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Abstract

Invasive pest species may strongly affect biotic interactions in agro-ecosystems. The ability of generalist predators to
prey on new invasive pests may result in drastic changes in the population dynamics of local pest species owing to
predator-mediated indirect interactions among prey. On a short time scale, the nature and strength of such indirect
interactions depend largely on preferences between prey and on predator behavior patterns. Under laboratory
conditions we evaluated the prey preference of the generalist predator Macrolophus pygmaeus Rambur
(Heteroptera: Miridae) when it encounters simultaneously the local tomato pest Bemisia tabaci (Gennadius)
(Hemiptera: Aleyrodidae) and the invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). We tested
various ratios of local vs. alien prey numbers, measuring switching by the predator from one prey to the other, and
assessing what conditions (e.g. prey species abundance and prey development stage) may favor such prey
switching. The total predation activity of M. pygmaeus was affected by the presence of T. absoluta in the prey
complex with an opposite effect when comparing adult and juvenile predators. The predator showed similar
preference toward T. absoluta eggs and B. tabaci nymphs, but T. absoluta larvae were clearly less attacked.
However, prey preference strongly depended on prey relative abundance with a disproportionately high predation on
the most abundant prey and disproportionately low predation on the rarest prey. Together with the findings of a
recent companion study (Bompard et al. 2013, Population Ecology), the insight obtained on M. pygmaeus prey
switching may be useful for Integrated Pest Management in tomato crops, notably for optimal simultaneous
management of B. tabaci and T. absoluta, which very frequently co-occur on tomato.
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Introduction

In ecosystems, species interact directly or indirectly resulting
in both short-term effects on species abundance and density,
and long-term effects on population dynamics [1-4]. Unlike
direct interactions, indirect interactions are mediated by a third
organism and may occur between organisms separated in time
or space [1,5,6]. Generalist predators are likely to trigger
indirect interactions among prey species owing to their capacity
to attack different prey [7-9]. The nature or strength of predator-
mediated indirect interactions may change over time, but are
predicted to be generally positive at time scales shorter than
the predator generation time (apparent mutualism or
commensalism) [2,4,10]. The dispersion of predation pressure
among multiple available prey species may result in increased

prey population densities compared to densities in single prey
systems.

The nature of indirect interactions depends in part on
predator preference [11,12]. Some of the prey characteristics
that influence predator preference are nutritional quality of the
prey and the ease of attack it presents [12]. Predation on prey
of highest nutritive value increases the predator's fitness
(higher survival, fecundity, etc...), although this prey may not be
systematically preferred [12]. Capture success generally
depends on prey mobility and access to a refuge (enemy-free
space) [12,13].

Generalist hemipteran predators more frequently attack
mobile prey: they are able to detect movements and hunt
mobile prey [12,14], whereas they tend to move randomly on
plants to find stationary prey [15]. When foraging, predators
may also rely on some chemical cues to locate non-mobile
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prey such as semiochemicals resulting from prey oviposition or
herbivore-induced plant volatiles (e.g. synomones) [16]. The
tendency of a predator to choose a given prey type over
another may change as the relative frequencies of the prey
species in the predator’s environment change. Switching from
one prey to the other occurs when the predator over-attacks
the most abundant prey, and almost ignores the rarest one
[17]. Prey switching has a stabilizing effect on prey populations
as relatively scarce prey species are freed from predation and
relatively common prey suffer it more frequently. Under this
condition of disproportionate predation on more abundant prey,
species neither go extinct nor proliferate [7,18]. This stabilizing
effect of generalist predators on prey populations may have
useful application for simultaneously managing multiple pest
species in agro-ecosystems. Moreover, it may be a great help
when developing biological control against invasive alien pest
species. Invasive alien species generally have high capacities
for proliferation; they may be strong competitors for resources
and they may escape predation from their natural enemies
when invading new regions [19,20]. Generalist predators, when
switching between pests, may (i) help reduce overall pest
pressure on crops and (ii) prevent new infestations by invasive
alien pests [7,21].

