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 21 

Abstract: 22 

 23 

The relationship between Eurasian snow cover extent (SCE) and Northern 24 

Hemisphere atmospheric circulation is studied in reanalysis during 1979-2014 and in 25 

CMIP5 preindustrial control runs. In observations, dipolar SCE anomalies in November, 26 

with negative anomalies over eastern Europe and positive anomalies over eastern 27 

Siberia, are followed by a negative phase of the Arctic Oscillation (AO) one and two 28 

months later. In models, this effect is largely underestimated, but four models simulate 29 

such relationship. In observations and these models, the SCE influence is primarily due 30 

to the eastern Siberian pole, which is itself driven by the Scandinavian pattern (SCA), 31 

with a large anticyclonic anomaly over the Urals. The SCA pattern is also responsible for 32 

a link between Eurasian SCE anomalies and sea ice concentration (SIC) anomalies in the 33 

Barents-Kara Sea. 34 

Increasing SCE over Siberia leads to a local cooling of the lower troposphere, and 35 

is associated with warm conditions over the eastern Arctic. This leads to a polar vortex 36 

weakening in December and January, which has an AO-like signature. In observations, 37 

the association between November SCE and the winter AO is amplified by the SIC 38 

anomalies in the Barents-Kara Sea, where large diabatic heating of the lower 39 

troposphere occurs, but SCE is the main driver of the AO. Conversely, the sea ice 40 

anomalies have little influence in most models, which is consistent with the less 41 

frequent SCA, the colder mean state, and the underestimation of troposphere-42 

stratosphere coupling in these models.  43 

  44 
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1. Introduction 45 

The role of Arctic conditions in the mid-latitude winter climate is under debate, 46 

especially for the North Atlantic sector (Overland et al. 2015). In this region, the 47 

atmosphere has a dominant short-timescale chaotic intrinsic variability and is mainly 48 

unpredictable. However, several studies suggest that the variability of Arctic sea ice 49 

extent (Yamamoto et al. 2006; Francis et al. 2009; Honda et al 2009; Wu and Zhang 50 

2010; Frankignoul et al. 2014; Garcia-Serrano et al. 2015, Koenigk et al. 2016, King et al. 51 

2016) and Eurasian snow cover extent (SCE, e.g. Cohen and Entekhabi 1999, Cohen et al. 52 

2007, Cohen and Jones 2011) have some influence onto the atmosphere during winter. 53 

Such influence may account for an improvement in skill of long-range prediction due to 54 

continental snow (Jeong et al., 2013, Orsolini et al., 2013) and sea ice (Scaife et al. 2014) 55 

initialization and improved continental snow cover physics (Riddle et al. 2013) in 56 

current forecast systems.  57 

Continental snow cover affects the atmosphere via changes in surface albedo 58 

(Cohen 1994). A larger snow cover increases the surface albedo and reflects shortwave 59 

radiation away from the surface (Gong et al. 2004, Jeong et al., 2013). A snowpack also 60 

insulates the atmosphere from the soil surface. In winter at high latitude, these two 61 

effects explain that snow enhances the diabatic cooling at the surface and in the 62 

atmospheric boundary layer (Fletcher et al. 2007; Dutra et al. 2011), which locally 63 

increases the sea level pressure (SLP). A larger SCE over Eurasia has been reported to 64 

intensify and expand the Siberian high (Jeong et al., 2011; Orsolini et al., 2013). This 65 

modifies the land/sea contrast and the stationary wave pattern, and may lead to 66 

enhanced upward planetary wave propagation, thus weakening and warming the polar 67 

vortex in the stratosphere (Saito et al., 2001, Cohen et al. 2007, Orsolini et al., 2016).  A 68 

weak polar vortex can persist for several weeks and influence the underlying 69 
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troposphere by downward propagation of circulation anomalies. The influence of the 70 

Eurasian snow cover has received most attention in autumn, as it shows a statistically 71 

significant relation with the following winter Arctic Oscillation (AO) and North Atlantic 72 

Oscillation (NAO), from December to March (Cohen et al., 2007; Déry and Brown, 2007; 73 

Allen and Zender, 2010; Cohen et al., 2012).  74 

Sea ice concentration (SIC) changes may also influence the atmosphere. The most 75 

reported influence concerns SIC in the Barents-Kara Sea, where SIC in autumn has a 76 

statistically significant influence on the following winter NAO (Petoukov and Semenov, 77 

2010; Kim et al., 2014; Garcia-Serrano et al., 2015; King et al., 2016). Sea ice insulates 78 

the ocean from the atmosphere, so that a sea ice loss increases the heat flux from the 79 

ocean to the atmosphere. The resulting diabatic heating is large, but localized near the 80 

sea ice edge (e.g. Magnusdottir et al. 2004; Deser et al. 2004, 2007). This leads to 81 

changes in the tropospheric eddies and the planetary wave pattern, which may alter the 82 

polar vortex (e.g. Nakamura et al. 2015, 2016). The modified polar vortex may then 83 

influence the troposphere by downward propagation in the following weeks or months, 84 

with important impacts during periods of polar vortex breakdown, such as in February 85 

(Jaiser et al. 2016).   86 

The influence of SIC thus shares a large similarity with that of the Eurasia SCE 87 

during fall (October and November), as both may involve a stratospheric pathway. 88 

Furthermore, continental SCE and Arctic SIC are linked, as a reduced Arctic sea-ice 89 

extent leads to a moistening of the atmospheric boundary layer, which increases the 90 

moisture flux into eastern Siberia, increasing snowfall, as suggested by Cohen et al. 91 

(2014a) and found by Wegmann et al. (2015) using a Lagrangian analysis.  The sea ice 92 

and snow cover are also connected by the influence of Ural Blocking, which has been 93 

reported to cause warm Arctic–cold Eurasia anomalies in winter (Luo et al., 2016). The 94 
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two surface influences are, therefore, connected, and their interaction might amplify the 95 

atmospheric response found by separately considering snow cover and sea ice (Cohen et 96 

al. 2014a). However, only a few studies have investigated the links between the SCE and 97 

sea ice. Moreover, the relative effect on the atmosphere of the Arctic sea ice and 98 

Eurasian snow cover is largely unknown. In addition, the influence of tropical SST 99 

variability needs to be clarified, as the tropical teleconnections may both influence the 100 

snow cover over Eurasia and modify the atmospheric circulation (Fasullo, 2004), leading 101 

to a possible confusion between cause and effect.  102 

As the observational record is mostly limited to the recent decades, climate 103 

models can be used to investigate the impact of SIC and SCE variability with a much 104 

larger sampling, even if the stratospheric polar vortex is too stable in models, which may 105 

inhibit the troposphere-stratosphere coupling (Furtado et al., 2015). The aim of this 106 

study is to investigate the influence of autumnal Eurasian snow cover variability in 107 

observations and climate models, and the links with that of the sea ice cover. We find 108 

that snow cover anomalies in November have a dominant influence on the atmospheric 109 

circulation in observations and several models. The SCE anomalies are found to be 110 

associated with SIC anomalies over the Barents-Kara Sea, as both are modulated by the 111 

Scandinavian pattern, which is the dominant mode of atmospheric variability in 112 

November.  113 

The next section describes the methodology. The analysis of the snow cover and 114 

its links with the atmosphere is discussed in Section 3. The processes linking the snow 115 

cover to the atmosphere are investigated in Section 4. Finally, conclusions and a 116 

discussion are provided in last section. 117 

 118 

 119 
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2. Data and methods 120 

a. Observations 121 

Monthly sea ice cover is downloaded from the NOAA/National Snow and Ice Data 122 

Center (Comiso, 2012). Weekly Northern Hemisphere continental snow cover is 123 

retrieved from the NOAA/Rutgers University Global Snow Laboratory, and aggregated 124 

into monthly data. Both products are based on passive microwave measurements 125 

(SSM/I) and extend from 1979 to 2014. The sea-level pressure (SLP), geopotential 126 

height, air temperature, and heat flux (accumulated from 24h forecasts) are from the 127 

ERA-Interim reanalysis (Dee et al., 2011).  128 

A quadratic trend is removed from all variable before the analysis to remove the 129 

effect of the global warming. This also removes the multi-decadal variability and lower 130 

frequencies, and the large Arctic sea ice decrease from 2005 onward (e.g. Close et al. 131 

