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Abstract

Background: Several attempts have been made to determine HIV-1 resistance from genotype resistance testing. We
compare scoring methods for building weighted genotyping scores and commonly used systems to determine whether the
virus of a HIV-infected patient is resistant.

Methods and Principal Findings: Three statistical methods (linear discriminant analysis, support vector machine and
logistic regression) are used to determine the weight of mutations involved in HIV resistance. We compared these weighted
scores with known interpretation systems (ANRS, REGA and Stanford HIV-db) to classify patients as resistant or not. Our
methodology is illustrated on the Forum for Collaborative HIV Research didanosine database (N = 1453). The database was
divided into four samples according to the country of enrolment (France, USA/Canada, Italy and Spain/UK/Switzerland). The
total sample and the four country-based samples allow external validation (one sample is used to estimate a score and the
other samples are used to validate it). We used the observed precision to compare the performance of newly derived scores
with other interpretation systems. Our results show that newly derived scores performed better than or similar to existing
interpretation systems, even with external validation sets. No difference was found between the three methods
investigated. Our analysis identified four new mutations associated with didanosine resistance: D123S, Q207K, H208Y and
K223Q.

Conclusions: We explored the potential of three statistical methods to construct weighted scores for didanosine resistance.
Our proposed scores performed at least as well as already existing interpretation systems and previously unrecognized
didanosine-resistance associated mutations were identified. This approach could be used for building scores of genotypic
resistance to other antiretroviral drugs.
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Introduction

Antiretroviral therapy (ART) has significantly reduced the

morbidity and mortality associated with human immunodeficiency

virus (HIV) [1,2]. Resistance to antiretroviral drugs is, however, a

major factor limiting the effectiveness of ART [3,4]. The drug

resistance testing is an important monitoring tool and is

recommended in clinical practice both when initiating therapy

and to guide changes ART in patients with virologic failure [5,6].

Interpreting the results of HIV-1 genotypic data is one of the most

difficult task for clinicians caring for HIV-1 infected patients [7].

Three types of data form the basis of HIV-1 drug resistance

knowledge: (1) correlations between viral genotype and ART of

patients from whom sequenced HIV-1 isolates have been obtained

(emergence of mutations under a specific-drug containing

regimen); (2) correlations between genotype and phenotype (in-

vitro drug-susceptibility test results); and (3) correlations between

genotype, or phenotype, and virological response to a new

treatment regimen.

Several interpretation systems (IS) have been developed to help

choose appropriate ART in cases of resistance and three IS are

currently used by clinicians: the French ANRS algorithm, the

REGA algorithm and the Stanford HIV-db algorithm. ANRS and

REGA algorithms combine virological data of types 1 and 2 and in

many cases a genotypic score derived from a statistical analysis of

resistance data (type 3). The HIV-db algorithm provides drug-

specific estimates of viral susceptibility using a weighted scoring

system for mutations thought to be associated with resistance. A

more recent version of the HIV-db algorithm incorporates

additional scores from combination rules, i.e., presence of
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combinations of certain mutations. These systems are established

by expert panels that review the current literature on drug

resistance-associated mutations; their work involves correlating

genotypic patterns with clinical data then translating the findings

into interpretations rules [8]. These IS represent the sum of

available knowledge and, are regularly updated, as necessary, for

particular drugs. However, different IS give different results for

some drugs [9–12].

The genotypic IS that are currently widely used may not

perform satisfactorily for newly available data sets. The poor

performance of scores and of existing IS emphasizes the need for

improvements; new methods or larger data sets are required. It has

also been shown that the variability observed in the different

genotypic resistance scores was mainly due to the baseline patients

characteristics than of the statistical methods used [13]. Cross-

validation has been promisingly used as an attempt to overcome

the problem of the lack of an external validation set [14–16]

although external validation sets, from large cohorts, can also be

used in some cases [17].

Many statistical methods, from simple linear models to more

sophisticated approaches, have been proposed either to predict

HIV-1 resistance from the genotype or phenotype [15,18–22] or

to identify resistance mutations associated with virological

response [23–31]. For the latter, relevant resistance mutations

are often grouped to give a genotypic score that can be included in

existing IS (see above). Other works have investigated the

performance of IS, or of newly derived scores, in the prediction

of response to particular antiretroviral regimen [17,32–34]. The

question of whether a newly proposed methodology can improve

predictions in the context of expert systems remains a subject of

interest. Recently, various methods have been used to develop

weighted genotypic scores based on regression models [17,24].