We studied the predation behavior of the generalist mirid bug
Macrolophus pygmaeus Rambur (Heteroptera: Miridae) feeding
on two prey species, the local tomato pest Bemisia tabaci
biotype Q (Gennadius) (Hemiptera: Aleyrodidae) and the
invasive alien pest Tuta absoluta (Meyrick) (Lepidoptera:
Gelechiidae). The South American tomato pinworm T. absoluta
is a major pest on tomato [22]. It recently invaded Spain (2006)
and quickly spread throughout the Afro-Eurasian continent [23].
The larvae cause dramatic yield decreases in tomato crops (up
to 100%) by mining the leaves, stems and fruits of the plants
[22]. Bemisia tabaci Biotype Q is a whitefly species from
Europe [24-27] and a major pest in tomato crops causing direct
and indirect (by vectoring viruses) damage [28,29].
Macrolophus pygmaeus is often used as a biocontrol agent
against whiteflies (including B. tabaci). This predator also feeds
on various other prey such as thrips, aphids, mites, and the
eggs and larvae of Lepidoptera [30,31], notably T. absoluta
[4,22,32]. It shows switching behavior when attacking whiteflies
and other prey species [31]. Macrolophus pygmaeus, being
native of Europe, has co-evolved with B. tabaci; it may show
both preference and adaptation to this prey over recently
invading alien species such as T. absoluta. Conversely, native
prey may have evolved defense mechanisms against native
predators that alien prey have not developed. As evolutionary
naive prey, alien prey may suffer higher predation pressure
than the native prey in the invaded area [20,33]. The predation
behavior of M. pygmaeus when encountering both the local
(B. tabaci) and invasive alien (T. absoluta) pests has not been
described yet; it could affect efficacy of this predator as a
biocontrol agent in tomato crops.

In this context, under laboratory conditions, we studied (i) the
predation activity of M. pygmaeus in prey complex showing
various ratios of local (B. tabaci) vs. alien (T. absoluta) prey
numbers, (ii) the preference of M. pygmaeus for B. tabaci vs.
T. absoluta, and (iii) potential Prey switching of M. pygmaeus

between B. tabaci and T. absoluta when encountering both
prey at various densities.

Materials and Methods

Biological materials
The plants used in the experiments were tomato plants,

Solanum lycopersicum L. cv. Marmande, grown in climatic
chambers (23±1°C, 65±5% RH, 16L:8D) in individual plastic
pots (diameter 26 cm). The prey B. tabaci and T. absoluta were
reared on tobacco and tomato plants respectively, in separate
cages, in a climatic chamber (23±1°C, 65±5% RH, 16L:8D).
The predator M. pygmaeus was provided by Biotop© (InVivo
AgroSolutions) and reared on tomato leaves (complemented
with Ephestia kuehniella [Lepidoptera: Pyralidae] eggs) and
maintained in growth chambers (23±1°C, 65±5% RH, 16L:8D).
All predators used in the experiments lacked any previous
experience of predation on B. tabaci or on T. absoluta, i.e. they
were naive on these two prey. Each predator was isolated
individually in a glass tube with a piece of tomato stem 24h
before beginning each experiment.

Experimental design
We studied the predatory behavior of M. pygmaeus in prey

patches containing varying densities of B. tabaci and
T. absoluta, on individual tomato plants (thereafter:
microcosms), using a 2 x 2 x 4 factorial design. The first two-
level treatment varied the predator stage tested (adult or
juvenile). The second two-level treatment varied the presence
of T. absoluta in the microcosms. The third four-level treatment
varied the ratio between B. tabaci and T. absoluta in the prey
complex introduced into the microcosms, while the total
number of prey per microcosm remained constant at 40. The
ratios tested of B. tabaci - T. absoluta were 40-0, 30-10, 20-20
and 10-30. No group was tested with T. absoluta as the sole
prey because such a scenario would not be realistic for
European tomato crops since whiteflies always infest the
tomato crops before T. absoluta arrives.

