bending [13]. 

 

 

 

a) b) 
 
Fig. 2. Optical micrographs captured during mechanical testing of a thin SiC/SiC specimen [13] 
and revealing cracks in a) transverse tows under tensile test, b) a transverse tow under bending 
test (arrows indicate the crack generated by compressive failure). In each case, the direction of 
the applied load is horizontal.  

 
The axial tensile behavior of unidirectional ceramic matrix composites has been analyzed 

in the literature [14-16]. The elastic response is characterized by a modulus 

( )1f f f mV E V E≈ + −  where V is the volume fraction, E is Young’s modulus and subscripts f 

and m refer to fiber and matrix respectively. Matrix cracking is the first inelastic mechanism 

which starts at a critical stress depending on the matrix toughness. Thanks to the optimized 

interfacial properties, matrix crack deflection occurs at the fiber/matrix interface and prevents 

catastrophic fiber failures. The development of a debonding crack in the vicinity of a matrix 

crack is accurately described by micromechanical models taking into account interfacial 

toughness and friction coefficient [17-18]. Raising load increases the matrix crack density 

which can reach a saturation value. After saturation, the matrix cannot support additional load 

and the tangent modulus reduces to that of fibers f fV E≈ . Final failure depends on the 

100 μm



development of multiple fiber breaks as described by fragmentation models [19-20]. Extending 

the analysis to cross-ply laminates submitted to uniaxial tension requires to take into account 

the multi-cracking of the transverse plies as an additional mechanism. An energetic approach 

predicts the crack density in the transverse plies as a function of the applied stress [21].  

For woven composites, the difficulty comes from the non-uniformity of the local stress field 

in wavy tows under tensile loading. The analytical approaches already developed for 

unidirectional composites cannot be easily extended and the use of computational models is 

necessary to reach a sufficient accuracy.  Phenomenological constitutive laws have been 

developed to reproduce the macroscopic stress-strain response of woven CMCs. One can find 

plasticity-like models [22] or damage mechanics based models [23-25]. These approaches are 

dedicated to structural analysis but often require the identification of a large number of 

parameters which are difficult to link to the actual damage mechanisms. For this purpose, other 

authors refer to a multiscale analysis based on the modelling of the mechanical behavior of 

representative cells [26]. A scalar damage mechanics constitutive model can be used for damage 

initiation and propagation in the matrix while a brittle failure criterion may be preferred for the 

reinforcement [27]. One dimensional models can also be linked to finite element calculations 

at the mesoscale to estimate the matrix crack density [28-29]. However, there is a need for 

computational models capable to produce discrete representation of the damage. As a matter of 

fact, the cracking pattern must be estimated as it provides valuable information concerning the 

diffusion of oxidant species. This point is an issue for the lifetime prediction of SiC/SiC 

composites at high temperature in oxidative atmospheres [30]. For this purpose, one can use 

new finite element (FE) methods like the extended (XFEM) [31] or the augmented (AFEM) 

[32] ones which can generate arbitrary discontinuities. Such methods are attractive but reveal 

very computationally extensive.  

The aim of this paper is to propose an alternative approach to predict the multi-cracking of 

a woven ceramic matrix composite at the mesoscale. For this purpose, a criterion coupling a 

stress and an energy condition is used to predict the initiation and the propagation of cracks 

within the framework of finite fracture mechanics. This coupled criterion is associated with a 

dedicated procedure developed to simulate the evolution of multiple cracks within a brittle 

structure submitted to a mechanical loading. The use of the same algorithm for crack nucleation 

and propagation, without predicting initially the nucleation sites, is a significant advance. The 

paper is organized in the following way. Section 2 introduces the finite fracture approach. 

Section 3 describes the meso-scale FE model of a representative cell of a woven CMC. Based 

on experimental observations, several assumptions are made to select the crack families to be 



simulated. A tensile test is used to identify the fracture characteristics of each damage 

mechanism. Section 4 reports the results of the present work. It is checked that the predicted 

response of the tensile test is close to the experimental one. Then a bending test is simulated to 

demonstrate that the main damage features are captured by the model.  

 

2. The finite fracture approach 

 

We use here the coupled criterion (CC) which is a finite fracture approach dedicated to 

predict crack nucleation in the vicinity of a stress concentration in a brittle material.  