This strategy involves using coefficients or coefficient transforma-

tion from different types of regressions as weighted scores for

resistance.

The aim of this study was two-fold: i) to compare a small

number of ‘scoring’ methods for building weighted genotypic

scores, ii) to compare such scores with existing IS, in particular by

using an external validation data set. These scores are used to

classify patients as ‘resistant’ or ‘sensitive’ to the corresponding

antiretroviral drug. We focus on scoring framework methodologies

based on Linear Discriminant Analysis (LDA), Logistic Regression

(LogReg), and Support Vector Machine (SVM). We will refer to

strategies that involve classification by summing assigned weights

to explanatory variables as ‘scoring strategies’. Such scoring

strategies have not been extensively used for building algorithms

for predicting HIV-1 resistance to antiretrovirals. The weights

assigned are estimated through statistical methods in which the

parameters and decision rules are directly available. It is well

known that a score created from a particular data set will, with

that data set, always outperform a score created using a different

data set as there is always some degree of model overfitting. We

therefore divided our data set into four country-based samples to

investigate whether country-based scores provided better perfor-

mance on external data sets than existing IS. As an illustrative

example, we used the Forum for Collaborative HIV Research

didanosine database [9]. Section 2 presents the data set used for

this study, the Linear Discriminant Analysis, Logistic Regression

and Support Vector Machine used in the scoring framework and

the criteria for comparing the different systems. Results are

presented in Section 3 and some elements of discussion are

provided in Section 4.

Materials and Methods

Data set
We used the FORUM database for didanosine (ddI) based on

13 studies (clinical trials and clinic-based cohorts). Briefly, this

database, which has been described elsewhere [9,24], includes

data for 1453 drug-experienced patients who had viral load .500

copies/mL and who underwent a genotypic resistance test when

beginning a ddI-containing therapy. The median number of

previously used antiretroviral drugs was four (range 1–12),

including three NRTIs (0–6) and one protease inhibitor (0–4).

Thirty-one percent (31%) of the patients had been pretreated with

ddI before inclusion. The sample was split into four independent

samples based on country of enrolment: France (n = 474), USA/

Canada (219), Italy (440) and S/U/S (Spain/UK/Switzerland

n = 320). The virological outcome was a change in HIV-1 RNA

between baseline and week 8, and a response was defined as a

HIV-1 RNA reduction of 0.6 log10 copies/ml or more. For

building our scores we only investigated mutations detected in

more than 1% of patients and providing a p-value ,0.05 (Mann-

Whitney test) for the association with the virological response. On

the basis of these criteria 32 mutations were included in the study.

Methods
A wide range of machine learning algorithms are currently

available as off-the-shelf packages. We considered the following:

Linear Discriminant Analysis (LDA), Support Vector Machine

with linear separator (SVM), and Logistic Regression (LogReg).

These methods provide: i) a set of coefficients associated with

variables (i.e. mutations); and ii) a boundary decision. These can be

used to classify patients into two groups (‘resistant’ or ‘sensitive’)

based upon their individual scores: a score for a patient is the sum

of the weights of the individual mutations present on virus

genotype. The patient is then classified by comparing this score to

the boundary decision. These methods use different mechanisms

to search over the space of parameters: LDA estimates linear

functions that maximize the distance between the categories, (i.e.

an equation that has strong discriminatory power), and at the same

time minimize the possibility of misclassifying cases into inappro-

priate groups or categories.In the basic setting, only one

discriminant function is built (two groups eg. ‘resistant’ and

‘sensitive’). The boundary decision is based on the centroids of the

groups. SVM methods find the best separation of input data,

known as the optimal hyperplane which minimizes some criteria

(see [35,36] for more details). A linear separator is used in the case

of two groups, the border is a linear function (known as a ‘‘Support

Vector Regressor’’). If there are two classes, the boundary decision

is the position relative to a real number. For Logistic Regression,

the set of parameters (b) is computed as usual and provide a linear

predictor which is used to compute the probability of an ‘event’ in

the model. Note that estimated coefficients associated with

mutations reflect their importance for the resistant/sensitive

classification. These approaches are complementary and can

reveal different aspects of modeled scenarios. For a given sample,

the three methods thus provide three independent scores leading

to three different classifications.