The prey and predator treatments chosen for the study were
based on knowledge from the literature and from pilot
experiments carried out in the lab. First, the predatory behavior
of M. pygmaeus may change during its development; juveniles
are assumed to have a lower satiety level than adults
[30,34,35] and predatory behavioral pattern of Hemipteran
juveniles can differ partially from those of adults [36]. Second,
pilot experiments showed that predation on B. tabaci eggs by
M. pygmaeus was quite marginal (< 5% of B. tabaci eggs
attacked by the predator when providing 20, 30 or 40 eggs on a
single leaflets, n=30 replicates per density tested). In addition,
M. pygmaeus attacked very few T. absoluta old larvae (L3-L4)
when compared to young larvae (L1-L2) or eggs of T. absoluta
(< 3% of predation on L3-L4 during pilot experiments in Petri
dishes, see also [37]). Therefore, the developmental stages of
the prey used during the experiments were third nymph instars
of B. tabaci, T. absoluta eggs, and T. absoluta young larvae
(L1-L2). Third, at 25°C on tomato plants, the natural mortality of
eggs and larvae of T. absoluta is low (2-15% depending on the
T. absoluta stage considered, Table S1) and egg incubation
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and L1+L2 development times are very close (4.1±1.4 days
and 4.8±0.5 days respectively) [22]. Therefore, when
T. absoluta was used as prey, we used equal numbers of eggs
and young larvae (L1-L2) in an attempt to create proportions of
T. absoluta juvenile stages believed to occur naturally in
tomato crops.

Following the design of previous studies [15,38], microcosms
were created by placing a clear acetate cylinder over an
individually potted tomato plant (4-week old plants with four
fully expended leaves were used). Cylinders had a mesh (350
μm) top for ventilation. They were 35 cm high x 15 cm in
diameter and sand was placed on the soil surface to provide a
substrate into which the cylinder could be easily pushed to
ensure a complete seal. All experiments were carried out at a
temperature of 25±1°C, 70±5% RH and a 16L:8D photoperiod.
For each B. tabaci - T. absoluta prey complex tested, crawlers
of B. tabaci (first nymph instars, see [39]) were distributed
equally among the leaves of the tomato plant with a fine brush,
and nymph survival was checked 2 hours later under a
microscope to ensure effective settlement of the nymphs.
Plants were then placed in a climatic chamber for 7 days,
sufficient time to allow B. tabaci nymphs to reach the third
instar. After the 7-day period, T. absoluta eggs (laid for less
than 10h [40]) and T. absoluta larvae (L1-L2) were deposited
equally among the leaves of the tomato plant. The prey
complex was allowed to settle for two hours on the plant before
a single one predator (adult or juvenile) was introduced to each
microcosm. The microcosms were then placed in growth
chambers (25±1°C, 65±5% RH, 16L:8D). After 48h, the number
of each prey type attacked by the predator was counted under
a microscope.

Fifteen adult predators and 24 juvenile predators were
exposed to each of the four B. tabaci - T. absoluta prey
complexes. In all, 60 replicates were conducted with adult
predators and 96 with juvenile predators. Data from
microcosms in which the predator died or metamorphosed to
an adult during the experiment were discarded from the
analyses.

Data analysis
Normality of datasets was assessed using a Shapiro-Wilk

test, and statistical analyses were carried out with R software,
version 2.14.1 (R Foundation for Statistical Computing). In
order to characterize how the various treatments impacted M.
pygmaeus predation, we used two types of analyses.

1 To assess the effect of (i) the predator stage, (ii) the
presence of T. absoluta (in the prey complex), and (iii) the
various B. tabaci-T. absoluta prey ratios (in the prey complex)
on M. pygmaeus predation activity, the total number of prey
attacked per microcosm was analyzed using a GLM analysis
with the ‘‘predator stage’’, “T. absoluta presence”, and ‘‘B.
tabaci - T. absoluta prey ratio” as main factors.