2015).   132 

 133 

b. Models 134 

Monthly SLP, snow cover, geopotential, SIC, SST and heat fluxes anomalies are 135 

downloaded from the CMIP5 archive for 12 coupled ocean atmosphere models (Table 1) 136 

using the preindustrial multi-centennial control simulations with constant external 137 

forcing. All model fields are interpolated onto a common 2.5°x2.5° horizontal grid. A 138 

quadratic trend was removed from all outputs to remove the possible influence of model 139 

drift. 140 

 141 

c. Maximum covariance analysis 142 

 Maximum covariance analysis (MCA) is used to estimate the main modes of area-143 

weighted covariability between the atmosphere and the underlying snow cover. We use 144 
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snow cover anomalies over northern Eurasia (40°N-65°N;0°E-180°E). The SLP 145 

anomalies in the Northern Hemisphere (20°N-90°N) are chosen to represent the 146 

tropospheric circulation. The MCA decomposes the covariance matrix of the two fields 147 

using singular value decomposition (Bretherton et al., 1992). Each mode of covariability 148 

is characterized by two times series and associated spatial patterns. Here, the MCA time 149 

series are standardized (divided by their standard deviation). The spatial patterns are 150 

illustrated by the homogeneous covariance map for the field that leads (regression on 151 

the same field time series) and the heterogeneous covariance map for the field that lags 152 

(regression on the MCA time series of the other field), which preserves orthogonality 153 

(Czaja and Frankignoul, 2002). The MCA modes are characterized by their normalized 154 

squared covariance (NSC, i. e. the squared singular value divided by the variance of both 155 

fields), the correlation (R) between the MCA time series, and the squared covariance 156 

fraction (SCF, i. e. the ratio of covariance explained). In order to evaluate the robustness 157 

of the MCA modes, we repeated the MCAs using 100 random permutations of three-158 

years blocks for the SLP field. The number of NSC and R that exceed the observed values 159 

gives the levels of significance for NSC and R. 160 

The mode of covariability between the snow cover and the atmosphere are 161 

expected to reflect the influence of atmospheric perturbations on the SCE when the two 162 

fields are in phase or, because of snow cover persistence, when the atmosphere leads. 163 

When the snow cover leads the atmosphere by one month or more, a significant MCA 164 

mode could indicate an influence of the snow cover (or concomitant boundary forcing) 165 

on the atmosphere, as the extratropical atmosphere has an intrinsic persistence of at 166 

most 10 days (Vautard, 1990). However, the El Niño Southern Oscillation (ENSO) has 167 

persistent remote teleconnections that may give rise to persistent MCA modes not solely 168 

linked to local boundary forcing. Hence, we (largely) remove these teleconnections from 169 
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both snow and atmospheric data by multivariate regression when (and only when) the 170 

snow cover field leads the atmosphere, assuming that they lag the tropical Pacific SST by 171 

two months in the atmosphere, while they vary with lag for the snow in order to get 172 

unbiased estimates (see Frankignoul et al., 2011).  The tropical SST variability is 173 

represented by the first three empirical orthogonal functions (EOFs) of the monthly 174 

tropical Indo-Pacific SST. The regressions are performed separately for each season, to 175 

account for the seasonal changes of the ENSO teleconnection, and separately for positive 176 

and negative values of the Principal Components (PCs), to account for the asymmetry 177 

(see supplemental material text for details). We verified that similar MCA results are 178 

obtained by assuming a one-month lag for the ENSO teleconnections, or even without 179 

removing the ENSO signal (see Table S1).  180 

 181 

d. Rotated empirical orthogonal function 182 

 The main patterns of Northern Hemisphere (20°N - 90°N) SLP variability are 183 

given by rotated empirical orthogonal function (REOFs) analysis, using the first 15 EOFs 184 

in the rotation, which accounts for 95% of the variance. To preserve orthogonality of the 185 

PCs, we scaled the EOFs by the square root of its eigenvalue before performing the 186 

varimax rotation (Kaiser 1958). The rotated PCs are standardized, and the REOF 187 

patterns are given by regression on these time series. 188 

 189 

e. Regression analysis 190 

 We used both univariate and multivariate least squares regression. We remove 191 

the tropical teleconnections from all data before the regression analysis, following the 192 

same methodology as the MCA (see section 2.c). The level of statistical significance is 193 

tested with 100 permutations of the atmospheric fields in 3-yr blocks to take serial 194 
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autocorrelation into account. The number of permuted regression slopes that exceeds 195 

the observed value provides the p-value. 196 

 197 

3. The links between Eurasian snow cover and the atmosphere 198 

a. Detection of the snow cover influence  199 

The normalized squared covariance (NSC) of the first MCA mode provides an 200 

estimate of the dominant covariability between the SCE and SLP anomalies. It is shown 201 

as a function of lag and season for the observations in Fig. 1. The largest NSC are mostly 202 

obtained when the atmosphere is in phase with the SCE or leads it by one month 203 

(negative lag), reflecting that the atmosphere controls the formation of snow cover 204 

anomalies. The largest covariability occurs for SLP in March at lag 0 and for SLP in 205 

February when it leads by one month. This is consistent with the occurrence of the 206 

largest interannual snow anomalies in March, and the largest atmospheric variability in 207 

February. 208 

At positive lag, the snow cover leads the atmosphere, which may reflect the SCE 209 

forcing of atmospheric anomalies. The most significant links are found between 210 

November snow cover and SLP in December (lag 1) and January (lag 2), as well as 211 

between February snow cover and SLP in March (lag 1), as the NSC and R are both 212 

significant at the 5% level (Fig. 1). The covariability is weaker when October SCE leads 213 

the atmosphere, whether by 1, 2 or 3 months (p-values are 10%, 28%, 40% for NSC and 214 

13%, 38%, 20% for R). Our results thus contrast with the commonly argued impact of 215 

October Eurasian snow cover on winter SLP (Saito and Cohen, 2003), as further 216 

discussed in Appendix. A significant covariance (p-value<10%) is also found for SLP in 217 

August and September, when the snow leads by one month. 218 
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The influence of November SCE onto the atmosphere in December and January is 219 

the main focus of this paper, and it is discussed below. The late winter snow influence 220 

found in March has been reported in several studies (Barnett et al., 1989; Saito and 221 

Cohen, 2003; Zhang et al., 2004; Peings and Douville, 2010; Peings et al. 2011); it is not 222 

investigated here, as the processes are different from the fall influence studied here. 223 

Similarly, the covariability in late summer is not discussed here; it shows a reduction of 224 

snow cover in south-western Norway preceding anticyclonic conditions over the North 225 

Atlantic (not shown), and might be due to concomitant North Atlantic SST forcing 226 

(Gastineau and Frankignoul, 2015).  227 

The same analysis has been performed with the CMIP5 models, and a significant 228 

covariability between SCE and SLP anomalies is found in several cases. The results are 229 

summarized in Fig. 2, which shows the level of statistical significance of the NSC and R 230 

for the first MCA mode (left panel).  The similarity with the observational data is given 231 

by the spatial pattern correlation of the homogeneous SCE and heterogeneous SLP 232 

covariance maps between each model and the observation (right panel). When using 233 

November SCE anomalies and December SLP (black symbols in Fig. 2), there are four 234 

models out of 12 (CanESM2, MPI-ESM-LR, GISS-E-R and CESM1) suggesting an impact of 235 

the November SCE anomalies that is reasonably similar to that observed (spatial 236 

correlation between 0.2 and 0.9).  These four models show a first MCA mode that is 10% 237 

significant for NSC and R, except for MPI-ESM-LR, which is only 12% significant for R. 238 

Among these four models, only CESM1 is a low-top model, while the others are high top 239 

models with lid height above 45km (Seviour et al., 2016). 240 

The SCE influence seems to be less persistent in models, as the first MCA mode 241 

with November SCE is only significant at lag 2 (SLP in January) in CESM1 (red symbols 242 

in Fig. 2), as opposed to observations (Fig. 1). When using October SCE and November 243 
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SLP (blue symbols in Fig. 2), there are only two models out of 12 suggesting an impact of 244 

the October snow cover anomalies (CSIRO-Mk3-6 and CCSM4). When using October SCE 245 

and December (January) SLP, only one model, FGOALS-g2 (IPSL-CM5A-LR), provides a 246 

potential impact. We conclude that consistent with observations, more CMIP5 models 247 

suggest an impact of November SCE than October SCE. Next, we will discuss the spatial 248 

patterns corresponding to these modes of covariability. 249 

 250 

b. Spatial pattern of the November snow cover influence  251 

The covariance maps for November SCE and December SLP are shown in Fig. 3. In 252 

observations, the first MCA mode shows dipolar snow cover anomalies (Fig. 3a, colors), 253 

with a pole over eastern Europe and an opposite polarity over south-eastern Siberia, 254 