 

2.1 The coupled criterion 

 

To analyze the spontaneous formation of a new crack with a finite length, an energy 

condition and a stress condition must be fulfilled [33]. The first condition is obtained with the 

help of an energy balance. Comparing the change pWδ− in potential energy prior to and after 

the onset of a crack of length aδ  to the energy cG aδ  (assuming a 2D model so that the width 

b of the sample is unity and that cG  is the fracture energy) necessary to create such a crack 

provides  

( ) pinc cW
G a G

a
δ

δ
δ

= − ≥ .        (1) 

Relation (1) introduces the incremental energy release rate incG  which merges with the usual 

energy release rate only at the limit 0aδ → . The second condition states that the tensile stress 

along the expected crack path prior to failure must exceed the tensile strength cσ  with  

( ) ,0cr r aσ σ δ≥ ≤ ≤ .        (2) 

Matched asymptotic expansions can be used to formulate the CC near a stress singularity like 

a sharp notch . The tensile stress reads  

( )
1

app
rr k
d

λ

σ σ
−

 =  
 

,         (3a) 

where λ  is the singularity exponent, appσ  is the applied stress, d  is a characteristic length of 

the structure and k  a scaling coefficient. The incremental energy release rate is given by  
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where A  is another scaling coefficient.  

Combining (1), (2) and (3) provides a closed form of the applied stress *
appσ  at crack initiation  
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It is to be noted that this formulation coincides with the Griffith criterion in the presence of a 

crack *0.5,  
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 and with the strength criterion for a straight edge
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. The crack increment *aδ  at onset is proportional to the fracture length 
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This length is similar to the critical distance proposed by Taylor [34, 35] but it now does not 

depend only on the fracture properties but also on the loading geometry. The matched 

asymptotic expansions rely on the first term of a William series and thus assume that the 

nucleated crack length is small enough to guarantee that the higher order terms are negligible. 

If it is not the case, a full field formulation must be used which most of the time requires FE 

computations. Many applications of the CC can be found in the literature with a wide range of 

structural applications including free-edge delamination, transverse cracking and notched 

strength of composite laminates [36-41], adhesive and brazed joints [42-48], crack onset at V-

notches [49-51], cracking in ceramic laminates [52-54]. An overview of applications and an 

extensive list of references can be found in review papers [55-56].  

The CC can also be used to analyse multiple cracking. Quesada et al. [57] studied the 

nucleation of multiple cracks within a stiff inclusion embedded in a soft matrix submitted to a 

compression loading. In this case the stress condition can be satisfied all over the inclusion and 

several cracks can nucleate if the available stored energy is high enough.  Recently Leguillon 

and al. [58-59] have proposed to utilize a representative cell which is assumed to reproduce 



periodically the cracked behaviour of the structure. Only one crack is introduced in the cell 

whose length is progressively reduced to simulate the increase of crack density. Doitrand and 

al. employed the CC to model crack initiation in transverse yarns within a woven glass 

fibre/epoxy composite [60].  

In this paper, a dedicated approach is used to predict the initiation and the propagation of 

multiple cracks within a 2D linear elastic structure submitted to an increasing loading.  

 

2.2 An algorithm for multiple cracking  

 

The CC is applied to predict the initiation of new cracks and the propagation of existing 

cracks. The algorithm implemented in a finite element code can be outlined as follows. The 

stress criterion ( )I
crσ σ≥  (where Iσ  is the first principal stress) is applied to detect zones with 

a local stress concentration. In such zones, we identify a potential crack path which starts from 

the point where Iσ  is locally maximal and follows a principal stress trajectory. Fulfilment of 

the energy criterion activates a crack among the potential cracks. The selected crack must 

maximize the incremental energy release rate incG  and fulfil the energy criterion inc cG G≥ . 

Creation of a new crack is obtained by deleting the elements along the predicted crack path. 

Following this algorithm, a dedicated 2D FE procedure has been developed and checked against 

various numerical examples [61].  It was shown that this numerical model presents several 

advantages, such as its capacity to predict both crack initiation and crack growth and to track 

automatically the crack paths. Its robustness and its weak mesh-dependence have been tested. 

In return, the deleting-element technique requires a sufficiently fine mesh such that eliminated 

elements are able to represent a crack. This numerical model will be employed in the following 

sections to simulate multiple cracking at the mesoscale within a representative cell of a woven 

CMC.   