2 We used Manly’s modeling works [41,42] to assess (i) the
preference of M. pygmaeus for either B. tabaci or T. absoluta in
the microcosms, and (ii) Prey switching in M. pygmaeus when
encountering various prey ratios (B. tabaci vs. T. absoluta) in
the microcosms. In the general formula of Manly, a preference
for a given prey is scored as a deviation in the number of

individuals of a given prey type selected for a particular action
from the number of this prey type available for the action. We
used the number of prey attacked as the selected action and
the number of prey per prey type in the microcosm as the
number of available prey. As M. pygmaeus may feed differently
on egg and L1-L2 of T. absoluta [37], we distinguished attacks
occurring on T. absoluta larvae from those on T. absoluta eggs
(as well as B. tabaci nymphs). Manly’s βj of the jth prey type for
predation event (with three prey types being considered) was
estimated using the equation (18) of Manly et al. [42]:

β j =
ln  r j / A j

∑i=1
n ln  ri / Ai

 j =1, 2, 3

Ai was the number of individuals of a given prey type i
available for predation by M. pygmaeus (∑i=1

3 Ai= total number
of prey available for predation) and ri was the number of a prey
type i that have not been attacked (with xi the number of a prey
type i attacked and xi+ri=Ai). The number of prey types was
n=3 and βj = 1/ n when prey were chosen randomly (for all j).
The decrease of available prey as predation occurred during
the experiment was approximated with the use of logarithms
[41,42]. The preference of M. pygmaeus for a given prey type
over other ones (per prey complex tested, i.e. per B. tabaci - T.
absoluta ratio) was tested by comparing Manly’s Beta values
among T. absoluta eggs, T. absoluta larvae and B. tabaci; we
used an ANOVA followed by a Tukey’s post hoc test for
multiple comparisons. In addition, the occurrence of a Prey
switching in M. pygmaeus was tested using a Student’s t-test
that compared estimated βj values from expected values
[31,41,42].

Results

Predation activity
The statistical results of the GLM analysis are summarized in

Table 1. The total predation activity of M. pygmaeus in the
microcosms (i.e. all prey attacked, pooled per microcosm)
varied significantly between the predator stages (significant
‘Predator stage’ factor); there was higher predation by adults
than by juveniles (Figures 1 and 2). By contrast, neither the
presence of T. absoluta nor the prey ratio (B. tabaci – T.
absoluta) in the microcosm affected the predation activity of
M. pygmaeus (non significant ‘Tuta absoluta’ and ‘Prey ratio’
factors). However, the ‘Predator stage’ and ‘Tuta absoluta’
factors did interact significantly; suggesting that the effect of
predator stage on predation activity was function of the
presence or not of T. absoluta. The presence of T. absoluta in
the prey complex led to an increased predation for adults
(Figure 1) whereas it led to a reduced predation activity for
juveniles (Figure 2). In addition, impact of predator stage was
also function of the B. tabaci – T. absoluta ratio (significant
interaction between ‘Predator stage’ and ‘Prey ratio’ factors).
When the prey ratio was biased toward T. absoluta, the
predation activity of adult predators increased by up to 30%
(Figure 1). By contrast, an increased proportion of T. absoluta
in the prey ratio led to a reduction of predation activity by
juveniles (Figure 2); it decreased by up to 20.5% when B.
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tabaci represented only 0.25 of prey available in the
microcosms.

Predator preference
The assessment of predator preference was based on the

analyses of Manly’s Beta values (βj). For all B. tabaci-T.
absoluta prey ratios tested, B. tabaci was the significantly

Table 1. Statistics from the generalized linear model used to analyze the number of prey attacked by M. pygmaeus in
microcosms as function of predator stage (adults vs. juveniles, ‘Predator stage’ factor), as function of the presence or not of
T. absoluta in the microcosms (‘Tuta absoluta’ factor), and as function of the various B. tabaci - T. absoluta prey ratio tested
(‘Prey ratio’ factor).