Northern Mongolia, and Northern China. Both poles are located at the margin of the 255 

snow-covered surface in November (see Fig. S1). This SCE dipole precedes SLP 256 

anomalies (black contours) broadly projecting on a negative phase of the AO, with a 257 

large signature over the North Atlantic. The covariance maps at lag 2 (Fig. 3b, November 258 

SCE / January SLP) are almost identical, but the SLP anomalies are weaker, especially 259 

over Western Europe. Note that the covariance maps at lag 3 (November SCE / February 260 

SLP) are also similar, although the significance level for NSC and R are 1% and 27%, 261 

respectively.  262 

The MCA patterns in the four CMIP5 models (CanESM2, MPI-ESM-LR, GISS-E-R, 263 

CESM1) identified previously are broadly similar to the observed ones (Fig. 3c-f), with a 264 

positive snow cover anomaly in southern Siberia and a negative one over eastern 265 

Europe preceding a negative AO-like pattern by one month. However, the amplitudes 266 

are smaller than in observations (note the different color and contour interval in Fig. 3). 267 

Futhermore, the snow cover anomalies are slightly shifted, as the November SCE 268 
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climatology shows less snow over Eurasia, especially over Europe (Fig. S1). In the 269 

following we only consider this subset of four models, as illustrated by the averaged 270 

covariance map (Fig. 3g).  271 

To take into account the different sampling in models (≥ 500 yr) and 272 

observations (36 yr), we performed similar MCA analysis on separate 36-yr segments 273 

from each of the four model simulations. These 36-yr segments are selected using a shift 274 

of 6 years between two consecutive ones, so that for instance a 1000-yr run results in 275 

160 36-yr segments. The mean NSC and R for the first MCA mode in these segments are 276 

larger than the ones computed from the entire run (compare Fig. 3h and values on top of 277 

Fig. 3c-f), but still smaller than in observations, with the 95% percentile of their 278 

distributions lower than the observed value. Therefore, it is very likely that the models 279 

do underestimate the snow influence.  280 

 281 

c. Origin of the snow cover dipolar variability in November  282 

To determine the origin of the dipolar snow cover anomalies, November SLP and 283 

2m air temperature anomalies are regressed onto the (standardized) MCA time series of 284 

November SCE, referred to as MCA-snow (Fig. 4). For the CMIP5 models, we only 285 

consider the four models (CanESM2, MPI-ESM, GISS-E2-R and CESM-BGC) that are 286 

consistent with observations and show the multi-model average of the regression 287 

patterns, while the number of models with a regression of the same sign documents 288 

their robustness, and provides a measure of inter-model spread.  289 

The SLP anomalies associated with the snow dipole in both observations (Fig. 4a) 290 

and models (Fig. 4b) are characterized by a large anticyclonic anomaly over the Urals 291 

and a depression over Europe. The SLP pattern shares some similarity with the Eurasian 292 

pattern type 1 (Barnston and Livezey, 1987), the Scandinavian pattern (Bueh and 293 
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Nakamura 2007), the Russian pattern (Smoliak and Wallace, 2015) or the anomalies in 294 

Ural Blocking conditions (Luo et al., 2016). A similar pattern was also reported to result 295 

from the October SCE response (Cohen et al., 2014b). We will refer to this atmospheric 296 

patterns as the Scandinavian pattern (SCA) in the following. Figure 4 illustrates that 297 

warm (cold) air temperature anomalies are associated with negative (positive) SCE 298 

anomalies, consistent with the warm (cold) advection by the anomalous atmospheric 299 

circulation, as in the Greenland, Barents and Kara Seas that are affected by warm 300 

advection from the Norwegian Sea.  301 

In observations, a dipolar SCE pattern similar to that in Fig. 3a and a SCA-like SLP 302 

pattern is also obtained as first MCA mode of simultaneous SLP and SCE anomalies in 303 

November, with 42.1% of squared covariance fraction (SCF), as shown in (Fig. 5a), while 304 

an AO influence onto the snow cover is only obtained as mode 3 (SCF = 11.6%). This is 305 

consistent with the first REOF of November SLP, which corresponds to the SCA (Fig. 6a). 306 

In December, however, the simultaneous covariability between SLP and SCE is 307 

dominated by the AO (SCF=55.1%, Fig. 5b), which decreases the advection from the 308 

relatively warm ocean toward the cooler Eurasian Continent. It also shifts southward 309 

the precipitation associated with the Atlantic stormtrack (Hurrell, 1995), which 310 

increases the SCE over Europe. We also see negative SCE anomalies east of the Caspian 311 

Sea associated with warm advection from the Mediterranean region.   312 

On the other hand, the MCA suggests that, in most of the four models, the AO 313 

already has the largest impact on snow cover in November (Fig. 5c), with a much larger 314 

impact downstream of Europe, as shown by the positive anomalies over Eastern Siberia. 315 

Only CESM1 simulates the SCA pattern and its dipolar snow cover signature as first MCA 316 

mode (not shown). In fact, the first REOF of November SLP is also A0-like in all models 317 

(Fig. 6b). To establish its robustness, we have used as above distinct 36-yr chunks from 318 
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each control simulation, to reproduce the observed sampling. The SCA and AO are 319 

identified using the largest spatial pattern correlation with the observed SCA (November 320 

REOF1) and AO (November REOF3), respectively. The AO variance fraction is 321 

systematically larger than observed (Fig. 6c, yellow), while the SCA one is smaller (Fig. 322 

6c, red). This is consistent with the larger (smaller) role of the SCA (AO) in the 323 

observation, when compared to model simulations, and it can be explained by either 324 

natural atmospheric variability or model biases. Indeed, CMIP5 models use relatively 325 

coarse horizontal resolutions, and are known to underestimate winter blocking episodes 326 

(Dawson et al, 2012), leading to an overestimation of the NAO regimes (Cattiaux et al., 327 

2013). 328 

 329 

4. Processes of the November snow cover influence 330 

a. Role of Siberian snow cover 331 

The relative importance of the two poles of the November SCE dipole can be 332 

analyzed using two indices: the mean SCE anomalies over eastern Europe (20°E-58°E, 333 

48°N-60°N) and over eastern Siberia (70°E-140°E, 43°N-56°N). A bivariate regression of 334 

SLP anomalies in December on these two indices shows significant SLP anomalies in the 335 

observations (Figs. 7a and 7b), with negative SLP anomalies off Western Europe and 336 

positive anomalies over the polar cap. However, the eastern Siberia pole has the largest 337 

and most significant influence on SLP, and its impact is more AO-like. In the four models 338 

(Figs. 7c and 7d), Siberian SCE anomalies also have a larger, AO-like influence on SLP, 339 

while European SCE is linked to a weak SLP dipole between Greenland and Scandinavia. 340 

Therefore, the most robust signal seems to be linked to the Siberian SCE influence, 341 

which is consistent with the reported influence of October snow cover (Saito and Cohen, 342 

2003).  343 
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 344 

b. Associated surface changes 345 

The influence of surface conditions is evaluated using SCE and SIC regressions 346 

onto MCA-snow in Fig. 8. The SCE anomalies in November (Fig. 8c,d) are preceded in 347 

October (Fig. 8a,b) and followed in December (Fig. 8e, f) by similar, but smaller, 348 

anomalies over eastern Siberia, which is consistent with the snow cover persistence 349 

over that region (Déry and Brown, 2007), and reflected in the large correlation (around 350 

0.5) between October and November SCE (see Fig. S1). European SCE anomalies are also 351 

present from October in the models, but not in observations. A significant retreat of the 352 

sea ice edge in the Barents Sea is also found for both models and observations in 353 

October and November, which is also visible in December in the models.   354 

The surface heat flux in lead and lag conditions can be used to discuss the 355 

processes leading to the atmospheric circulation response. The heat flux preceding the 356 