 

3. The meso-scale model 

 

We focus on the mechanical behavior of SiC/SiC composites elaborated by CVI. As 

mentioned in the introduction, various authors have studied the tensile behavior of this type of 

CMCs and observed a sequential development of damage mechanisms. More recently, the 

microstructure and the tensile properties of thin SiC/SiC composites with a self-healing matrix 



have been reported [62-63]. In situ micrographic observations at the meso-scale performed 

during tensile tests have evidenced the successive development of three families of cracks [13]: 

i) Matrix (M) cracking starts for an applied strain 0.06%ε ≥ . Early matrix cracking is observed 

in the vicinity of macro-pores,  

ii) Tensile cracking of transverse tows (TTt) is observed at an applied strain 0.14%ε ≥ . One or 

two cracks are typically observed within the cracked transverse tows as illustrated in Fig. 2a,  

iii) Cracking of longitudinal tows (LT) is only noticed for 0.45%ε ≥ in the last stage of the 

tensile curve.  

Debonding at the interface between matrix and tows is likely to occur but it is difficult to detect 

and will not be considered here. Fig. 3a shows a typical tensile load response and indicates the 

successive triggering of the damage mechanisms. The corresponding cumulated acoustic events 

(AE) are plotted versus the applied stress on Fig. 3b. Former studies [11] have shown that the 

cumulative AE is related to the number of formed cracks and this curve is thus representative 

of the kinetics of cracking.   

Four-point bending tests were also performed on the same material [13]. In situ micrographic 

observations reveal similar mechanisms (M, TTt and LT cracking) only on the tensile side of 

the sample. Compression cracks (TTc) are observed in the transverse tows on the compressive 

side and trigger the final fracture (Fig. 2b).  

 

  
a) b) 

 
Fig. 3. Tensile testing of a SiC/SiC specimen: a) strain-stress response and b) cumulated AE 
(normalized by its maximum value) versus the applied stress. The onset (as revealed by in-situ 
observations) of the three main cracking mechanisms (matrix (M), transverse tows (TTt), 
longitudinal tows (LT)) are indicated.  
 

In order to analyze the mechanical behavior of this composite, a 2D FE model of an 

idealized unit cell (length L and thickness t) is created with dedicated tools [64]. As depicted 

by Fig. 4, the cross section of the composite consists of two layers in the warp direction and 
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three layers in the weft direction. The transverse tows are taken to have an elliptical cross-

section. Each tow is assumed to be identical to every other one. Closed macro-pores are 

observed between the fiber bundles. The sizes of each component (matrix, longitudinal and 

transverse tows) are representative of the microstructure. The mesh is composed of about 24000 

triangular elements with an average mesh size h = 20 µm.  

 

 

 
 
Fig. 4. Representation of the FE cell with a thickness t=1.2 mm and a length L=10 mm; the 
colors allow to identify each component including the matrix (red), the transverse (green) and 
the longitudinal (yellow) tows (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article). Direction 1 corresponds to the in plane 
warp direction and direction 2 is the thickness direction.  
 

A tensile test is simulated by applying an imposed displacement (along direction 1) at 

the right boundary while the displacement (along direction 1) of the nodes of the left boundary 

is prescribed to zero (Fig. 5a).   The 4-point bending load follows the geometry depicted in Fig. 

5b. The outer length and the inner span are respectively denoted L and .   

 
 

 
 

 
a) b) 

 
Fig. 5. Boundary conditions applied to the mesoscale model to simulate a) a tensile test, b) a 4-
point bending test. 
 

The effective elastic properties of each component are reported in Table 1. The matrix 

is assumed to be isotropic while a tow is considered as transversely isotropic. Note that the SiC 

based matrix is not made with monolithic SiC (to make it self-healing) which explains that its 

modulus is lower than 450 GPa. The elastic properties of the fiber bundles are estimated with 

the help of a dedicated homogenization procedure using a representative cell [65].  

Table 1 adds the fracture properties of each component which are a priori unknown and 

are estimated with the help of a trial and error procedure: tensile tests are performed on the 

1 
2 

 

t 

L 

L 



representative cell and the relevant fracture properties are estimated in order to observe the 

sequential development of damage already mentioned (Fig. 3). It must be pointed out that this 

procedure is approximate and does not provide a unique couple ( ),c cGσ  for each mechanism. 

However, the estimated value 60 Jm-2 of the fracture energy of the matrix is close to typical 

values (20-40 Jm-2) measured for sintered SiC [66]. The high value (1700 MPa) of the tensile 

strength of the longitudinal tow must be correlated with the typical values (800-1200 MPa) [67-

68] measured for “minicomposites” which are often considered as representative of a single 

fiber bundle.  Table 1 also indicates the values of the characteristic fracture length 
( )

11
2

c
c

c

E G
L

σ
=  

for each mechanism. This length must be compared with the mesh size h in order to capture 

accurately the crack increment at onset. If matrix and transverse tows are involved, the 

comparison is satisfactory as 
15

cL
h < . This is clearly not the case for longitudinal tows for which 

the high tensile strength implies a smaller fracture length. It is thus likely that the prediction 

will not be as precise for this mechanism.  