Source of variation Degrees of freedom Chi-square p-value
Predator stage 1 10.38 0.001
Tuta absoluta 1 1.04 0.308
Prey ratio 3 5.63 0.131
Predator stage x Tuta absoluta 1 15.14 < 0.001
Predator stage x Prey ratio 3 20.67 < 0.001

doi: 10.1371/journal.pone.0082231.t001

Figure 1.  Predation of B. tabaci (nymphs) and T. absoluta (eggs and larvae) by M. pygmaeus adult predators in various
Prey complex.  Mean number (±SEM) of prey attacked by M. pygmaeus adult predators per prey type and as function of the
various B. tabaci and T. absoluta prey ratio (Prey complex) tested in the microcosms. Dark grey: predation on B. tabaci nymphs;
medium grey: predation on T. absoluta eggs; light grey: predation on T. absoluta larvae.
doi: 10.1371/journal.pone.0082231.g001
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preferred prey in half of the cases. It was the preferred prey for
adult predators when tested at the 30-10 B. tabaci – T.
absoluta ratio (Figure 3, F2,32 = 6.024, P = 0.008) and the
preferred one for juvenile predators when tested at the 30-10
and 20-20 B. tabaci – T. absoluta ratio (Figure 4, F2,47 = 9.622,
P < 0.001 and F2,44 = 4.409, P = 0.018, respectively). Similar
situations occurred for T. absoluta eggs, except that this prey
type was preferred in two cases by juvenile predators (at 20-20
and 10-30 B. tabaci – T. absoluta ratio, Figure 4, F2,44 = 4.409,
P = 0.018 and F2,44 = 8.726, P = 0.001, respectively), and only
once for adult predators (at 10-30 B. tabaci – T. absoluta ratio)
(Figure 3, F2,35 = 10.667, P < 0.001). When compared to other
prey types, T. absoluta larvae were the preferred prey only
when adult predators were in microcosms containing the 10-30
B. tabaci – T. absoluta ratio. By contrast, for juvenile predators
T. absoluta larvae were less preferred for all the tested prey
ratios.

Prey switching in Macrolophus pygmaeus
When exposed to the various B. tabaci - T. absoluta prey

ratios in the microcosms, Prey switching was observed in both
adult and juvenile predators; they over-attacked the most
abundant prey when the prey complex was either biased
toward B. tabaci or toward T. absoluta (Figures 3 and 4). More
specifically, when B. tabaci was the predominant prey (30-10
B. tabaci-T. absoluta ratio) the calculated βj values for B. tabaci
were significantly higher than the expected βj values (predator
adults: Figure 3, t = 2.514, df = 11, P = 0.036; predator
juveniles: Figure 4, t = 3.561, df = 15, P = 0.003). By contrast at
that prey ratio, the βj values for T. absoluta larvae were
significantly lower than the expected βj values for this prey type
(predator adults: Figure 3, t = - 2.139, df = 11, P = 0.045;
predator juveniles: Figure 4, t = -2.363, df = 15, P=0.032). In a
similar way, when T. absoluta was the predominant prey, i.e. at
ratio 10-30 B. tabaci-T. absoluta, the calculated βj values for

Figure 2.  Predation of B. tabaci (nymphs) and T. absoluta (eggs and larvae) by M. pygmaeus juvenile predators in various
Prey complex.  Mean number (±SEM) of prey attacked by M. pygmaeus juvenile predators per prey type and as function of the
various B. tabaci and T. absoluta prey ratio (Prey complex) tested in the microcosms. Dark grey: predation on B. tabaci nymphs;
medium grey: predation on T. absoluta eggs; light grey: predation on T. absoluta larvae.
doi: 10.1371/journal.pone.0082231.g002
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B. tabaci were significantly lower than the expected βj values
(predator adults: Figure 3, t = - 3.902, df = 11, P = 0.002;
predator juveniles: Figure 4, t = - 3.603, df = 14, P = 0.003).
However, the βj values for T. absoluta eggs were significantly
higher than the expected (βj values for this prey type) at the
10-30 B. tabaci - T. absoluta prey ratio (predator adults: Figure
3, t = 2.873, df = 11, P = 0.015; predator juveniles: Figure 4, t =
2.584, df = 14, P=0.022). When B. tabaci and T. absoluta were
evenly present in the microcosms (ratio 20-20 B. tabaci-T.
absoluta), no prey was over- or under-attacked by the predator
(all P ≥ 0.102) except for T. absoluta larvae that were les
attacked by predator juveniles than predicted by the expected
βj value (Figure 4, t = - 2.853, df = 14, P=0.013).