SCE is dominated by the atmospheric forcing of the snow cover, as for SST anomalies, 357 

while the heat flux lagging the SCE should primarily reflect the heat flux directly forced 358 

by the SCE (the thermodynamical component), although it could be strongly affected by 359 

the surface heat flux intrinsically associated with the atmospheric response (hereafter 360 

the dynamical heat flux component); at lag 0, both effects play a role and may even 361 

cancel (Frankignoul et al. 1998). Since the surface heat flux responds rapidly to the 362 

surface conditions (simultaneously on monthly timescale), one can use in-phase 363 

relations to estimate the (thermodynamical) heat flux driven by the SCE anomalies, if 364 

the (larger) dynamical component is removed. To do so, we first calculate the heat flux 365 

by adding surface radiative and turbulent fluxes. A standardized atmospheric index, 366 

referred to as ATM, was computed by projecting the November SLP anomalies over 367 

30°N-90°N 80°W-180°E onto the SCA-like patterns shown in Fig. 4. The dynamical heat 368 



 
16 

flux component corresponding to one standard deviation of the MCA-snow index is 369 

obtained by regressing the heat flux anomalies onto ATM, multiplied by the correlation 370 

between ATM and MCA-snow (shown in Fig. S2). The total heat flux anomaly associated 371 

with the SCE pattern in Fig. 3a is given by the regression of the heat flux onto MCA-snow 372 

(shown in Fig. S3), while the difference of the two (Figs. 9a and 9b) is an estimate of the 373 

thermodynamical effect. Figs. 9c-d show the net heat flux components integrated over 374 

three boxes (see purple boxes in Fig. 9a-b) located over Siberia, Europe, and the Barents 375 

and Kara Seas. The location of the boxes was adjusted to capture the snow and sea-ice 376 

influences in models and observations. 377 

In November, the heat flux changes induced by the snow cover are downward 378 

over a wide latitudinal band in central Siberia from lake Balkhash to Sakhalin Island in 379 

ERA-Interim and models (Fig. 9a-b), although the results are noisy in ERA-Interim. This 380 

is consistent with a net cooling effect of positive snow cover anomalies, as the larger 381 

surface albedo leads to more reflected shortwave radiation, and as the surface may be 382 

more insulated from the warmer soil if the snow depth also increases (Orsolini et al., 383 

2016). The cooler surface temperature results in a dominant reduction of longwave 384 

radiation and sensible heat flux. However, the turbulent fluxes have a larger 385 

contribution in models, while the longwave and shortwave components dominate in 386 

observations (Fig. 9c and 9d). Conversely, the heat flux anomalies are upward in ERA-387 

Interim over eastern Europe and Scandinavia where the SCE decreases, while in models, 388 

there is almost no net heating effect. Interestingly, over the Barents-Kara Seas, the heat 389 

flux is mainly upward over open-water in the Nordic Seas, which suggests a large 390 

heating of the atmosphere where the sea ice has retreated in November. This is 391 

consistent with an active influence of SIC anomalies onto the lower troposphere. 392 

However, while the total heat flux release over the Barents-Kara Seas is dominant in 393 
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ERA-Interim, it is smaller and less robust in models. The same analysis applied to the 394 

December heat flux provides comparable results over Europe and Siberia (see Fig. S4), 395 

but the heating over the Barents-Kara Seas is larger in models, while a net cooling is 396 

obtained in observations. This is because the sea-ice anomalies persist in December in 397 

models (see Fig. 8f), while they vanish in ERA-Interim (Fig. 8e).  398 

In summary, the diabatic forcing of SCE anomalies is consistent in models and 399 

ERA-Interim, with cooling when the SCE increases. However, the diabatic heating from 400 

the SIC anomalies over the Barents-Kara Seas is larger but it is also less robust than the 401 

one associated with SCE. As the surface heat flux anomalies are not assimilated in ERA-402 

Interim and largely depend on the model physics, these results might be model 403 

dependent.  404 

 405 

c. Troposphere-stratosphere coupling  406 

We calculated the regressions of the SLP (Fig. 10), zonal-mean temperature and 407 

geopotential height (Fig. 11) onto November MCA-snow, from October to January. In 408 

observations, the November SCE anomalies are preceded in October by a small 409 

anticyclone centered over the northern coast of Siberia (Fig. 10a), as in Cohen et al. 410 

(2002). In November, one month later, the SCA pattern (Fig. 10c) is visible, with cold 411 

tropospheric anomalies over Eurasia between 40°N and 60°N, above the positive SCE 412 

anomalies, and warm tropospheric anomalies at 78°N, at the location of the Barents-413 

Kara Seas (Fig. 4). The zonal mean anomalies are largely barotropic below 300-hPa, 414 

which illustrates the main role of the tropospheric eddies in settling the SCA pattern. 415 

The anomalous anticyclone over Eurasia has been interpreted as a response to October 416 

Siberian snow cover, the snow-induced cooling acting to reinforce and expand westward 417 

the Siberian High (Cohen et al., 2007; Jeong et al., 2011; Orsolini et al., 2013). However, it 418 
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can also be interpreted as a result of the stationary Rossby wave induced by the 419 

anomalous turbulent heat flux from the sea ice retreat in the Barents-Kara Seas (e.g. 420 

Honda et al. 2009; Garcia-Serrano et al. 2015), or as internal atmospheric variability 421 

since simultaneous relations primarily show the SCE forcing by the SCA.  In the lower 422 

stratosphere, there is a warming over the polar cap (75°N-90°N, between 300-hPa and 423 

100-hPa) and positive geopotential height anomalies above (Fig. 11a) that depicts a 424 

weakening of the polar vortex. In December, one month later, a barotropic negative 425 

NAO/AO pattern appears in the Euro-Atlantic region (Fig. 10e), while the polar vortex is 426 

further weakened, with stratospheric temperature anomalies above 100 hPa that are 427 

only significant between 40°N and 65°N (Fig. 11c). The regressions are similar in 428 

January, with the SLP anomalies projecting on the AO (Fig. 10g), and stronger zonal-429 

mean geopotential height and temperature anomalies (Fig. 11e).  430 

In the CMIP5 models, the atmospheric anomalies in October (Fig. 10b), which 431 

precedes by one month the SCE anomalies, show alternating trough and ridges from the 432 

North Atlantic to south-eastern Asia, with anticyclonic anomalies over the Urals and a 433 

depression over Northern Europe, clearly indicative of a stationary wave and already 434 

reminiscent of the SCA pattern. In November, the anomalies are more complex and 435 

larger, with a dominant anticyclonic circulation over the Urals extending into the Arctic 436 

(Fig. 10d), so that the Siberian High is clearly intensified and shifted westward, while the 437 

SLP response is AO-like in December and, to a lesser extent, in January. The temperature 438 

anomalies show a large warming in the lower troposphere north of 70°N (Fig. 11b, d) 439 

from November to December, and display an important warming in the polar 440 

stratosphere that persists into January only in the lowermost stratosphere at 200-hPa. 441 

The warm anomalies are rather baroclinic in the polar troposphere, which is consistent 442 

the influence of Arctic SIC reduction noted in Cattiaux and Cassou (2013). In November 443 
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and December, there are also cold temperature anomalies below 400-hPa south of the 444 

positive SCE anomalies, likely associated with the cold temperature found over Siberia 445 

where the snow cover increases (Fig. 10b,d). In models, both the tropospheric NAO/AO 446 

pattern and the anomalies in the stratosphere are smaller during January, but they are 447 

still significant (Fig. 10h and 11f). 448 

The troposphere-stratosphere coupling is further illustrated by the polar cap 449 

temperature (65°N-90°N) regression onto the MCA-snow index in Fig. 12. For 450 

observations, the daily air temperature was used, while only monthly data was available 451 

for models. The observations show a warming in the lower stratosphere between 200-452 

hPa and 70-hPa from December to February, as found by Cohen et al. (2014b) and 453 

Orsolini et al. (2016), but it is only 10% significant for a few days in early December and 454 

January. There are also hints of downward propagation in late December and late 455 

January. In models the polar cap temperature anomalies are only half the ones observed, 456 

the timing is different as the warming starts in November, one month earlier, and the 457 

downward propagation is faster in the stratosphere with little penetration into the 458 

troposphere.  459 

In summary, the diabatic heating from the November SCE and, possibly, SIC 460 

anomalies is associated with a stationary wave pattern that weakens the polar vortex. 461 

