Daniela Genius

Marie-Minerve Louërat

François Pêcheux

Ludovic Apvrille

Haralampos Stratigopoulos

Modeling Heterogeneous Embedded Systems with TTool

Embedded systems are increasingly heterogeneous, comprising digital and analog integrated circuits, sensors, and actuators. This paper presents a first step towards an integrated modeling and simulation tool for verification and virtual prototyping of heterogeneous embedded systems on different abstraction levels.

I. INTRODUCTION

The complexity of recent embedded systems pushes current design techniques to their limits. In particular, the space to be explored is getting larger.

Model-oriented design of complex embedded systems is nowadays a current practice in software development for embedded systems, the hardware aspects of such systems are however less frequently designed using this kind of approach.

Many applications like e.g. robotics, automotive and autonomous systems require moreover heterogeneous modeling -including modeling of analog/mixed signal (AMS) and radio frequency (RF) features.

Nevertheless, the related work in the next section demonstrates the lack of tools offering at the same time heterogeneous system modeling, precise simulation, and formal verification.

II. RELATED WORK

Well established tools like Ptolemy II [START_REF] Lee | Disciplined heterogeneous modeling[END_REF] [START_REF] Ptolemaeus | System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org[END_REF], based upon a data-flow model, address heterogeneous systems by defining several sub domains and synchronization between these domains.

Metropolis [START_REF] Balarin | Metropolis: An integrated electronic system design environment[END_REF] is based on a high level model and facilitates the separation of computation from communication concerns. Heterogeneous systems are taken into consideration, but no model for addressing the analog part is provided.

Other tools are based on the Amalthea environment [START_REF] Latif | Design space exploration for complex automotive applications: An engine control system case study[END_REF] for exploring the design space of automotive applications on multi-core systems, but without relying on formal methods.

In the scope of [START_REF]Beyond Dreams (Design Refinement of Embedded Analogue and Mixed-Signal Systems[END_REF], a mixed analog-digital systems proof-of-concept simulator has been developed [START_REF] Einwich | SystemC AMS PoC2.1 Library[END_REF], based on the SystemC AMS extension standard [START_REF][END_REF], [START_REF]Accellera systems initiative[END_REF]. Another simulator is proposed in [START_REF]Heterogeneous Inception[END_REF]. Integration with software code for generalpurpose CPUs and with an operating system is not yet addressed in these approaches.

UML/SysML based modeling techniques [START_REF] Vidal | A co-design approach for embedded system modeling and code generation with UML and MARTE[END_REF], [START_REF] Gamatié | A model-driven design framework for massively parallel embedded systems[END_REF] are popular with industry targeting embedded systems, but are still rarely used in the domain of heterogeneous system design. Furthermore, with some exceptions [START_REF] Taha | An entirely model-based framework for hardware design and simulation[END_REF], [START_REF] Genius | Model-Driven Performance Evaluation and Formal Verification for Multilevel Embedded System Design[END_REF], they do not lower the level of abstraction to cycle bit accurate level.

III. SYSTEMC AMS EXTENSIONS

"SystemC AMS extensions" is a standard describing an extension of SystemC with AMS and RF features [START_REF] Vachoux | Analog and mixed signal modelling with systemC-AMS[END_REF] [START_REF][END_REF]. The usual approach for modeling the digital part of a heterogeneous system with SystemC A TDF module is described with an attribute representing the time step and a processing function. The time step is associated to a time period during which the processing function should be executed. The processing function corresponds to a mathematical function which depends on the module inputs and/or internal states. At each time step, a TDF module first reads a fixed number of samples from each of its input ports, then executes the processing function, and finally writes a fixed number of samples to each of its output ports.

A TDF port is described with three attributes:

• T p represents the time period.

• R is the rate of data i.e. the number of read or written samples by a TDF port during each period. • D models the delay, the number of samples of the TDF port when a simulation starts. TDF modules can interact with the DE world using converter ports. In Figure 1, A and D are DE modules, B and C are TDF modules: thus, there are converter ports between A and B, and between C and D.

However, it is pointed out in [START_REF] Andrade | Pre-Simulation Formal Analysis of Synchronization Issues between Discrete Event and Timed Data Flow Models of Computation[END_REF] that it is hard to build a modeling environment supporting together at least DE and TDF, probably because of the difficulty to efficiently support the synchronization between the different models of computation. Indeed, the TDF model of computation is based on the Synchronous Data Flow (SDF) formalism that considers models as a network of synchronous data flow blocks, and does not easily match the one of DE systems. Recent work [START_REF] Porras | Principles and implementation of a generic synchronization interface between SystemC AMS models of computation for the virtual prototyping of multidisciplinary systems[END_REF] [10] models the interaction between TDF and DE by colored timed Petri Nets.

IV. HIGH LEVEL MODELING WITH TTOOL

TTool [START_REF] Apvrille | TTool, an open-source toolkit for the modeling and verification of embedded systems[END_REF] is a SysML based, free and open-source software for model-based engineering of embedded systems at different abstraction levels: functional, partitioning, software design, deployment. The method associated to these levels [START_REF] Genius | Model-Driven Performance Evaluation and Formal Verification for Multilevel Embedded System Design[END_REF] details how to take hardware/software partitioning decisions at a high level of abstraction, and to regularly validate these decisions during software development (upper part of Figure 2). Models of platforms are described in the hardware/software partitioning and deployment stages. Tasks destined to be implemented in hardware are represented as hardware accelerators.

Models are thus composed of hardware and software parts. Software tasks for the partitioning model are captured within the functional abstraction level, and software tasks used in deployments are captured in the software design abstraction level. In both partitioning and deployment, the computation part of tasks is then deployed to processors, and the communication and storage part is deployed to buses and memories.