Discussion

Our study confirmed the predation of M. pygmaeus on the
local pest B. tabaci and the invasive pest T. absoluta as
previously reported by Bompard et al. [4]. We further
demonstrated that, in the short term, preference toward a given
prey type depended on the ratio between the prey species
B. tabaci and T. absoluta on the tomato plant. In addition, we
showed that the presence of T. absoluta on the plant affected
the predation activity of M. pygmaeus in opposite ways for
predator adults and juveniles: the presence of T. absoluta
induced an increase of predation by predator adults whereas it
led to decreased predation by juveniles. That decrease for
juveniles was mainly due to low predation on T. absoluta
larvae; the more T. absoluta larvae present in the prey

Figure 3.  Prey preference of M. pygmaeus adult predators (based on Manly’s Beta values) depending on initial ratio
among prey.  Manly’s Beta values (± SE) for M. pygmaeus adult predators in three-prey patches (B. tabaci nymphs, T. absoluta
eggs and T. absoluta larvae) with various B. tabaci – T. absoluta prey ratios (Prey complex). Dotted line represents the expected βj
value against which calculated βj values for each prey are compared (Student’s t-test, significance difference with expected βj
values are indicated by arrows, at the 0.05 level). Different letters for a given B. tabaci – T. absoluta prey ratio indicate significantly
different βj values between the three prey types (P > 0.05, ANOVA with Tukey’s post-hoc analysis).
doi: 10.1371/journal.pone.0082231.g003
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complex, the lower the overall predation activity by predator
juveniles. We demonstrated that M. pygmaeus can exhibit Prey
switching [17] when foraging in areas where both T. absoluta
and B. tabaci are present in varying proportion; the predator
consistently showed disproportionately high and low predation
on the most abundant and the rarest prey, respectively.

Overall, the predation activity of M. pygmaeus juveniles was
lower than predation by adults, as already highlighted in a
previous study [30]. We believe this may result from the limited
ability of juveniles to attack T. absoluta larvae. We noted that
adult and juvenile predators attacked a similar number of
B. tabaci nymph when the nymph was the sole prey in the
microcosms (comparison of adult and juvenile predators for the
prey ratio 40-0 B. tabaci – T. absoluta in Figures 1 and 2). This
lower predation activity of juveniles on T. absoluta larvae may

be due to the prey size relative to the predator size, which can
impact prey preference in generalist predators [43]. This
possibility is consistent with the increased predation activity
recorded for predator adults when T. absoluta larvae were
present in the microcosms since predator adults are bigger
than juveniles and more able to attack bigger prey.
Morphological characteristics of M. pygmaeus juveniles, such
as a shorter rostrum than adults, may also explain the low
predation on T. absoluta larvae since juveniles may not be able
to attack T. absoluta that are hidden inside mines in tomato
leaves; attacking these larvae requires piercing both the tomato
leaf and larvae cuticle. In our study, M. pygmaeus juveniles
took likely more time to attack T. absoluta larvae than to attack
B. tabaci nymphs and T. absoluta eggs. The presence of T.
absoluta larvae in a prey patches may lead to an overall

Figure 4.  Prey preference of M. pygmaeus juvenile predators (based on Manly’s Beta values) depending on initial ratio
among prey.  Manly’s Beta values (± SE) for M. pygmaeus juvenile predators in three-prey patches (B. tabaci nymphs, T. absoluta
eggs and T. absoluta larvae) with various B. tabaci – T. absoluta prey ratios (Prey complex). Dotted line represents the expected βj
value against which calculated βj values for each prey are compared (Student’s t-test, significance difference with expected βj
values are indicated by arrows, at the 0.05 level). Different letters for a given B. tabaci – T. absoluta prey ratio indicate significantly
different βj values between the three prey types (P > 0.05, ANOVA with Tukey’s post-hoc analysis).
doi: 10.1371/journal.pone.0082231.g004
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reduced efficiency of M. pygmaeus juveniles as predators. By
contrast, M. pygmaeus adults showed increased predation
activity when T. absoluta larvae were present in the prey patch.