Particularly in observations, the AO changes obtained one and two months later are 462 

consistent with the downward propagation of polar vortex weakening. Next, we will 463 

establish the relative importance of the SIC and snow cover anomalies. 464 

  465 

d. Link with sea ice anomalies 466 

In order to compare the role of SIC and SCE, we also perform a MCA using SIC 467 

over the Barents-Kara Sea (65°N-85°N; 15°E-100°E) in November and SLP in December. 468 
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We additionally perform a MCA using both November SIC and SCE concatenated into a 469 

single predictor field, with SLP as predictand field. The results are summarized in Table 470 

2. When only using November SIC as predictor, the NSC is highly significant, but the 471 

correlation R is lower than when using SCE, and not significant at the 10% level, as in 472 

Garcia-Serrano et al. (2015; see also Fig. S5). On the other hand, using concatenated SCE 473 

and SIC predictors is as significant as with SCE alone, and the MCA patterns (Fig. 13a) 474 

show that the snow dipolar anomalies and the sea ice retreat in the Barents-Kara Seas 475 

precede a negative AO-like pattern in December, which is consistent with previous 476 

results (Fig. 8), but for larger SIC changes. Interestingly, SCE and SIC seem to contribute 477 

similarly to the SLP response in Fig. 13. Indeed, projecting SIC anomalies onto the SIC 478 

part of the MCA covariance map (referred to as MCAcat_SIC) and SCE anomalies onto the 479 

SCE part (referred to as MCAcat_SCE) yields two well correlated time series (0.58, 480 

significant at the 5% level) that compare well with the atmospheric December MCA time 481 

series (Fig. 13b).  482 

In order to evaluate the relative influence of the SCE and SIC pattern, we used the 483 

time series associated with the SCE and SIC fields in the SCE/SLP (MCA-snow) and 484 

SIC/SLP (referred to as MCA-SIC) individual MCA, respectively, to separate more clearly 485 

the SIC and SCE influences. These two times series have a correlation of 0.42, and a 486 

bivariate regression of the SLP using these two time series shows little multicollinearity 487 

(variance inflation factor of 1.4). The regression slopes (Fig. 14) show that the SCE holds 488 

a larger signal in observations, which is consistent with the higher correlation in the 489 

MCA analysis (see Table 2). The SIC has a similar influence, but its amplitude is twice 490 

smaller, and it is less significant. These results are not modified when using other 491 

indices for SCE or SIC. 492 
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The concatenated MCA yields similar results for the four models, with a SCE 493 

dipole and a decrease of SIC in November preceding the December AO (not shown), 494 

although the NSC and correlation are much lower, and adding SIC to SCE (or considering 495 

SIC alone) strongly degrades the significance (Table 2). Yet, the correlation between the 496 

MCAcat_SCE and MCAcat_SIC time series (Table 3) is significant in each model, even if it 497 

is lower than in observations, which can be explained by the different sampling, the 498 

smaller SCA occurrence, or model biases such as the colder mean state in pre-industrial 499 

climate, which allow less Barents-Kara SIC variability. However, these significance tests 500 

are biased since the four models were selected based on their response to SCE, not to 501 

SIC, and other CMIP5 models are more sensitive to SIC (Garcia-Serrano et al. 2016).  502 

The same analysis was conducted using SIC anomalies in early autumn 503 

(September or October) together with November SCE (Table S2), which provides 504 

significant results only when using October SIC, with patterns as in Fig. 13, but smaller 505 

NSC and R.  We also repeated the analysis using November SIC/SCE and SLP in January 506 

and February (Table S3), as the stratospheric pathway is also important during late 507 

winter (Kim et al., 2014; Jaiser et al., 2016), but the MCA results are much less significant 508 

in the observations.  509 

 510 

e. Link with the Scandinavian pattern 511 

The upward influence of tropospheric planetary waves into the stratosphere due 512 

to atmospheric dynamics, such as during blocking situations, can also explain that the 513 

SCA is followed by an AO-like pattern one month later, without any influence of surface 514 

heating (Kuroda and Kodera, 1999; Takaya and Nakamura, 2008; Martius et al., 2009; 515 

Woollings et al., 2010). To test the influence of such troposphere-stratosphere coupling, 516 

we use an MCA with Eurasian SLP (0E-150E, 45N-85N), Eurasian SCE, and Barents/Kara 517 
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SIC in November concatenated as the predictor field, and Northern Hemisphere SLP in 518 

December as the predictand field. For the sake of simplicity, the ENSO variability was 519 

not removed in the analysis. In both observations and models, the results of this MCA 520 

are strongly significant (Table 2), and the covariance maps are similar to Fig. 13, with 521 

the homogeneous SLP covariance map in November resembling the SCA (not shown).  522 

Time series of the three November predictors (SCE dipole, Barents/Kara SIC, 523 

SCA) are then studied. The time series associated with the SCE and SIC fields are 524 

obtained as before from the SCE/SLP (MCA-snow) and SIC/SLP (MCA-SIC) individual 525 

MCAs, while the SCA index is given by the first rotated EOF of the Eurasian SLP (0E-526 

150E, 45N-85N) in November. To distinguish the impacts of each predictor, a 527 

multivariate regression of the December SLP on the three predictors is done, noting that, 528 

despite the large correlation between predictors, multicollinearity is limited (variance 529 

inflation factors < 2.0). The results (Fig. 15a-c) again show that the SCE dipole has the 530 

dominant influence onto SLP in December, while the SIC provides weaker, but 531 

significant anomalies as in the bivariate regression in Fig. 14. The SCA seems to be also 532 

important for the SLP over the British Isles or Alaska, but the anomalies are weaker and 533 

not significant. A similar multivariate regression using an AO index, as given by the first 534 

EOF of December SLP is shown in Fig. 15d. Again, the SCE appears to be the best 535 

predictor of the AO, followed by the SIC, while the SCA has the lowest R2. Taking the 536 

three indices as predictors with a multivariate regression only slightly improves the 537 

variance explained by the SCE alone. In the four models (Fig. 15d, symbols using the 538 

right vertical axis), the same analysis also shows that the SCE dipole still plays the 539 

dominant role in three models, while the SIC has a dominant influence only in one model 540 

(CanESM). In all models, the SCA pattern also appears as good predictor of the AO. This 541 

suggests that, in these models selected based on their response to SCE, internal 542 
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atmospheric dynamical processes may also explain the statistical relationship found 543 

among SCE, SIC and the atmosphere one month later, hence that the influence of SCE and 544 

SIC is underestimated. These conclusions are not substantially modified when using 545 

other indices for the AO, the snow dipole or the Barents-Kara SIC anomalies.  546 

 547 

5. Discussions and Conclusion  548 

We have investigated the links between Eurasian SCE and the atmosphere in 549 

observations during 1979-2014 and CMIP5 models. We found that a dipole of snow 550 

cover anomalies in November with positive (negative) snow cover anomalies over 551 

eastern Siberia (eastern Europe) leads to a negative AO one month later in December. 552 

The largest statistical links are found when considering November SCE, as in Orsolini et 553 

al. (2016), but other studies focus more on October snow cover (Cohen and Entekhabi, 554 

1999; Cohen et al. 2007; Cohen and Jones 2011; Handorf et al. 2015). Lagged regression 555 

actually reveals that the November SCE is related to similar anomalies in October, but 556 

statistical significance is too limited with the MCA using October SCE. The choice of the 557 

data set, the methodology and the period considered might explain this discrepancy (see 558 

Appendix A). The CMIP5 models, in general, fail to simulate this potential effect of snow 559 

cover. Nevertheless, a weaker, but similar, relationship between the SCE and the AO is 560 

present in four models: CanESM, MPI-ESM-LR, GISS-E-R and CESM-BGC.  561 

The models and ERA-Interim indicate that downward (upward) heat flux 562 

anomalies are simulated over positive (negative) snow cover anomalies over Siberia 563 