 
Table 1 
Properties used for the FE model at the mesoscale. 
 
 11E  22E  12ν  12G  cσ  cG  cL  
 (GPa) (GPa)  (GPa) (MPa) (Jm-2) (µm) 
Matrix 320 320 0.15 139 140 60 979.6 
Transverse tows 139 139 0.117 66 120 40 386.1 
Longitudinal tows 198 139 0.166 75 1700 400 27.4 

 
 
 
4. Results and discussion 
 

The results obtained with the simulation of a monotonic tensile test are first presented. 

Fig. 6 depicts the predicted crack network for three increasing values of the applied strain. As 

expected matrix cracking (M) is the first activated mechanism which develops as a consequence 

of the stress concentration induced by macro-pores (Fig. 6a). The following mechanism is 

tensile cracking of transverse tows (TTt) as shown in Fig. 6b. The final crack network (Fig. 6c) 

reveals cracking of longitudinal tows (LT). It is interesting to notice the accumulation of matrix 

cracks near the macro-pores and at the interface between matrix and longitudinal tows that may 

be representative of the occurrence of debonding. The corresponding simulated strain-stress 

response is plotted against the experimental response in Fig. 7a. The smaller length L=10 mm 



of the FE model (as compared with the 100 mm length of the real sample submitted to the 

tensile test) is responsible for the saw tooth-like response. A good agreement is observed up to 

an applied strain of 0.7%. This figure also plots the simulated response if the cracking of tows 

is ignored. Considering matrix cracking alone is clearly not sufficient to match the experimental 

response. The cumulated length of cracks (normalized by the total length attained) is plotted 

versus the applied stress and compared with normalized cumulated AE in Fig. 7b. The kinetics 

of cracking is well captured by the numerical simulation up to an applied stress of 200 MPa. 

Beyond this limit, the inaccuracy may be attributed to the unreliability of the model to represent 

the cracking of longitudinal tows.  
 

 

 
a) 0.08%ε =  

 

 
b) 0.32%ε =  

 

 
c) 0.73%ε =  

Fig. 6. Representation of the crack network resulting from the simulation of a tensile test for 
three values of the applied strain. The arrows indicate typical cracks for each mechanism. 
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Fig. 7. Simulation of a tensile test and comparison with the experimental data: a) Strain stress 
response. The black curve is the experimental one and the colored ones are simulated responses 
(the green curve is obtained if only matrix cracking is considered), b) Cumulated acoustic 
emission (experimental) and cumulated crack length (simulated) versus the applied stress. The 
data are normalized by their maximum values reached for an applied stress of 200 MPa.  
 

Keeping the same fracture properties for each component, the representative cell is now 

submitted to a monotonic four point bending test with the geometry indicated in Fig. 5b. The 

selected dimensions are L=10 mm, =6 mm, t=1.2 mm, width b=1 mm. In order to avoid the 

undesirable damages due to the punctual loading, all the components located beyond the inner 

span are assumed to be unbreakable in the simulations. Fig. 8 represents the predicted crack 

networks for three increasing values of the applied displacement. As expected, matrix cracks 

are first observed at the outmost tensile side (Fig. 8a). Increasing the displacement activates 

cracking of transverse tows but no crack can be observed at the compressive side (Fig. 8b). 

Finally, a main crack across nearly all the components including the longitudinal tows is 

formed. Moreover, compressive failure (TTc) is observed within transverse tows for a high level 

of applied displacement (Fig. 8c). This prediction is in agreement with the experimental 

observation (Fig. 2b).  

To represent the predicted mechanical response, the nominal stress σ  and strain ε  are 

introduced as given by the classical beam theory  

   

2
M t
I

σ  =  
 

 ,  2
2

2

Vt
V

ε =
 +  
 


 with 
2 2
P LM − =  
 



   (6) 
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where P  is the applied load, b  is the specimen width and V  is the relative deflection defined 

by max 0V V V= −  ( maxV  is the maximum deflection and 0V  is the deflection at the loading point), 

I  is the moment of inertia which is computed taking into account the geometry of the cell.  