Didanosine resistance IS were evaluated on the entire sequence

for the RT region. The ANRS and REGA algorithm (version

October 2011 and 8.0.2, respectively), HIV-db score system

(version 29 May 2012) and a recent ddI algorithm developed with

the same Forum data set [24] that we called LDVD (Large

Derivation and Validation Data sets) were studied. ANRS, REGA

and LDVD classify patients into three levels of inferred drug

resistance: ‘sensitive’, ‘intermediate resistant’ and ‘resistant’. In

Scoring Methods for Building Genotypic Scores
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order to compare these interpretations systems to our data-based

scores, we investigates two aggregations: i) ‘intermediate’ and

‘resistant’ as ‘resistant’ (called in the following ANRS I, REGA I

and LDVD I, respectively); ii) ‘sensitive’ and ‘intermediate’ as

‘sensitive’ (respectively ANRS II, REGA II and LDVD II,

respectively). Adjustment of the cut-off score for the HIV-db

algorithm is not as straightforward. This system provides five levels

of inferred drug resistance (sensitive (S), potential low-level

resistance (P), low-level resistance (L), intermediate resistance (I)

and high-level resistance (R)). Thus, to compare this interpretation

system, three different output normalization systems were used as

follows: HIV-db I, S = ‘sensitive’ and P+L+I+R = ‘resistant’; HIV-

db II, S+P = ‘sensitive’ and L+I+R = ‘resistant’; HIV-db III

S+P+L = ‘sensitive’ and I+R = ‘resistant’.

The main difficulty in building a score from a data set is its

validation. Such scores are generally highly data-dependent, and

perform better than other scores or existing IS on the data set that

was used to train it. In the absence of validation sets, cross-

validation has been widely investigated as an approach for

providing learners or models to establish robust rules for use in

other populations of patients [14–16]. Although this procedure is

valuable, the use of an external set, when possible, provides a

better view of the performance of a score applied to independent

populations. The data set used for this study is already subdivided

into four subsets based on country of origin and therefore provides

an opportunity to investigate external validation. The methods

described above were applied to the four data sets providing such

that four country-based scores were obtained for each statistical

method. Each country-based score was applied to the data subset

used to train it and then to the three other data subsets. We also

compared performance of global scores and existing IS on the four

country-based samples. Global scores for the whole data set are

not independent of country-based data subsets but existing IS are

also not independent of the studies included in the FORUM

database. Data included in the FORUM database on didanosine

were pooled from 13 trials or cohorts representing knowledge

about didanosine resistance that was directly or indirectly used to

build existing IS. For example, analysis of the Jaguar trial provided

a genotypic score that was included in the ANRS algorithm [28].

Analyses aiming to improve the prediction of virological

response, often use sensitivity, specificity (respectively defined as

true positive rate and 1-false positive rate) and the Receiver Operating

Characteristic (ROC) curves. Different models can be compared

by considering area under ROC curves with corresponding p-

values [23,33]. The models are designed to classify patients as

being at low or high risk of response according to the set of

variables included in the model. Here, we focus only on defining

resistance classes based on genotype and no other variables are

included in the three models used. If a patient is classified as

‘resistant’, it is predicted that he will have no virological response

whatever the level of the other baseline variables (adherence,

baseline viral load, etc.). If a patient is not defined as ‘resistant’, its

virological response is strongly dependent of the values of other

variables. We used the precision as the criterion for comparing the

different methods; for this purpose, precision is defined as the

number of patients classified as ‘resistant’ who indeed show no

virological response (non-responder) as a proportion of the total

number of patients classified as resistant.

Results

The prevalence of each of the 32 mutations included in the

analysis is shown in Figure 1. The most frequent mutations in the

entire data set are: M184V (prevalence 58.9%), R211K (44.5%),

M41L (43.7%), T215Y (41.9%), D67N (34.8%), L210W (28.5%),

Q207E (18.4%), K103N (17.9%) and V118I (16.0%). Overall, the

median number of mutations was 3 (interquartile range, 2–6) and

84 patients carried none of the 32 mutations included in the study.

The French data set has the highest prevalence for seven of the

nine mutations with prevalence higher than 15% (M41L, D67N,

K103N, V118I, M184V, L210W and T215Y). Twenty-two of the

32 mutations were more prevalent in the French than in the other

three data subsets Most of the patients were men (78%) and 995

(68.5%) patients were defined as ‘responders’ (HIV-1 reduction

greater than 0.6 log10 copies/mL), as previously reported [9].