(Europe) during November. We verified that eastern Siberia pole of the snow dipole 564 

anomalies has the best relationship with the AO one month later both in observations 565 

and models, so that the SCE over Siberia seems to have the largest influence. The 566 

diabatic cooling of the troposphere over Siberia is consistent with the intensification and 567 
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westward expansion of the Siberian High. This may lead to a polar vortex weakening 568 

from November to January driven by upward planetary wave activity flux, as found 569 

previously in observations (Saito et al. 2001; Handorf et al. 2015; Furtado et al. 2016) 570 

and in sensitivity experiments using SCE anomalies (Gong et al., 2004; Fletcher et al., 571 

2009; Peings et al., 2012; Orsolini et al. 2013; Orsolini et al. 2016). Here, we show that 572 

the same process can be verified qualitatively using multi-centennial control climate 573 

model simulations, although the SCE influence is much weaker. 574 

 The atmospheric pattern responsible for the variability of the snow cover dipole 575 

is the Scandinavian pattern (SCA, as in Bueh and Nakamura, 2007), with a large 576 

anticyclone over the Urals. Such anticyclone leads to northerly cold advection east of the 577 

anticyclone, bringing cold air over Siberia, and southerly warm advection over Central 578 

Europe and the Barents and Kara Seas. The SCA forcing explains that the Barents/Kara 579 

SIC and Eurasian snow cover are largely correlated (Wegmann et al., 2015; Furtado et 580 

al., 2016).  We find that the models produce less frequent SCA-like and more frequent 581 

AO-like events, possibly linked to blocking processes that are not well simulated in low 582 

resolution models (Dawson, 2012), but this could also be due to natural atmospheric 583 

variability. Deficiencies in the simulation of the SCA characteristics in models might 584 

therefore explain the weaker SCE influence in models. In addition, the upward heat flux 585 

driven by a retreat of the sea ice cover in the Barents-Kara Seas is weaker and less 586 

robust in the models than in ERA-Interim, perhaps explaining why the SIC influence is 587 

also underestimated in the four models that simulate the SCE impacts.  588 

A MCA using SLP and combined SCE and SIC suggests that November SCE and SIC 589 

forcing provide similar covariability with the December AO in observations. However, a 590 

bivariate regression reveals that the SCE dipole is a much better predictor than the 591 

Barents-Kara SIC anomaly. As the SCE and the SIC variability are linked, both field can 592 
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constructively interfere to weaken the polar vortex, as suggested in Cohen et al. (2014a), 593 

although the surface forcing from the snow cover anomalies might be dominant. On the 594 

other hand, the November SIC in models has an impact on the AO in only one model, 595 

perhaps because they were selected based on their representation of the SCE influence. 596 

When investigating more systematically the links between Greenland-Barents-Kara SIC 597 

and the NAO/AO in most CMIP5 models, Garcia-Serrano et al. (2016) did find a robust 598 

SIC influence, but they noted that the timing or the processes for the SIC influence are 599 

model dependent. Here, the lack of links between November SIC and December 600 

atmosphere may result from our selection of the models based on their representation 601 

of the SCE impact (and not SIC impact), and also from the model averaging that may mix 602 

different behavior among models. The weaker SCE influence in models and the lack of 603 

link between the SCE and SIC is consistent with the underestimated troposphere-604 

stratosphere coupling in models, as found in Furtado et al. (2015). However, it can also 605 

be explained by the poor simulation of the SCA, the colder climate in preindustrial 606 

control simulation, or natural climate variability.  607 

A better understanding of the coupling between land snow cover, Arctic sea ice, 608 

and the atmosphere using dedicated climate model experiments would be necessary to 609 

properly assess the causality links and better discriminate between their influence on 610 

the winter AO. Nonetheless, the methodology used here could be applied to climate 611 

projection of the 21st century in order to investigate how the polar amplification of 612 

global warming will modify the links between the atmosphere and Arctic surface 613 

conditions. 614 

 615 

 616 

 617 
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Appendix : October snow cover influence 618 

 619 

The influence of October SCE on the atmosphere is discussed by using the MCA 620 

results, when SLP lags by one month, although statistical significance is limited (see Fig. 621 

1). The covariance maps (Fig. A1a) show that increasing October SCE over northern 622 

Eurasia precedes a SLP pattern in November that has some resemblance with the SCA, 623 

plus a deeper Aleutian low. This differs from the negative AO found later, from 624 

December to February. It might be due the snow data used, as many previous studies 625 

used a more integrated snow index, such as the Eurasian snow cover areal extent (e.g. 626 

Cohen et al. 2007; Cohen and Fletcher 2007). It could be due to differences in 627 

methodology, as Furtado et al. (2016) used multivariate EOF. It could also be due to non-628 

stationarity (Peings et al., 2013). For instance, Cohen et al. (2007) considered the 1948-629 

2004 period, Cohen and Fletcher (2007) the 1972-2005 one, while we focus on 1979-630 

2014.  631 

 To investigate the possible influence of non-stationarity, we performed the MCA 632 

in different sub-periods (Table A1). The most significant influence of October snow 633 

cover on SLP is found for November in the 1979-2005 period, as used in Cohen and 634 

Fletcher (2007); the MCA mode is also significant for December SLP, with a MCA pattern 635 

(Fig. A1d) sharing a large similarity with previous studies (i.e. Handorf et al., 2015). 636 

However, the levels of significance are limited when the DJF atmosphere is considered. If 637 

1979-2011 or 1979-2014 is used, significance is lost. Hence, the detected influence of 638 

the October snow cover is sensitive to the period.  639 

 640 

 641 
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Tables 857 

 858 

TABLE 1. CMIP5 models and control simulations used.  859 

 860 
 Group Model AGCM  length 
   Resolution (year) 

1 CCCma CanESM2 2.8°x2.8° L35  995 
2 CNRM-CERFACS CNRM-CM5 1.4°x1.4° L31 850 
3 CSIRO-QCCCE CSIRO-Mk3-6-0 1.9°x1.9° L18 500 
4 LASG-CESS FGOALS-g2 2.8°x2.8° L26 700 
5 MIROC MIROC-ESM 1.4°x1.4° L40 630 
6 MPI-M MPI-ESM-LR 1.9°x1.9° L47 1000 
7 MRI MRI-CGCM3 1.1°x1.1° L48 500 
8 NASA-GISS GISS-E2-R 2.5°x2° L40 550 
9 NCAR CCSM4 1.25°x0.9° L26 600 
10 NCC NorESM1-ME 2.5°x1.9° L26 250 
11 NSF-DOE-NCAR CESM1-BGC 1.25°x0.9° L26 500 
12 IPSL IPSL-CM5A-LR 1.9°x3.75° L39 1000 
 861 

  862 
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 863 

TABLE 2. Statistics of different MCAs using December SLP as the left field, and November 864 

snow cover (SCE), SIC, concatenated SCE and SIC (SCE+SIC) or concatenated SCE, SIC 865 

and Eurasian SLP  (SCE+SIC+SLPEur) as the right field. For the models, the mean over the 866 

four selected models is given. The level of significance is given in parenthesis for 867 

observation (see section 2c for details). For climate models, the number in parenthesis 868 

indicates the number of models, out of four, where the level of significance is equal or 869 

below 10%.  870 

 871 
 OBS Models 
 NSC R NSC R 

SCE 2.5 (0%) 0.82 (1%) 0.10 (4/4) 0.23 (4/4) 
SIC 2.9 (3%) 0.61 (18%) 0.14 (1/4) 0.14 (1/4) 

SCE+SIC 2.4 (0%) 0.75 (2%) 0.10 (2/4) 0.16 (0/4) 
SCE+SIC+SLPEur 2.1 (0%) 0.78 (0%) 0.14 (4/4) 0.24 (4/4) 
 872 

 873 

 874 

 875 

 876 

TABLE 3. Correlation between MCAcat-SCE and MCAcat-SIC time series. The bold 877 

numbers indicate 1% significance. 878 

 879 
Data Correlation 

Observations 0.58 
CanESM2 0.26 
GISS-E2-R 0.24 

MPI-ESM-LR 0.40 
CESM1-BGC 0.27 

  880 

  881 
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TABLE A1. Statistics of the MCA using October snow cover and SLP in following months, 882 

using different time periods (79-05 : from 1979 to 2005 ; 79-11 : from 1979 to 2011 and 883 