When considering the M. pygmaeus population as a whole
(i.e. adults + juveniles) the net outcome of the reduced
predation activity of juveniles coupled with the increased
predation activity of adults is unclear. However, a previous
study demonstrated the positive effect of T. absoluta presence
on the biocontrol of B. tabaci by M. pygmaeus in tomato
greenhouses [4]. This suggests that the positive effect on adult
predation activity might overwhelm the negative effect on
juvenile activity. In our study M. pygmaeus juveniles did show
an active predation behavioral pattern despite T. absoluta
larvae presence; they may still participate noticeably in pest
regulation on the tomato plants despite presence of T. absoluta
larvae.

Prey preference in generalist predators is driven by trade-
offs among various mechanisms, notably the ease of attacking
different prey as well as the differing nutritional value of the
various prey to the predator [12]. The ease of attacking a given
prey depends on various characteristics, the main factors are
(i) the capacity to detect prey, (ii) how easy the predator can
access to prey, (iii) the defenses exhibited by prey against
predators, and (iv) the capacity to effectively feed on prey
[15,44-46]. Hemipteran predators are able to forage specifically
for mobile prey by detecting prey movements, whereas they
forage for non-mobile prey through random movements both
on and among plants that may host prey [14,15,47]. In our
study, the only mobile prey was T. absoluta larvae. However,
T. absoluta larvae spend most of their time feeding and moving
in leaf mines where they are less accessible to predators [22].
This possibility to benefit from spatial refuges within the plant
could explain the lower predation on this prey type [48]. A
higher predation rate on eggs than on larvae of T. absoluta has
already been reported in a previous study [37]; however this
study was not based on choice tests while our study further
documented M. pygmaeus preference between T. absoluta
eggs and larvae in a choice scenario.

Several factors may explain a possible preference of the
predator for T. absoluta eggs over B. tabaci nymphs. This
preference may occur because handing time (i.e. time between
first encounter with a prey and the end of predation event, see
[49]) of T. absoluta egg by M. pygmaeus is much faster than on
B. tabaci nymph (20-30 min. and 4-5 min., respectively,
Jaworski CC, personal observation). In addition, T. absoluta is
a lower quality food than B. tabaci for M. pygmaeus; during a
pilot experiment, we observed lower fecundity and longevity of
M. pygmaeus fed on T. absoluta eggs than when fed on
B. tabaci nymphs (Figure S1), and a recent study also reported
poor nutritional value of T. absoluta eggs for M. pygmaeus [50].
Moreover, we suppose the size of the two prey to be of low
importance because they are in the same size range (400µm.
for T. absoluta eggs vs. 500µm for B. tabaci nymphs [51,52]).

In our study, the absence of a clear preference of
M. pygmaeus between T. absoluta eggs and B. tabaci nymphs
highlighted the importance of Prey switching [17] in the
predation behavior of this predator. Predation preference
depended strongly on the relative abundances of the prey

species, with a disproportionately high predation on the most
abundant prey and a disproportionately low predation on the
rarest prey. Such Prey switching had been previously reported
for M. pygmaeus preying upon B. tabaci and the spider mites
[31] and it is thought to be exhibited by many generalist
predators [17]. Clumped and patched prey distributions are
common in natural conditions, leading to spatial
heterogeneities and context-dependent predation behaviors.
Prey switching can enable predators to maximize food intake
by increasing foraging time in patches showing high density of
one prey type [53]; M. pygmaeus likely benefits from such
adaptative behavior when foraging in crops where B. tabaci
and T. absoluta co-occur.

