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Designing embedded systems includes two main phases: (i) HW/SW Partitioning performed from high-level functional and architecture models, and (ii) Software Design performed with significantly more detailed models. Partitioning decisions are made according to performance assumptions that should be validated on the more refined software models. In this paper, we focus on one such metric: latencies between operations. We show how they can be modeled at different abstraction levels (partitioning, SW design) and how they can help determine accuracy of the computational complexity estimates made during HW/SW Partitioning.

Introduction

Applications modeled at high levels of abstraction contain a very indeterminate notion of latency. This is typically the case for applications modeled in the scope of system-level hardware / software partitioning. When applications are mapped onto virtual or existing hardware, in particular onto multi-processor systems-on-chip (MP-SoC), latencies become a function of multiple precise factors: cache effects, memory latencies, bus or network on chip transfers, synchronization latency between processors.

TTool [START_REF] Apvrille | TTool for DIPLODOCUS: an environment for design space exploration[END_REF] supports both Partitioning and System Design, and considers that partitioning decisions may need to be changed due to additional information from verifications performed during the System Design phase. Recent work studied how to feed back information such as cycles per instruction and cache miss rate, but did not yet include latency between operators nor a definition of a refinement relation between abstraction levels [START_REF] Genius | Model-Driven Performance Evaluation and Formal Verification for Multi-level Embedded System Design[END_REF].

We explain how latencies of these modeling levels relate to one another, and how results can be backtraced to models at higher abstraction levels e.g. from software to partitioning models. We can thus generate hardware/software platform from models that can be simulated at very low level. Our method is suited to MP-SoCs with many processors and complex interconnections e.g. network on chip. Latency precision increases as cycle and bit accurate levels take into account application, hardware and operating system.

Section 2 presents the related work. Section 3 focuses on our method. Section 4 explains the notion of latency on different abstraction levels within an MDE approach. Section 5 details the rover case study and shows how latencies can be determined at different levels. Section 6 concludes the paper.

Latencies in Related Work

A number of system-level design tools exist, offering a variety of verification and simulation capabilities at different levels of abstraction.

Sesame [START_REF] Erbas | Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design[END_REF] proposes modeling and simulation features for MP-SoC at several abstraction levels. Semantics vary according to the level of abstraction, ranging from Kahn process networks [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF] to data flow for model refinement, and discrete events for simulation. Sesame is however limited to the allocation of processing resources. It models neither memory mapping, nor the choice of the communication architecture, and is thus less precise than tools including these aspects.

The same research team proposes the Daedalus [START_REF] Thompson | A framework for rapid system-level exploration, synthesis, and programming of multimedia MP-SoCs[END_REF] design flow, which allows to evaluate latencies at a register transfer level. Daedalus is however targeted towards automated synthesis of multimedia streaming applications on MP-SoC, which are somewhat more predictable than typical embedded applications that interact with the environment in many ways. SATURN [START_REF] Mueller | The SATURN approach to sysml-based hw/sw codesign[END_REF] uses Artisan Studio (Atego, 2017) for SysML editing and performs a co-simulation using the QEMU software emulator. It can also configure an FPGA. However, simulations under SystemC are performed only at the quite high TLM-2.0 abstraction level (OSCI, 2008) which makes latency measurements less precise.

The Architecture Analysis & Design Language AADL allows the use of formal methods for safetycritical real-time systems, with a focus on latency and safety, properties which are also important in the context we explore. Similar to our environment, a processor model in AADL can have different underlying implementations and its characteristics can easily be changed at the modeling stage [START_REF] Feiler | Model-based engineering with AADL: an introduction to the SAE architecture analysis & design language[END_REF].

MARTE [START_REF] Vidal | A co-design approach for embedded system modeling and code generation with UML and MARTE[END_REF] shares many commonalities with our overall approach; however, it lacks separation between control and message exchange. More recent work [START_REF] Taha | An entirely model-based framework for hardware design and simulation[END_REF] contains hardware platform generation and support simulation using Simics, a full-system simulator; originally purely functional, il now permits cycle-accurate simulation. A binary of the software is loaded onto the platform, and runs under an operating system.

The work shown in [START_REF] Lee | Dealing with aadl end-to-end flow latency with uml marte[END_REF] uses a UML/MARTE model to express AADL flow latencies and takes into account worst case latencies and jitter. This work is more (but not exclusively) focused on the periodic case and does not contain a virtual prototyping phase.