Parameters and weights associated with the 32 mutations for

global scores, based on the entire data set, are shown in Table 1.

For LDA and SVM, sums of both intercept and weights are

compared with cut-off values of 0 and 0.5, respectively, to classify

patients as ‘resistant’ (.0 and .0.5, respectively). For the logistic

regression, the linear predictor is determined by the parameters of

the corresponding mutations and a patient is classified as ‘resistant’

if the corresponding probability is greater than 0.5. Rules for the

SVM are simple a patient is classified as ‘resistant’ if the virus

carries the L74I, F77L, or H208Y mutations. Of note, these three

mutations are present in 2.3, 1.7 and 7.2% of patients in the global

sample, respectively, and H208Y and L74I are more prevalent in

France than in the three other samples. Classification for the two

other methods is not so simple; nevertheless mutations F77L,

Q207K and K223Q have the greatest weight in defining a patient

as ‘resistant’. Discordance between SVM and both LogReg and

LDA was higher than that between LogReg and LDA (Table 2).

Overall, 103 patients were classified as ‘resistant’ by all three

methods and 88 were classified as ‘resistant’ by LDA and LogReg

but as ‘sensitive’ by SVM (Table 2).

The precision of each of the three methods and existing IS

applied to the global dataset are reported in Table 3. Overall 201,

193 and 152 patients were classified as ‘resistant’ with the LDA,

LogReg and SVM methods, respectively. As expected, the scoring

methods performed better than already existing IS because the

global data set was used both for training and validating these

scores. Scoring methods classified approximately 60% of the

patients without virological response at week 8 as ‘resistant’ with

no significant difference between the three methods. The precision

of existing IS was, on average, of 40% (range 37% for HIV-db I to

58% for LDVD II). LDVD II, however, classified only 67 patients

as ‘resistant’ such that the confidence in this the precision value

was poor (58.2%, 95% confidence interval 45.5 to 70.2%). It

appears that there is a correlation between the precision and the

number of patients classified as ‘resistant’ since the ANRS I and II

provided a good performance (49%) with approximately 370

patients classified as resistant while HIV-db I provided the poorest

performance (37%) with more than 1000 patients defined as

‘resistant’

Global scores and existing IS were also applied to each country-

based data set (Table 4). Precision was generally much better for

scoring methods than for existing IS. Weighted means of the

precision were around 60% for scoring methods and were between

37 and 49% for existing IS (except for LDVD II but, again, with a

large 95% confidence interval as explained above). The French

data set provided the best performance, and this was a

consequence of the high prevalence of most of the mutations

contributing to global scores and used by existing IS. For the three

other subsamples, the precisions were better than or similar to

those for any existing IS. The SVM method performed better than

the two other methods for the Italian subsample, but the inverse

was observed for the S/U/S subsample. There was no significant

difference between the three statistical methods for French and

Scoring Methods for Building Genotypic Scores
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USA/Canadian data subsets. The poorest performance (between

13 to 39%) with existing IS was for the S/U/S data subset.

The three methods were applied to the four country-based data

subsets providing four country-based scores for each method.

Intercepts and weights specific to each country-based subsample

are shown in Table S1. Scores were applied to all country-based

data subsets: one subset was used to build the score which was then

applied to the three other subsets (Table 5). Considering four

blocks representing the four data sets, the set used for both training

and validating the score is displayed in the first row of each block.

For each method, the precision obtained from country-based data

subsets was better than that with the global data set (the weighted

mean of precision computed from the four country-based data sets

is higher than the precision obtained from the global data set). For

instance, the global precision for LDA was 60.2% (Table 3)

whereas the weighted mean obtained from the four country-based

data subsets was 68.8% (weighted mean based on 72.9, 73.5, 57.4

and 68.3%, Table 5).

External validation provided the lowest values of precision. For

example, the country-based score trained with the Italian

subsample and applied to the USA/Canada subsample led to

precisions of 36.7, 30.8 and 31.6 for LDA, LogReg and SVM,

respectively, whereas when the USA/Canada data set was used for

both training and validating the values were 73.5, 72.7 and 72.0,

respectively (Table 5). The difference in precision, however, was

much larger when the validating set was USA/Canada and S/U/

S than when it was France and Italy. Nevertheless, the

performances of country-based scores applied to an external

sample were better than or similar to those of existing IS. For

example, the performance of country-based scores using the S/U/

S sample as the validating set was between 25 and 33.3% (Table 5)

and for existing IS it was between 13 and 38.5% (Table 4).