An important advantage of TTool is that it offers an automated approach for formal verification and fast simulation on the three first levels of abstraction. Formal verification is based on internal model-checkers, or on external tools like UPPAAL [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF]. On the lowest level (i.e. the deployment level), TTool now offers the generation of a virtual prototype that can be simulated with a cycle bit accurate simulation for Multi Processors System on Chip (MPSoC) [START_REF] Genius | Virtual yet precise prototyping: An automotive case study[END_REF]. Processor models stem from the SoCLib [START_REF]The SoCLib project: An integrated system-on-chip modelling and simulation platform[END_REF] public domain library written in SystemC. SoCLib targets shared-memory multiprocessor-on-chip system architectures based on the Virtual Component Interconnect standard which separates the components' functionality from Several case studies have been performed in order to explain how the abstraction levels of TTool relate, e.g. an automotive obstacle detection [START_REF] Genius | Virtual yet precise prototyping: An automotive case study[END_REF] and a rover [START_REF] Genius | Multi-level Latency Evaluation with an MDE Approach[END_REF]. While sensors, GPS, radar, etc. can be approximately modeled with highly abstracted digital blocks, the accuracy of our models and verifications would benefit from more realistic models taking into account the AMS part.

V. INTEGRATION OF ANALOG COMPONENTS

A. Contribution

Our initial idea was to add analog components to the partitioning level, treating them at the same, very abstract, level as the (digital) hardware accelerators. After the partitioning stage, just like for such digital components, analog components could be developed independently from the software tasks. Yet, the development of analog components must be compatible with the partitioning decisions that can be revised in the next abstraction levels (software design, deployment), and thus, abstractions of these analog components could be useful, typically during the deployment phase.

We have already augmented the graphical interface of TTool with the possibility to describe SystemC AMS blocks with their DE, TDF and converter ports. Figure 3 shows the panel we added to TTool to this purpose. Rates and delays of TDF ports as well as the time period and DE/TDF and TDF/DE converter ports can be configured and parameterized (left sub-window of Figure 3). However, the behavior of the SystemC AMS blocks must be provided directly in SystemC AMS since the abstraction of the behavior of these components is not likely to be easily modeled in a UML/SysML way: we thus currently rely on external descriptions. The SystemC AMS code can be entered in an editor (right sub-window of Figure 3).

We are currently implementing the generation of SystemC AMS code of the components as well as the top cells from these mixed graphical/textual descriptions. This generation will have three phases:

1) In a first phase, we aim at generating fully functional SystemC AMS top cells and analog components by limiting to platforms without any software part and without preexisting So-cLib components. To do this, we have selected which we try to reproduce by our generator. 2) In a second phase, we intend to combine the SystemC AMS part with a digital MPSoC platform. The automated generation and configuration of the digital part of the hardware has already been addressed in previous contributions [START_REF] Genius | Virtual yet precise prototyping: An automotive case study[END_REF]: cache associativity, memory size, type of interconnect. On the software side, we limit to some assembler instructions directly loaded into memory. The (huge) remaining work is to combine this digital infrastructure with the analog part; we plan to start from the contribution described in [START_REF] Andrade | Pre-Simulation Formal Analysis of Synchronization Issues between Discrete Event and Timed Data Flow Models of Computation[END_REF]. 3) In a third phase, we intend to run larger scope software, requiring an operating system and a linker script.

B. Case Study

A rover system meant to assist rescuers to find victims in debris is used as a case study. The rover features several sensors including ultrasonic and temperature sensors. Depending on the distance measured by the ultrasonic distance sensor, the sampling rate of the temperature senor is adapted and the motor receives commands to speed up or slow down.

Figure 4 presents the functional model that abstracts sampling rates of sensors with numerical (integer) values (type Natural). This model contains the two sensor blocks and the motor control, managed by a central control block communicating by channels (blue arrows) and through events (pink arrows). The current model is unable to express the analog nature of the temperature and distance signals. Moreover, the concrete values of the sampling rates cannot be given at this level. In Figure 5, MotorContol and MainControl are mapped to the general purpose CPU. The temperature and distance sensors are currently modeled as hardware accelerator blocks on the partitioning level. These will later be replaced by SystemC-AMS components generated from the mixed SysML/SytemC AMS description of TTool.

Figure 6 shows the deployment view, from which the SoCLib platform will be generated by extending the method described in [START_REF] Genius | Virtual yet precise prototyping: An automotive case study[END_REF].The software tasks, MotorControl and MainControl, are mapped to a general purpose processor. We outline a method to integrate analog components into a multi-level modeling tool for complex embedded systems. We are currently working on the automatic generation of heterogeneous platforms.

Once this step achieved, we will be able to simulate more complex heterogeneous systems with extended software parts running on (digital) generalpurpose processors and (light) operating systems.

In the spirit of SoCLib, we have also started to define a library of basic analog components (filters, amplifiers, A/D converters), configurable to some degree, which should progressively be enriched. This will be another challenging task: each analog component has specific features like e.g. equations for which it is much harder to determine common aspects than for their digital counterparts.

[1]Fig. 1 .

 11 Fig. 1. Two TDF Modules interacting with two DE modules

Fig. 2 .

 2 Fig. 2. Hardware/Software partitioning and Code generation for MPSoC platforms

Fig. 3 .

 3 Fig. 3. Parameterizing of ports and SystemC AMS editor in TTool

Figure 7 Fig. 4 .Fig. 5 .Fig. 6 .

 7456 Figure7finally shows the modules of the rover as SystemC AMS modules; the two analog modules are connected by converter ports, and the sampling rates are taken from the software design model. The corresponding code will be generated by our TTool extension.

Fig. 7 .

 7 Fig. 7. SystemC AMS modules of the rover