MDGen from Sodius (Sodius Corporation, 2009) generates SystemC code from SysML models. It adds timing and hardware specific artifacts such as clock/reset lines to Rhapsody models and generates synthesizable, cycle-accurate implementations. In these aspects, it is very similar to our tool, which generates a cycle and bit accurate simulation platform; MDGen however does not fully address correctness by construction aspects.

The B method and more recently Event-B [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF]) model systems at different abstraction levels and mathematically prove consistency between refinement levels. Based on set theory and the B language, it is well established in large-scale public/private projects (urban transports etc.) but much less widespread in industry than UML/SySML based approaches.

Methodology Overview

Our methodology for the design of embedded systems involves design at four levels of abstraction where different latency measurements (see Figure 1). The partitioning level features two sub-levels.

The purely functional level relies on logical time,

where latency is based on the logical time between functional operators describing the behavior of tasks. These operators can describe non deterministic behavior, and model in an abstract way the complexity of computations.

2. The system-level mapping level gives a physical time to complexity operations, thus giving a physical time to latencies. However, the high level abstract hardware components of our approach make these latencies imprecise: the values we obtained -which might be used as a partitioning decisionare meant to be confirmed during the next levels.

The software level also includes two sub-levels.

1. At the software design level, software is modeled with blocks and state machine diagrams. The transitions between states can be annotated with minimum and maximum physical time functions (after, computeFor). Latency estimates between states/transitions are obtained by interactive simulation, without any hardware model.

2. The deployment level allows a designer to map software blocks onto hardware elements (CPU, memory, etc.). A cycle and bit accurate SystemCbased simulation is then used to obtain a cycleprecise measurement of latencies. Latencies obtained there can be used to correct decisions (e.g. partitioning decisions) taken at the higher level (e.g., at system-level mapping).

Latencies in MDE

In this section, we formally define latencies with regards to their abstraction levels.

Latencies

We assume a model M = (T,Comm), which contains a set of execution elements (Tasks) and communications between tasks. T can be defined as T = (Op, n) with Op being a set of operators -control, communication, complexity -and n a next function n : op → {op } returning all the subsequent operators of a given operator. A complexity operator is an op that abstracts a computation into either a number of operations to be executed or a physical time. Also, an operator op that belongs to a task t of a model M is denoted op M,t . An execution environment is denoted as E = (M, H, m t , m c ) where M is a model, H 

Computing Latencies

Occurrences O of an operator op 1 of an execution of t ∈ T are expressed as the set of all times x of op 1 :

O(op 1 ) = {x op 1,1 , x op 1,2 , . . . }.
We can thus determine for a given E the set of all latencies L E op 1 ,op 2 between op 1 and op 2 , where for each x op 1 ∈ O(op 1 ), we find the first occurrence of op 1 after each occurrence of op 2 , calculated as the minimum of all x op 2 ∈ O(op 2 ) where x op 2 > x op 1 . Then, we can define the min latency as: l E min;op 1 ,op 2 = min(L E op 1 ,op 2 ). Similarly, the max and mean can be defined.

Correspondence Between Latencies

Our objective is to be able to relate latencies of models at different abstraction levels so as to confirm decisions taken at the highest abstraction level. To relate latencies, we first need to relate operators of different abstraction levels. We thus define a correspondence relation between operators of two abstraction levels u (for upper) and l (for lower). C (op) is therefore defined as:

∀op M l ,t l , noted op l , C (op l ) = op u φ
otherwise We can thus relate latencies when op l,1 and op l,2 of M l have both a non empty correspondence in M u . Figure 2 explains how latencies and models relate across different abstraction levels. Since the goal is to relate operators of functions and blocks, we do not need R to be a refinement relation between the exe-cution environments E u and E l . Therefore, the engineer is in charge of ensuring that hardware nodes have been correctly refined, and mapping relations adapted to the refined model.

R can be defined as follows. Tasks can be split in subtasks. Complexity operators can be replaced by a sub-behavior. Communications between tasks may be added in order for subtasks to exchange information, but communication operators can only be added in sub-behaviors replacing complexity operators. More formally, if M u = (T u ,Comm u ) with ∀t ∈ T u , t = (Op u , n u ), then t can be refined by R : 1. t u can be replaced by k tasks t 1,l ,t 2,l , . . . ,t k,l with k > 0 and Op u ∈ ∪Op x,u i.e. the operators of t u are split among the k tasks if k > 1, then additional communications and controls may be introduced between operators of the original tasks, thus provoking an update of next functions n l in the lower levels.