Discussion

The choice of treatment for HIV-infected patients with

virological failure is of major importance in their management.

Expert-based IS are valuable tools for choosing the appropriate

combination therapy for such patients [7]. However, different IS

give different results for certain drugs leading to potential

Figure 1. Frequency of the 32 mutations retained in the analysis on the entire data set and by country-based data sets.
doi:10.1371/journal.pone.0059014.g001
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confusion among clinical practitioners [9,11,12]. The process in

these IS by which weights are associated with mutations has not

been clearly defined. The aim of this analysis was to use a large

data set to assess three methods for providing weighted scores that

can be used to define resistance class from genotype information.

The total sample was divided into four country-based subsamples

to allow external validation of global scores and country-based

scores. Resistance to didanosine was used to illustrate the

methodology which should be applied for more recent antiretro-

viral drugs.

Using the global data set for training and validating, all three

scoring methods performed better than currently exiting IS. This

was expected, because scores generated on a particular sample

perform better than any other rules on that sample. We did not

find any difference in precision between the three methods,

although the SVM method gave a classification that was not the

same as those given by the LDA and LogReg methods. Global

weights indicated that the SVM classification was based on only

three mutations and suggest that LDA and LogReg are more

appropriate. With SVM, weights obtained from country-based

data sets, however, provided a different finding because many

mutations had a non-zero weights, except in the Italian subsample

(Table S1). The reasons why many weight estimates were zero in

the global and Italian data sets is unclear and needs further

investigation. Logistic regression is a simple method, available in

many statistical software packages, and has been successfully used

in the context of models of resistance to antiretrovirals [32,33].

Table 1. Estimated weights associated with the 32 mutations
retained on the entire data set for the three statistical
methods investigated (LDA: Linear Discriminant Analysis;
LogReg: Logistic Regression, SVM: Support Vector Machine).

LDA LogReg SVM

Intercept 2136 21.25 2100

Mutations

T39A 2 0.01 0

M41L 18 0.19 0

K43E 14 0.12 0

K43Q 247 20.42 0

E44A 24 20.06 0

E44D 231 20.30 0

D67N 27 0.26 0

T69D 31 0.26 0

L74I 85 0.77 167

L74V 44 0.40 0

V75M 211 20.09 0

V75T 72 0.62 33

F77L 121 1.08 167

L100I 41 0.38 0

K103N 14 0.13 0

V118I 30 0.27 0

D123S 99 0.87 0

Y181C 4 0.02 0

M184V 247 20.47 0

G190A 54 0.49 0

E203D 43 0.39 0

E203K 32 0.27 0

Q207E 35 0.34 0

Q207K 111 1.06 0

H208Y 66 0.57 200

L210W 67 0.61 0

R211K 0 0.00 0

T215Y 215 20.15 0

D218E 37 0.34 0

K219R 229 20.25 0

K223Q 102 0.94 0

L228H 27 0.24 0

doi:10.1371/journal.pone.0059014.t001

Table 2. Classification as ‘resistant’ or ‘sensitive’ according to
the three statistical methods investigated on the entire data
set (LDA: Linear Discriminant Analysis; LogReg: Logistic
Regression, SVM: Support Vector Machine).

Method

LDA LogReg SVM N

Resistant Resistant Resistant 103

Resistant Resistant Sensitive 88

Resistant Sensitive Resistant 6

Resistant Sensitive Sensitive 4

Sensitive Sensitive Sensitive 1207

Sensitive Sensitive Resistant 43

Sensitive Resistant Sensitive 2

Sensitive Resistant Resistant 0

doi:10.1371/journal.pone.0059014.t002

Table 3. Number of patient with a virological response or not
among patients classified as ‘resistant’ and precision for the
three statistical methods and existing IS on the entire data set
(LDA: Linear Discriminant Analysis; LogReg: Logistic
Regression, SVM: Support Vector Machine).

Patients classified as ‘resistant’

Responder (n) Non Responder (n) Total (n) Precision (%)

Method

LDA 80 121 201 60.2

LogReg 75 118 193 61.1

SVM 61 91 152 59.9

Existing IS

ANRS I 195 184 379 48.5

ANRS II 184 174 358 48.6

LDVD I 355 274 629 43.6

LDVD II 28 39 67 58.2

REGA I 560 337 897 37.6

REGA II 216 153 369 41.5

HIV-db I 650 376 1026 36.6

HIV-db II 590 356 946 37.6

HIV-db III 498 313 811 38.6

doi:10.1371/journal.pone.0059014.t003
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For the entire sample, ANRS, LDVD and REGA II provided

better precision than HIV-db, contradicting previous results for

didanosine resistance based on the FORUM database [9].