79-14 : from 1979 to 2014), and atmospheric months (NOV : November ; DEC : 884 

December ; DJF : December-January-February). The level of statistical significance is 885 

given in parenthesis. 886 

 887 
Period SLP season NSC R 
79-14 NOV 1.3 (10%) 0.70 (13%) 
79-14 DJF 1.1 (29%) 0.63 (32%) 
79-05 NOV 1.9 (3%) 0.83 (5%) 
79-05 DEC 1.9 (6%) 0.80 (6%) 
79-05 DJF 2.4 (6%) 0.71 (25%) 
79-11 NOV 1.1 (27%) 0.77 (21%) 
79-11 DEC 1.6 (9%) 0.71 (27%) 
79-11 DJF 1.5 (11%) 0.66 (44%) 

    
    
    
    
    

 888 

  889 
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 890 

Figures Caption 891 

Figure 1 :  892 

Normalized squared covariance (NSC, contours, in %) for the first MCA mode between 893 

observed SLP and Eurasia snow cover, for each month in the atmosphere. The lag is 894 

positive when the snow cover leads SLP. The gray shade provides the level of statistical 895 

significance for NSC. The plus symbols indicate the atmospheric month and time lag 896 

where the level of significance for the correlation (R) is below 5%. 897 

 898 

Figure 2 :  899 

(a) Scatter plot of the confidence level, in %, of the normalized squared covariance, NSC, 900 

versus that of the correlation, R, for the first MCA mode between SLP and Eurasian snow 901 

cover. (b) Scatter plot of the spatial correlation between the SLP covariance map found 902 

in models and that of ERA-Interim, versus the spatial correlation between the snow 903 

cover covariance map found in models and that of ERA-Interim. The black indicates the 904 

results for SLP in December and SCE in November (one month lag). The blue indicates 905 

the results for SLP in November and SCE in October (one month lag). The red indicates 906 

the results for the SLP in January and SCE in November (two month lag). In (b), the bold 907 

symbols indicate levels of significance lower than 15% for both NSC and R. 908 

 909 

Figure 3 :  910 

(a) Homogeneous snow cover fraction (in %) and heterogeneous SLP (in hPa) 911 

covariance maps for the first MCA mode, for December SLP and November snow cover, 912 

when the snow cover leads by one month the atmosphere, in ERA-Interim. (b) Same as 913 
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(a), but using January SLP with a 2 month lag. (c), (d), (e), (f) and (g) same as (a) but for 914 

CanESM2, MPI-ESM, GISS-E2-R, CESM1-BGC and the mean of the four models, 915 

respectively. Note that the color scale is different for observation and models. (h) Box 916 

plots of the NSC and R statistics from the MCA using 36-yr periods extracted from the 917 

control runs of each models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-T and 4: CESM1-BGC), 918 

error bars show the 5% and 95% percentiles. The dashed horizontal lines show the NSC 919 

and R values in observations. 920 

 921 

Figure 4 :  922 

Regression of SLP (contours, in hPa) and 2m air temperature, (color, in K) on the MCA-923 

snow index, in November, for (a) ERA-Interim and (b) the subset of four models. In (a), 924 

colors are masked if the level of significance is above 10% for observation. In (b), colors 925 

indicate anomalies of the same sign among the four models. 926 

 927 

Figure 5 :  928 

Homogeneous SLP (in hPa) and heterogeneous snow cover (in %) covariance maps for 929 

the first MCA mode, when the SLP and snow cover are simultaneous (no lag), for (a) 930 

November fields in ERA-Interim; (b) December fields in ERA-Interim and (c) November 931 

fields in the mean of the four models subset. 932 

 933 

Figure 6 :  934 

(a) REOF1 of November SLP (in hPa) in ERA-Interim. (b) Same as (a) for the model mean 935 

REOF1 using the four models. In (a), the variance fraction is given in parenthesis. In (b), 936 

the minimum and maximum variance fraction among the four models is indicated in 937 

parenthesis. (c) Box plots of the November variance (in %) explained by the SCA and the 938 
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NAO/AO in 36-yr chunks from the control runs of each models (1: CanESM2, 2:MPI-ESM, 939 

3: GISS-E2-R and 4: CESM1-BGC); the error bars give the 5% and 95% percentiles, and 940 

the dashed horizontal lines the AO and SCA variance fraction in observations. 941 

 942 

Figure 7 :  943 

Regression of the December SLP in hPa onto (Left) European and (Right) Siberian snow 944 

anomalies, given by multivariate regression; for (upper) ERA-Interim and (lower) the 945 

subset of four models. In (a) and (b), colors are masked if the level of statistical 946 

significance is above 10%. In (c) and (d), colors indicate anomalies of the same sign 947 

among the four models. 948 

 949 

Figure 8 :  950 

Regression of the snow cover fraction (color shades over continent, in %) and sea ice 951 

concentration (blue contours and shades over the ocean, in %), onto the November 952 

MCA-snow index, for (a) ERA-Interim in October; (b) the four models in October; (c) and 953 

(d) Same as (a) and (b) for November; (e) and (f) same as (a) and (b) for December. The 954 

sea-ice concentration contour interval is 5% in observations, and 1% for models, the 955 

zero contour is removed. The thick gray contour provides the 50% contour for 956 

climatological SIC. 957 

 958 

Figure 9 :  959 

Thermodynamical component of the heat flux, positive upward, in W m-2, associated in 960 

November with the November MCA-snow index in (a) ERA-Interim and (b) the four 961 

models. The color scale is different over land and ocean to emphasize the changes over 962 

continental surfaces. Note the different contour intervals for ERA-Interim and models. 963 
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(c,d) Regressions of the shortwave (SW), longwave (LW), sensible (SH), latent (LH) and 964 

total (Tot) heat flux over the Siberia (SIB), Europe (EUR) and Barents-Kara Sea (B/K) 965 

integrated over boxes shown in (a) and (b) with histograms for (c) ERA-Interim and (d) 966 

the four models mean. In (d) the error bars indicate the minimum and maximum values 967 

among models. 968 

 969 

Figure 10 :  970 

Regression of the SLP, in hPa (contour interval 0.5 hPa), onto the MCA-snow index, (left 971 

column) ERA-Interim and (right column) models, in (a), (b) October; (c), (d) November; 972 

(e), (f) December  and (g), (h) January . The thick black line indicates 5% significance for 973 

observations or anomalies of the same sign among the four models. The contour interval 974 

at -0.2 and 0.2 hPa was added for models. 975 

 976 

Figure 11 :  977 

Regression of the zonal-mean temperature (gray contours and color shades, in K) and 978 

geopotential height (blue contours, in m) onto the MCA-snow normalized index, for (left 979 

column) ERA-Interim and (right column) models, in (a), (b) November; (c), (d) 980 

December and (e), (f) January. Colors indicate zonal mean temperature (left) level of 981 

significance below 10% or (right) anomalies of the same sign among the four models. 982 

 983 

Figure 12 :  984 

Regression of the temperature over the polar cap (65°N-90°N) onto the MCA-snow 985 

normalized index, for (a) ERA-Interim and (b) models. The thick black lines indicate (a) 986 

level of significance below 10% or (b) anomalies of the same sign among the four 987 

models. Note the different contour intervals. 988 
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 989 

Figure 13 :  990 

 (a) Snow cover (color over land, in %) and SIC (color over ocean, in %) homogeneous 991 

covariance map and SLP (in hPa) heterogeneous map for the first MCA mode using 992 

combined snow/sea-ice in November and SLP in December for ERA-Interim. (b) (black) 993 

MCAcat_SCE, (red) MCAcat_SIC and (green) atmospheric SLP yearly time series from the 994 

MCA (normalized).  995 

 996 

Figure 14 :  997 

Regression slopes of a bivariate regression of the SLP (in hPa) for the (a) MCA-snow, and 998 

(b) MCA-SIC indices. Colors indicate level of significance below 10%. 999 

 1000 

Figure 15 :  1001 

Regression slopes of a multivariate regression of the SLP (in hPa) onto the (a) snow 1002 

dipole, (b) Barents-Kara Sea SIC and (c) SCA indices. In (a-c) colors indicate level of 1003 

significance below 10%. (d) R2 value of univariate regressions using the AO index as 1004 

predictand and snow dipole, Barents-Kara Sea SIC or SCA as predictor. ALL indicates the 1005 

R2 when using the three indices in a multivariate regression. Note that the y-axis is 1006 

different for observation (bars, left axis) and models (symbols, right axis). 1007 

The black symbols (bars) provide the results for models (observations), thick symbols 1008 