2. Each complexity operator can be replaced by a sub-behavior:

Op u = (O u,ctrl , O u,comm , O u,complexity , O u,sub ).
A sub-behavior Sub = (Op, n, n r ) can be seen as a sub-activity of the main task that suspends the main task when it is triggered, and that has a next operator n r that resumes the task to the corresponding next operator in the main task. Therefore, the n function of a sub activity must reference only operators of this sub activity.

Let us now apply the latency concepts to our abstractions levels: partitioning, and software design.

Partitioning

The HW/SW Partitioning phase of embedded system design models the abstract, high-level functionality

M u E u (M u , H u , mt u , mc u )

Models

Execution env. and architecture of a system [START_REF] Knorreck | Formal System-level Design Space Exploration[END_REF].

It follows the Y-chart approach, first modeling the abstract functional tasks, candidate architectures, and then finally mapping tasks onto the hardware components [START_REF] Kienhuis | A Methodology to Design Programmable Embedded Systems: The Y-Chart Approach[END_REF]. The application is modeled as a set of communicating tasks on the Component Design Diagram (an extension of the SysML Block Instance Diagram). Task behavior is modeled using control, communication, and computation operators.

A Partitioning P is defined as a set of models P = (FM, AM, MM), with FM a Functional Model, AM an Architecture Model, and MM a Mapping Model.

Functional Level

A Functional Model is defined as FM = (T,Comm) when T is a set of Tasks, and Comm is a set of Communications between tasks. A Task t is defined as t = (Attr, B) with Attr a set of Attributes, and B a behavior.

The Behavior B = (Ctrl,CommOp,CompOp) consists of Control Operators Ctrl -such as loops, choices, etc. -Communication Operators CommOp -channel read/write, events send/receive -, and Complexity operations CompOp, who model the complexity of algorithms through the description of a min/max interval of integer/float/custom operations on an execution hardware (CPU, hardware accelerator, FPGA, etc.), see the top left part of Figure 3.

At this abstraction level, latency is defined as the logical time between complexity operators as shown in Figure 1.

Mapping Level

Mapping involves allocating tasks onto the architectural model. A task mapped to a processor will be implemented in software, while a task mapped to a hardware accelerator will be implemented in hardware.

The architectural model is a graph of execution nodes (CPUs, Hardware Accelerators), communica-tion nodes (Buses and Bridges), and storage nodes (Memories). Hardware components are highly abstracted: a CPU is defined as a set of parameters such as an average cache-miss ratio, go idle time, context switch penalty, etc. An Architecture Model 

Software Design

A software design consists of both a software model, and a experimentation of this software running on a (virtual) prototype.

Software Model

A Software Design model can be considered a refinement of a Partitioning model, where only software-implemented tasks are modeled with their detailed implementation, thus realizing the R relation: some tasks of P might be split while extra communications related to split tasks can be added.

Figure 3 shows the relation of Behavior Models between Partitioning and Software Design models.

The Software Model S = (T, I) can also be defined as a set of Tasks t and Interactions i between tasks. Regarding the behavior of tasks, while Partitioning models express algorithms as an abstract complexity operation and communications in terms of their size only, Software Design models describe the implementation of algorithms with a sub-behavior description using attributes, and interactions (based on signals exchanges) contain exchanged values stored in attributes of blocks. Thus, the set of attributes of software tasks is likely to be enriched both with regards to the partitioning model for algorithms details and communication details. Furthermore, the complexity operators in Partitioning, expressed as a function of execution cycles, are translated into either a time function T F() or subbehavior subB. More formally, the transformation relation of partitioning behavior to software design behavior can be expressed as:

B P = (Ctrl,Comm,Comp) → B S = (Ctrl ,Comm , T F, subB)
thus following the approach explained in section 4.1.2. For those tasks present in both Partitioning and Software Design models, while their behaviors appear different, their overall functionality should be the same; traces of their execution flow should involve the same sequence of operations and complexities/times. If the complexities are accurate and the model correctly translated, measured latencies between corresponding elements should remain the same.

Concerning latencies pertaining to communications, we restrict our analysis to those that remain unchanged between levels. If significant discrepancies occur, then there is an error in one of the models. The computation complexities for certain algorithms may have not been well estimated. Also, there could be an inaccurate modeling of the architecture, with a CPI (cycles per instruction) parameter not correctly set.

The formalizations introduced before provide a correspondence function C which takes as input an operator of a Software Design (lower level) and outputs an operator of the upper level (e.g., partitioning): it can thus be used to relate latencies between software design and partitioning models.

To find each corresponding Partitioning operator op P for a Software Design operator op SD , we must first determine if op SD was part of the subB added during the refinement of a complexity operator. If so, we conclude there is no corresponding operator op P .