Our study confirmed the ability of M. pygmaeus to attack
T. absoluta (already suggested by previous results under
greenhouse and laboratory conditions, respectively [4,37,46])
and demonstrated that the predator is able to switch between
the alien and the local prey when foraging in habitats hosting
both prey. However, the low nutritive quality of T. absoluta for
M. pygmaeus ([50] and Figure S1) tempers any conclusion
about its potential to be a good candidate for the biological
control of T. absoluta in tomato crops (at least not as the key
natural enemy of T. absoluta in tomato crops if not included in
a broader IPM program; see [32]). Using M. pygmaeus as a
biocontrol agent against T. absoluta would require the
presence of an alternate prey to sustain growth of the predator
population. In a situation requiring simultaneous control of both
B. tabaci and T. absoluta, the presence of T. absoluta might
disrupt the biocontrol of B. tabaci in the short term because M.
pygmaeus would spend time attacking T. absoluta eggs and
larvae (larvae to a lesser extent). Greenhouse experiments
showed a transient disruption of the predation on B. tabaci by
M. pygmaeus when T. absoluta was present in the tomato
crop, but the control of B. tabaci populations was enhanced in
the long terms [4]. The Prey switching exhibited by
M. pygmaeus when encountering both B. tabaci and
T. absoluta prey might prevent fast population growth of either
of the two prey (as stressed in other studies on generalist
predators [7,17,54]). If Prey switching is maintained at larger
scales (agro-ecosystem) it may help regulating both prey
populations simultaneously to low densities.
Macrolophus pygmaeus could be useful for IPM programs
since the probability for both B. tabaci and T. absoluta to be
present simultaneously in tomato crops is high in numerous
areas cropped with tomato in Afro-Eurasia [22,23]. The
presence of B. tabaci on tomato crops early in the season may
help M. pygmaeus populations to establish prior to T. absoluta
infestation. The knowledge gained during our studies ([4] and
the present study) and previous theoretical works on Prey
switching suggest that M. pygmaeus may not attack
T. absoluta before this prey becomes abundant in the field
[17,54]. However, a small primary infestation of tomato plants
by T. absoluta may rapidly lead to very high population
densities owing to its high reproduction rate [22] and the
capacity of M. pygmaeus to effectively limit T. absoluta
population growth could be exceeded [4,55]. In addition, the
fact that T. absoluta is a low quality food for M. pygmaeus may
be detrimental in the long term to value of the biocontrol
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service provided by M. pygmaeus. High rates of attacks on
prey without a significant increase in predator fitness have
already been reported for Hemipteran predators in laboratory
and field studies [8,15] and such predation behavior may lead
to a relatively good control of T. absoluta by M. pygmaeus in
the short term. However, the predator's biocontrol efficacy may
be reduced in the long term by its lower population growth
when consuming prey of poor nutritive value. Prey switching in
M. pygmaeus when attacking B. tabaci and T. absoluta needs
to be further assessed at larger scales including direct field
observations along with an assessment of the impact of poor
quality food on the ability of this predator to provide useful
biocontrol services [4,56].

Supporting Information

Table S1.  Natural mortality of T. absoluta under laboratory
conditions at the various instars. Survival of T. absoluta
from egg to adulthood was evaluated by placing T. absoluta
eggs individually (n=60) in aerated plastic boxes (diameter: 110
cm, height: 2 cm, with a circular opening made of nylon mesh
netting, 350 mm2) together with a single tomato leaf. The
tomato steam was inserted in a tube containing water. Boxes
were placed in rearing chambers (23±1°C, 65±5% RH, 16L:8D)
and we followed T. absoluta development until death or
adulthood.
(PDF)

Figure S1.  (A) Mean longevity (± SEM) of Macrolophus
pygmaeus adult (in days) and (B) mean daily fertility (±

SEM) of M. pygmaeus (offspring per day per female).
Longevity and fecundity were evaluated by placing M.
pygmaeus adults individually (n=40) in aerated plastic boxes
(diameter: 110 cm, height: 2 cm, with a circular opening made
of nylon mesh netting, 350 mm) together with a single tomato
leaf (replaced every day for further assessment of offspring
production). The tomato steam was inserted in a tube filled with
water. Insects were provided daily with the prey ad libitum (B.
tabaci nymphs and T. absoluta eggs) accordingly to respective
treatment. Boxes were placed in rearing chambers (23±1°C,
65±5% RH, 16L:8D). Histograms bearing different letters are
significantly different to each other (P < 0.05, GLM followed by
a Tukey’s post-hoc test). GLM results: (A) Chi-square = 6.60, df
= 2, P = 0.037; (B) Chi-square = 13.26, df = 2, P = 0.001.
(PDF)
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