(bars) indicating level of significance of R2 below 10%. 1009 

 1010 

Figure A1 :  1011 

(a) Homogeneous October snow cover fraction (in %) and November heterogeneous SLP 1012 

(in hPa) covariance maps for the first MCA mode, when the snow cover leads by one 1013 
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month the atmosphere, for ERA-Interim during 1979-2014. (b) Same as (a) but for the 1014 

1979-2005 period. (c) Same as (a) but using the December SLP. (d) Same as (c) but for 1015 

the 1979-2005 period. 1016 



 

 

 

Fig. 1 : Normalized squared covariance (NSC, contours, in %) for the first MCA mode 

between observed SLP and Eurasia snow cover, for each month in the atmosphere. The 

lag is positive when the snow cover leads SLP. The gray shade provides the level of 

statistical significance for NSC. The plus symbols indicate the atmospheric month and 

time lag where the level of significance for the correlation (R) is below 5%. 
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Fig. 2 : (a) Scatter plot of the confidence level, in %, of the normalized squared 

covariance, NSC, versus that of the correlation, R, for the first MCA mode between SLP 

and Eurasian snow cover. (b) Scatter plot of the spatial correlation between the SLP 

covariance map found in models and that of ERA-Interim, versus the spatial correlation 

between the snow cover covariance map found in models and that of ERA-Interim. The 

black indicates the results for SLP in December and SCE in November (one month lag). 

The blue indicates the results for SLP in November and SCE in October (one month lag). 

The red indicates the results for the SLP in January and SCE in November (two month 

lag). In (b), the bold symbols indicate levels of significance lower than 15% for both NSC 

and R.  

 

 

  



 

 

Fig. 3 : (a) Homogeneous snow cover fraction (in %) and heterogeneous SLP (in hPa) 

covariance maps for the first MCA mode, for December SLP and November snow cover, 

when the snow cover leads by one month the atmosphere, in ERA-Interim. (b) Same as 

(a), but using January SLP with a 2 month lag. (c), (d), (e), (f) and (g) same as (a) but for 

CanESM2, MPI-ESM, GISS-E2-R, CESM1-BGC and the mean of the four models, 



respectively. Note that the color scale is different for observation and models. (h) Box 

plots of the NSC and R statistics from the MCA using 36-yr periods extracted from the 

control runs of each models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-T and 4: CESM1-BGC), 

error bars show the 5% and 95% percentiles. The dashed horizontal lines show the NSC 

and R values in observations. 

  



 

 

 

Fig. 4 : Regression of SLP (contours, in hPa) and 2m air temperature, (color, in K) on the 

MCA-snow index, in November, for (a) ERA-Interim and (b) the subset of four models. In 

(a), colors are masked if the level of significance is above 10% for observation. In (b), 

colors indicate anomalies of the same sign among the four models. 

 

 

  



 

 

 

Fig. 5 : Homogeneous SLP (in hPa) and heterogeneous snow cover (in %) covariance 

maps for the first MCA mode, when the SLP and snow cover are simultaneous (no lag), 

for (a) November fields in ERA-Interim; (b) December fields in ERA-Interim and (c) 

November fields in the mean of the four models subset.  

 



 

Fig. 6 : (a) REOF1 of November SLP (in hPa) in ERA-Interim. (b) Same as (a) for the 

model mean REOF1 using the four models. In (a), the variance fraction is given in 

parenthesis. In (b), the minimum and maximum variance fraction among the four 

models is indicated in parenthesis. (c) Box plots of the November variance (in %) 

explained by the SCA and the NAO/AO in 36-yr chunks from the control runs of each 

models (1: CanESM2, 2:MPI-ESM, 3: GISS-E2-R and 4: CESM1-BGC); the error bars give 

the 5% and 95% percentiles, and the dashed horizontal lines the AO and SCA variance 

fraction in observations.  



 

 

 

 

 

Fig. 7: Regression of the December SLP in hPa onto (Left) European and (Right) Siberian 

snow anomalies, given by multivariate regression; for (upper) ERA-Interim and (lower) 

the subset of four models. In (a) and (b), colors are masked if the level of statistical 

significance is above 10%. In (c) and (d), colors indicate anomalies of the same sign 

among the four models. 

 

 



 

 

 

Fig. 8 : Regression of the snow cover fraction (color shades over continent, in %) and sea 

ice concentration (blue contours and shades over the ocean, in %), onto the November 

MCA-snow index, for (a) ERA-Interim in October; (b) the four models in October; (c) and 

(d) Same as (a) and (b) for November; (e) and (f) same as (a) and (b) for December. The 

sea-ice concentration contour interval is 5% in observations, and 1% for models, the 

zero contour is removed. The thick gray contour provides the 50% contour for 

climatological SIC. 



 

 

Fig. 9 : Thermodynamical component of the heat flux, positive upward, in W m-2, 

associated in November with the November MCA-snow index in (a) ERA-Interim and (b) 

the four models. The color scale is different over land and ocean to emphasize the 

changes over continental surfaces. Note the different contour intervals for ERA-Interim 

and models. (c,d) Regressions of the shortwave (SW), longwave (LW), sensible (SH), 

latent (LH) and total (Tot) heat flux over the Siberia (SIB), Europe (EUR) and Barents-

Kara Sea (B/K) integrated over boxes shown in (a) and (b) with histograms for (c) ERA-

Interim and (d) the four models mean. In (d) the error bars indicate the minimum and 

maximum values among models.  

  



 

 

 

Fig. 10 : Regression of the SLP, in hPa (contour interval 0.5 hPa), onto the MCA-snow 

index, (left column) ERA-Interim and (right column) models, in (a), (b) October; (c), (d) 

November; (e), (f) December  and (g), (h) January . The thick black line indicates 5% 

significance for observations or anomalies of the same sign among the four models. The 

contour interval at -0.2 and 0.2 hPa was added for models. 

 

 

  



 

 

Fig. 11 : Regression of the zonal-mean temperature (gray contours and color shades, in 

K) and geopotential height (blue contours, in m) onto the MCA-snow normalized index, 

for (left column) ERA-Interim and (right column) models, in (a), (b) November; (c), (d) 

December and (e), (f) January. Colors indicate zonal mean temperature (left) level of 

significance below 10% or (right) anomalies of the same sign among the four models. 

  



 

Fig. 12 : Regression of the temperature over the polar cap (65°N-90°N) onto the MCA-

snow normalized index, for (a) ERA-Interim and (b) models. The thick black lines 

indicate (a) level of significance below 10% or (b) anomalies of the same sign among the 

four models. Note the different contour intervals. 

 

 

 



 

Fig. 13 : (a) Snow cover (color over land, in %) and SIC (color over ocean, in %) 

homogeneous covariance map and SLP (in hPa) heterogeneous map for the first MCA 

mode using combined snow/sea-ice in November and SLP in December for ERA-Interim. 

(b) (black) MCAcat_SCE, (red) MCAcat_SIC and (green) atmospheric SLP yearly time 

series from the MCA (normalized).  

  



 

 

 

Fig. 14: Regression slopes of a bivariate regression of the SLP (in hPa) for the (a) MCA-

snow, and (b) MCA-SIC indices. Colors indicate level of significance below 10%.  

 

 

 

  



 

 

 

Fig. 15 : Regression slopes of a multivariate regression of the SLP (in hPa) onto the (a) 

snow dipole, (b) Barents-Kara Sea SIC and (c) SCA indices. In (a-c) colors indicate level 

of significance below 10%. (d) R2 value of univariate regressions using the AO index as 

predictand and snow dipole, Barents-Kara Sea SIC or SCA as predictor. ALL indicates the 

R2 when using the three indices in a multivariate regression. Note that the y-axis is 

different for observation (bars, left axis) and models (symbols, right axis). 

The black symbols (bars) provide the results for models (observations), thick symbols 

(bars) indicating level of significance of R2 below 10%. 

  



 

 

 

 

Fig. A1 : (a) Homogeneous October snow cover fraction (in %) and November 

heterogeneous SLP (in hPa) covariance maps for the first MCA mode, when the snow 

cover leads by one month the atmosphere, for ERA-Interim during 1979-2014. (b) Same 

as (a) but for the 1979-2005 period. (c) Same as (a) but using the December SLP. (d) 

Same as (c) but for the 1979-2005 period. 

 

 