If not, and the communication exists in both Software Design and Partitioning, then we find the partitioning operator that was translated into op SD during the refinement process.

The software model can be functionally simulated, taking into account temporal operators but completely ignoring hardware, operating systems and middleware. This simulation aims to identify logical modeling bugs, and estimate latencies, but the real computation of latencies (min, max, mean) is expected to be performed with the Software Prototyping execution model.

Software Prototyping

In order to prototype the software components with the other elements of the destination platform (hardware components, operating system), we use a so-called Deployment Diagram in which tasks are mapped to a model of the target system. Then, a model transformation generates the software elements (tasks, main program) and the hardware elements are built from the deployment information e.g. top cells of the hardware components in SoCLib (So-cLib consortium, 2003). The latter is an open library of multiprocessor-on-chip components based on the shared memory paradigm, consisting of SystemC models of hardware modules and an operating system. Precise cycle and bit accurate models for the hardware allow to measure the latency in terms of simulation cycles.

In order to evaluate latencies when the system is running, we proceed by intercepting the traffic on the interface between interconnect and memory bank, which has minimal impact on performance as it does not increase the code size. The trace thus obtained can then be analyzed to obtain latency values.

Case Study

Autonomous vehicles and other robots have been proposed for disaster relief efforts. Our case study describes the design of a rover, a small autonomous vehicle which will search through rubble for disaster victims. The rover is equipped with telemetric sensors, located in the front, rear, top, and sides. These sensors allow the rover to detect obstacles and navigate the terrain autonomously [START_REF] Tanzi | Towards "drone-borne" disaster management: Future application scenarios[END_REF]. The rover adjusts its acquisition behavior based on the situation. When it detects no obstacles in proximity, the rover decreases its sampling rate, assuming that no obstacles will suddenly appear in its path. When an obstacle is detected in close proximity, or within its "safety bubble", the rover adapts its behavior and increases its rate of acquisition. When the rover has detected obstacles in very close proximity, exact distances to obstacles become more critical.

Precise distance calculations depend not only on the telemetric sensor measurements, but also on ambient conditions. Therefore, to obtain an exact measurement, temperature and pressure sensors can be activated. The rover must be able to respond to obstacles within a set time frame -i.e., a maximal latencyto avoid collisions. The ultrasonic sensor's sampling rate depends on the proximity of the obstacle.

Functional and Partitioning Levels

We begin by modeling at the partitioning level using TTool's DIPLODOCUS environment. The rover consists of a main controller which receives data from a distance sensor and temperature sensor, which it uses to determine motor commands sent to the motor control, as shown in Figure 4. The main controller behavior and sampling rate of the distance sensor depends on the proximity of an obstacle (far away, intermediate, close). For simplicity, we map all tasks on one processor and all data transfer on one bus and one memory.

The mapping of tasks for our case study should ensure that the maximum latency between the detection, decision and the resulting actions occurs within a required time frame. Latency checkpoints, represented by small blue flags, are inserted at important points in each component's activity, such as on channel data transfers which relay the sensor data to the main controller and command transfers controlling the motor (Figure 4). We moreover evaluate the latency between reception of a signal of the DistanceSensor and a reaction via motorCommand. We sssume the rover moves at 6 km/h, thus covering a distance of 100 meters per minute. To determine the maximum latency between two checkpoints, we use the interactive simulation of TTool. Minimal, maximal and average latencies as well as the standard deviations are determined for the paths that were taken (left part of Table 1). 

Software Design

Software Model

Figure 5 shows the tasks of the rover modeled using TTool's Software/System Design environment, AVATAR. There are four blocks corresponding to the fours tasks already present in the functional model in Figure 4. Figure 6 shows part of the the state machine diagrams of MainControl, leaving out the states which compute the change of the sampling rate and the motor control instructions. The two sensors with their latency checkpoints and the data transmitted as well as MotorControl closely resemble their higherlevel modeling counterparts. As a refinement on distance detection, we model left, front and right distances separately. MotorControl is essentially unchanged, while temperature measurement simplifies the stop and start events with a single control signal. While the data transmitted through the channels is more precise than in the partitioning model -for example, motorCommand now consists of two integers leftCommand, rightCommand, whereas ultrasonicData has three parameters (distanceLeft,distanceFront,distanceRight, mo-torCommand has two (leftVelocity, rightVelocity). On the other hand, the main control automaton is simplified; branches can be taken depending on the data received. Only five signals are required, regrouped into three channels: from the viewpoint of mainControl, two each for reception and control of data from the distance and temperature sensors, and a last one for motorControl.