In order to compare the predicted mechanical response with an experimental one performed on 

a sample with a different size (L=55 mm, =25 mm, t=1.9 mm, width b=10 mm), a dedicated 

procedure is required. As detailed in the Appendix, beam theory is used to estimate  0V  (and 

thus V ) from the experimental data ( )max,P V . Equation (6) then provides nominal stress and 

strain and in this case the moment of inertia is simply given by 
3

12
btI = . Fig. 9a likens the 

predicted stress-strain curve with the experimental one. In spite of the larger size of the sample 

(as compared with the representative cell), a reasonable agreement is demonstrated. Comparing 

the simulated response with and without the cracking of transverse tows (TTt) evidences the 

influence of this mechanism on the mechanical response. The other mechanisms (LT and TTc) 

are only observed at the end of the simulation. Furthermore comparing the cumulated crack 

length (simulated) and the cumulated AE (experimental) in Fig. 9b also demonstrates a good 

agreement and shows that the model is able to capture the kinetics of cracking.  

 

 
 

(a) ε = 0.21% 
 

 
(b) ε = 0.49% 
 

 
(c) ε = 0.79% 
 
Fig. 8. The crack network resulting from the simulation of a bending test for three values of the 
relative deflection.  
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a) b) 

 
Fig. 9. Simulation of a bending test: a) deflection-stress response. The black curve is the 
experimental one and the colored ones are simulated responses (the green curve is obtained if 
only matrix cracking is considered), b) Cumulated acoustic emission (experimental) and 
cumulated crack length (simulated) versus the applied stress. The data are normalized by their 
maximum values reached at σ =485 MPa.  
 
 
5. Conclusion 

 

The present work uses a finite fracture approach to analyze multiple cracking at the 

mesoscale within a unit cell representative of a woven CMC. The coupled criterion which 

combines a strength and a toughness condition is associated with a dedicated algorithm to 

predict the nucleation and the propagation of cracks. Three families of cracks are introduced in 

the model: matrix cracking, transverse and longitudinal tow cracking. Recent experimental 

results obtained from tensile tests performed on thin SiC/SiC composites elaborated by CVI are 

used: in-situ observations show the sequential development of the three cracking mechanisms 

under tensile loading and allow to determine the corresponding applied strain. A bi-dimensional 

FE model representative of the SiC/SiC microstructure is build. Using the finite fracture 

approach to simulate a tensile test and comparing with the experimental data permits to identify 

the fracture properties (strength and toughness) for each mechanism. Kinetics of cracking is 

well captured by the model as confirmed by the similar evolution of cumulated acoustic events 

(experimental data) and cumulated crack lengths (simulation data) versus the applied stress. 

Submitting now the unit cell to a four-point bending test shows that the previously mentioned 

mechanisms only develop at the tensile side. An additional mechanism (compressive cracking 
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of transverse tow) is predicted during the last stage of the loading. Those results are in good 

agreement with the experimental observations.  

We believe that our approach provides a simple and robust method to predict discrete 

damage in CMC. Convergence problems which arise from non-linear methods like cohesive 

zone models are avoided. Future work will incorporate the debonding mechanism at the 

matrix/tow interface. Further simulations with a larger unit cell and a decreasing mesh size are 

also necessary to increase accuracy. The influence of microstructural features on cracking 

patterns and mechanical response will be investigated.  

 
 
APPENDIX 
 

It is here assumed that i) the beam remains undamaged for 0
2

Lx w − ≤ ≤ =  
 

  with a bending 

modulus 1E , ii) the beam only damages for 
2
Lw x≤ ≤  with a bending modulus 2E decreasing 

with the applied load.  

In order to estimate max 0V V V= − , use is made of the following differential equations  
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Boundary and continuity conditions write  
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Solving (A.1) and (A.2) provides 

( )
3 2
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1 2

3 2
2

max 2
1 2

6 2 2
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   = = = + −       

     (A.3) 

The initial bending modulus 1E  is thus given by  



2 2

1
max 0 4 4 3
P w L wE

V I
   

= −   
  

,        (A.4) 

where 
max 0

P
V
 
 
 

 is the initial slope of the load-deflection curve.  

The bending modulus 2E  depends on the applied load with  

12 3
2

2 max
14 4 6

Pw L PwE w V
I E I

−
  

= − −  
  

.       (A.5) 

The experimental data ( )max,P V  allow to estimate ( )1 2 0, ,E E V  with the help of (A.4), (A.5), 
(A.3). 
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