However, our criterion was very different to those used previously

in predictive models: we focused on the precision measures as the

ability to predict resistance from the genotype and then to predict

virological failure among patients classified as resistant. It appears

that there is a negative correlation between the number of patients

classified resistant and precision. The HIV-db IS gives the largest

number of patients classified as ‘resistant’ because it considers

mutations at 21 positions to assess didanosine resistance, the

ARNS and REGA systems include only 9 and 11 positions,

respectively.

Scores defined from the entire sample and applied to country-

based data subsets performed better than already existing IS. As

each country-based sample is involved in building the global

scores, the global scores could be considered not to be independent

of the country-based data subsets. This is also true, however, for

existing IS. Indeed, the FORUM database on didanosine contains

some of the data used to build these IS. For example, the

didanosine score defined in the Jaguar study has been included in

the ANRS IS since 2007. The studies included in the FORUM

database represent a part of the knowledge about didanosine

resistance that was used to define some of the rules in existing IS.

We provide a comparison of different rules applied to four distinct

samples in Table 4. The poor performance of the S/U/S subset is

explained because data from three different countries are included

in this subset. The best performance was with the French subset

because this data set has the highest prevalence of 22 mutations

and high prevalence of the major mutations (L74I, F77L, D123S,

Q207K, H208Y, L210W and K223Q) involved in the three

scoring systems. It has been shown that the France data set

includes the largest number of patients previously exposed to

didanosine and the highest median number of previous antiret-

roviral drugs [13].

Country-based scores applied to country-based samples used to

build them showed greater precision than global scores applied to

the global data set. This is because country-based subsamples

provided more specific scores due to a smaller variability between

patients than in the global data set. Conversely, scores defined on

one country-based data set showed lower precision when applied

to another data set, as observed previously [9,17]. This limitation

is inherent to scores defined on one particular population and

applied to completely independent samples. There were substan-

tial differences in the prevalence of the various mutations between

the four country-based data sets (Figure 1). These epidemiological

differences are probably consequences of differences in treatment

histories between populations in different countries [13] although

there may be other causes [17]. The precision was up to 45%

lower when the USA/Canada and S/U/S data sets were used for

validation. The smallest loss was when the score was trained on the

Italian data subset and applied to the French data subset; we have

no clear explanation for this. Despite difference in weights,

especially between SVM and the two others methods, there was no

significant difference in precision between the three statistical

methods investigated.

Overall, seven mutations (L74I, F77L, D123S, Q207K, H208Y,

L210W and K223Q) have a major impact on the resistance by at

least one of the three scoring methods used. The L74I, and to a

lesser extent the L210W and F77L mutations, are used by one or

more existing IS to predict resistance. These IS do not use the four

other mutations to predict didanosine resistance. The prevalence

Table 4. Precision for global scores, obtained from the three
statistical methods, and existing IS for each country-based
data sets (S/U/S: Spain/UK/Switzerland; LDA: Linear
Discriminant Analysis; LogReg: Logistic Regression, SVM:
Support Vector Machine).

Precision (%)

France USA/Canada Italy S/U/S Weighted mean

Method

LDA 75.8 45.8 44.1 55.6 60.2

LogReg 78.2 45.8 42.9 57.7 61.1

SVM 74.4 42.9 53.3 34.8 59.9

Existing IS

ANRS I 62.5 42.9 40.3 33.9 48.5

ANRS II 62.0 44.7 36.7 38.5 48.6

LDVD I 56.3 41.4 42.0 17.5 43.6

LDVD II 84.6 66.7 38.5 16.7 58.2

REGA I 47.8 35.5 38.5 15.2 37.6

REGA II 58.7 34.0 37.9 13.0 41.5

HIV-db I 45.6 34.1 39.2 16.0 36.6

HIV-db II 46.7 36.1 39.2 16.9 37.6

HIV-db III 49.8 38.2 37.2 15.6 38.6

doi:10.1371/journal.pone.0059014.t004

Table 5. Precisions of country-based scores for each country-
based data sets including the sample that served for training
(S/U/S: Spain/UK/Switzerland; LDA: Linear Discriminant
Analysis; LogReg: Logistic Regression, SVM: Support Vector
Machine).