Latency Evaluation

The right hand side of Table 1 shows the results we obtained by performing an interactive simulation on the software model (i.e. without any target platform), examining as before the sensor data and motor control channels as well as the latency between reception of sensor data and sending of motor commands to determine if the reaction time is adequate. Again, the data stemming from the DistanceSensor has a higher latency and the differences between ultrasonicData and tempData are even more important. The maximum reaction time (last row) is higher, yet the rover controller reacts on time to obstacles at least 3 cm away.

Software Prototyping

From the Rover Deployment Diagram (see Figure 7), we generate the prototyping environment based on SystemC top cells. In Figure 7, all tasks are mapped onto one processor, and the three signals are mapped 1 shows the results we obtain under SoCLib. Latency variations on the prototype are much less significant than those derived by interactive simulation. In particular, the cost of a transfer of ultrasonic data was overestimated in the Partitioning and Software Models. On a MPSoC, using burst transfers, the cost of transmitting several values is thus mostly overshadowed by the cost of the protocol.

Feedback of Latency Results

Latency requirements on channels are annotated by the designer in the TTool diagrams. There are two kinds of problems that can be detected after simulation on the prototype and marked in the diagram: if the simulation result at the current level does not meet the requirement, or if it deviates more than a percentage fixed beforehand, we mark the label in red. Figure 8 shows the latency for a motorCommand issued by MainControl and received by MotorControl. The boxes on the left denote that the signal arrives from another block. We detect a deviation of the latency for motorCommand on the software design level. Thus we can correct the assumptions on the partitioning. This paper formalizes latency modelling and latency measurements at different abstraction levels in an MDE design flow. The principal contribution is the establishment of a formal connection between the latencies on the higher and lower levels of abstraction followed by a validation by simulation of the software part on a cycle-accurate model of a MP-SoC. Our work makes it possible to detect incoherencies in the models, backtrace results to the higher levels and indicate when latency requirements are not met or diverge too strongly across different levels.

Our toolchain relies entirely on free software; many others, also cycle-accurate, use commercial SysML editors or simulation tools [START_REF] Taha | An entirely model-based framework for hardware design and simulation[END_REF][START_REF] Mueller | The SATURN approach to sysml-based hw/sw codesign[END_REF]Sodius Corporation, 2009).

The complete backtracing phase, also containing information on cache miss rate, cycles per instruction, etc., obtained at the lower levels, will be fully automated in the future, a step towards a complete multilevel Design Space Exploration environment.
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Figure 2 :

 2 Figure 2: Relations between models and latencies between two abstraction levels

Figure 3 :

 3 Figure 3: Relation between latencies in Partitioning and Software Design Models

  Figure 4: Rover Functional Model
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 7 Figure 7: Rover Deployment Diagram

  Figure 8: Backtracing latencies

  AM = (CommNode, StoreNode, ExecNode, link) is built upon abstract Hardware Components: Communication Nodes CommNode, Storage Nodes StoreNode, Execution Nodes ExecNode, and architectural links between Communication Nodes and any other node link. ExecNode defines a conversion from Complexities to Cycles, and a speed converting Cycles to seconds. Similarly, CommNode and StoreNode give a physical time to logical transactions. The mapping therefore specifies a physical time for latencies defined at functional level, as shown by the top right part of Figure 3. We can determine latencies in physical time in two different ways. 1. A Formal Verification FV : P → RG is a function that takes as argument a Partitioning P and outputs a Reachability Graph RG. RG contains all possible Execution Traces ET . The analysis of RG makes it possible to obtain minimum and maximum latency values i.e. l P min and l P max . 2. Less formally, a simulation of P generates one single Execution Trace, in which we can measure the minimum, maximum, and average latencies be-

	tween any given two operators during that single
	execution trace: l P min , l P max and l P mean

Table 1 :

 1 Latencies

	Signal			Partitioning level			Software design level	
			min	max	avg	std dev	min	max	avg	std dev	SoCLib
	s(tempData)->	r(tempData)	4	4	4	0	0	4	0.2	0.8	21.7
	s(ultrasonicData)->r(ultrasonicData)	16	52	34	18	0	56	11.6	17.9	20.3
	s(motorCommand)-> r(motorCommand)	5.7	10.3	8	2.3	0	16	4.9	3.3	32.3
	s(ultrasonicData)-> r(motorCommand)	2	2	2	0	11	24	13.2	2.5	38.0
	r(rultrasonicData)-> s(changeRate)	4	42	23	19	0	68	10.6	13.0	45.7