Precision

LDA LogReg SVM

Validation set: France

Training France 72,9 72,0 72,0

USA/Canada 53,1 48,8 53,5

Italy 68,4 66,7 66,7

S/U/S 63,2 64,9 60,4

Validation set: USA/Canada

Training USA/Canada 73,5 72.7 79,2

France 45,5 45,7 42,3

Italy 36,7 30,8 31,6

S/U/S 28,6 25,0 25,0

Validation set: Italy

Training Italy 57,4 39,6 63,6

France 45,9 45,8 45,0

USA/Canada 44,0 38,7 38,7

S/U/S 44,4 45,7 45,2

Validation set: S/U/S

Training S/U/S 68,3 77,8 66,7

France 31,7 30,9 31,1

USA/Canada 28,6 28,5 25,0

Italy 29,4 28,1 33,3

Weighted Mean 68,8 69,7 70,8

doi:10.1371/journal.pone.0059014.t005
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of these mutations is low, and this may explain why they were not

found to be associated with didanosine resistance in previous

studies based on small sample size. In the Stanford HIV Drug

Resistance Database (http://hivdb.stanford.edu/cgi-bin/

MutPrevBySubtypeRx.cgi), the percentages of viruses with the

D123S, Q207K, H208Y and K223Q mutations in antiretroviral-

experienced patients infected with subtype B are 0.8, 1.1, 3.6 and

0.7%, respectively. The D123S and Q207K mutations were

already identified as being associated with didanosine resistance in

the LDVD algorithm developed on the FORUM database [24].

Some mutations (insertion at codons 66, 67, 68, 69, 70 or 71,

Q151M) used by existing IS as strong predictors of resistance to

didanosine were not retained in our analysis because their

prevalence is lower than 1%, and consequently they have no

impact on resistance in our analysis. This emphasizes an apparent

discordance between weights obtained from methods investigated

here and weights in existing IS. Such a difficulty has been

sometimes circumvented in including well known resistance

mutations in a score even if there were not present in the sample

[24,30].

Few mutations had positive impact on virological response in

our analysis and had negative impact in existing IS. For example,

T215Y is considered to be a resistance mutation in the three IS

investigated, but is scored by the LDA and LogReg analyses as

having a positive effect. This discordance is explained by

interactions with other mutations: the effect of each mutation on

resistance is adjusted for the 31 other mutations in the model. For

example, applying a logistic regression model after removing the

seven mutations described above leads to the T215Y mutation

being scored as having a negative effect (b= 0.04). This

emphasizes both the complex pattern of mutations and the

possibly different effects of each mutation in the presence or

absence of other mutations, especially when the prevalence of

some mutations is low. Resistance studies using ultrasensitive

assays, including deep sequencing, will provide further insights

into effects of this type. Discordant findings for the M184I/V

mutation, even between existing IS, have been reported previously

and discussed [28].

One limitation of this work is that the scoring methods

investigated use a binary outcome. Moving from a continuous

outcome, the HIV-1 RNA reduction, to a binary outcome,

response versus no response, generally leads to a loss of

information. The threshold of 0.6 log10 copies/mL used to define

a virological response was chosen due to the moderate potency of

didanosine. Sensitivity analyses, however, using 0.5 and 0.7 log10

copies/mL provided similar results (data not shown). Another

limitation is the absence or low prevalence of certain mutations

involved in resistance to NRTI-class. Some relevant mutations and

insertions were absent from our database even though it is large.

One consequence of the way that statistical models assess weights

for resistance mutations adjusted for the presence of other

mutations is that different weights are likely to be found in the

presence of other mutations. This problem is inherent to the use of

statistical methods. The good performance of global scores,

however, with the four country-based data sets demonstrates the

robustness of these methods. External validation of country-based

scores confirm this and showed better performance than existing

IS applied on the country-based samples. In conclusion, we

explored a small number of scoring methods used to build

weighted genotyping scores and to classify patients as resistant or

not. The three methods performed similarly, and as well as or

betterthan existing IS. Four mutations not previously shown to be

associated with didanosine resistance were identified in our scores

as having an impact. The prevalence of the four mutations in our

large data set was low. In this study, we used didanosine as an

illustrative example; these scoring methods should be applied to

resistance to other antiretroviral, particularly those that have been

introduced recently, to assess their utility.
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