
ALGEBRAIC TRANSFORMATIONS OF POLYNOMIAL
EQUATIONS, SYMMETRIC POLYNOMIALS AND

ELIMINATION

Marc Giusti ∗

Centre de Mathématiques
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INTRODUCTION

Let k be a field, and K an algebraic closure. To every univariate polynomial f with coefficients in
k is associated the algebra homomorphism f ∗ “inverse image” (i.e. f ∗(P ) = P ◦ f , which is in this
particular case the polynomial whose roots are the inverse images by f of the roots of P in K).

As usual defining a “direct image” is more difficult, but examples occur frequently in Mathematics :

(i) In the Graeffe method giving the real roots of a polynomial P , a basic step consists in computing
the polynomial whose roots are the square of the roots of the given polynomial P . This is one
of the simplest example of transforming a polynomial by an algebraic morphism.

(ii) Given a monic univariate polynomial P , we consider the polynomial whose roots are all the
differences of two roots of P in K. Its constant term is the discriminant of P .

(iii) Given two monic univariate polynomial P and Q, we form the polynomial whose roots are the
all the differences of a root of P and a root of Q in K. Its constant term is nothing else than
the resultant of P and Q.
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1



We shall define below a general transformation of polynomials, and study the following concrete
problem : how to perform such a transformation using a standard system of Computer Algebra,
providing the usual algebraic tools.
Note that in the first example described above, a first way is to compute the resultant R(y) =
Resx(P (x), y−x2). A second method is to remark that the coefficients of the required polynomial are
symmetric functions of the roots of P , hence can be expressed in terms of the elementary symmetric
functions which are known as the coefficients of P up to the sign.
As indicated by the previous remarks, we will show that the classical deep relationships between the
problems :

(T ) transforming polynomial equations by an algebraic morphism

(R) elementary elimination theory by resultants

(S) change of bases for symmetric polynomials.

can be illustrated in Computer Algebra. Actually they are algorithmically equivalent because every
one is a particular case of another one, as shown by the following diagram :
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where an arrow linking two problems means that one can describe an algorithm solving the second
one if such holds for the first one.

This paper is an extended abstract presenting some results of a paper in preparation. We refer to
the preliminary version [GLV] for details.

1 The problem (T ) of transforming equations by a mor-

phism

1.1 Notations

Let k be a field, and K an algebraic closure of k. We will denote by N the set of natural (i.e. positive)
integers.

Given an integer p, consider an element I = (i1, i2, . . . , ip) of Np. Its weight | I | is the sum i1+· · ·+ip.

Let RI be the polynomial algebra k[x
(1)
1 , . . . , x

(1)
i1 , . . . , x

(p)
1 , . . . , x

(p)
ip ]. A transformation of type I is

nothing else than a polynomial f of RI , to which is associated a mapping :

f : Ki1 ×Ki2 × . . .×Kip −→ K

which will be also denoted by f .

The set Np is naturally partially ordered. If J is larger than I, it gives rise to a natural inclusion
RI ⊆ RJ .

The multidegree D of a p-uple of univariate polynomials (P1, . . . , Pp) is the sequence (d1, . . . , dp) of
their degrees.



1.2 Definition

Now we can define the direct image or transformation :

f∗ : k[x]p −→ k[x]

which associates to any ordered p-uple of monic polynomials P = (P1, . . . , Pp), of multidegree D
larger than I, the monic polynomial f∗(P ) obtained in the following way : informally speaking, it
is the univariate polynomial whose roots are the elements of K obtained by substituting in f the
variables x

(j)
i ’s by the different roots of Pj. We give now a precise definition of f∗(P ) :

Since the multidegree D is larger than I, we can associate to every polynomial Pj of degree dj the

set r(Pj) = (a
(j)
1 , . . . , a

(j)
dj

) of its dj roots in K ordered in an arbitrary way (1 ≤ j ≤ p). Choose an

evaluation map Ea : RD −→ K which is the algebra homomorphism which sends the variable x
(j)
i

to a
(j)
i . The product SD of symmetric groups Sd1 × · · · × Sdp acts naturally on RD : by the natural

inclusion RI ⊆ RD, f becomes an element of RD ; let OSD
(f) be its orbit under SD.

Eventually f∗(P ) is the polynomial whose roots are the images by the evaluation map Ea of the
elements of the orbit of f , i.e. :

f∗(P )(x) =
∏

g∈OSD
(f)

(x− Ea(g))

1.3 Properties

By construction, the definition of f∗(P ) does not depend on the choice of the evaluation map. The
proof is straightforward.

Note also that f∗(P ) has a priori its coefficients in the closure K, but it is easy to see that they are
actually in k.

2 Representation and manipulation of the algebra of sym-

metric polynomials

A standard computer algebra system must provide the usual algebraic tools allowing to handle with
a polynomial algebra. This implies on the first hand a data structure and an internal representation,
on the second hand algorithms and the corresponding implementations of the algebra operations.

In applications of computer algebra, we frequently have to manipulate objects which are invariant
under some group of permutation of the indeterminates, for example symmetric polynomials. But
we are quickly stucked in a space problem if we use the standard previous tools, since the symmetric
group Sn contains n! permutations. So we need to represent this algebra of invariants in the most
contracted way : we don’t want to list the elements of an invariant subset, but only a fundamental
domain. For example, a monomial form is the sum of the elements of the orbit of a single monomial,
and we need only to store an element and the operation “+”. Note immediately that we have to
pay something since we assume implicitely that we are able to compute the isotropy subgroup of a
monomial . . .

To complete this data structure, we need two functions inverse of each other, one of contraction and
the other one of explosion, passing from the usual representation of polynomials in the system to the



contracted one and conversely.

Furthermore algorithms for the internal operations in the algebra must be available, with the corre-
sponding implementations. Eventually if the algebra admits several bases as algebra or vector spaces,
we need the corresponding algorithms allowing to expand on a new basis a symmetric polynomial
given on an old one.

All these goals are attained in the work of A. VALIBOUZE, and implemented in the extension SYM
to MACSYMA [V1] [V2].

3 Equivalence of the three problems

3.1 (R) =⇒ (T )

3.1.1 Relationship with elimination

Let us consider the affine algebraic subvariety V of K |I|+1 defined by the | I | +1 equations :

P1(x
(1)
1 ) = · · · = P1(x

(1)
i1 ) = 0

. . .

Pp(x
(p)
1 ) = · · · = Pp(x

(p)
ip ) = 0

y = f(x
(1)
1 , . . . , x

(1)
i1 , . . . , x

(p)
1 , . . . , x

(p)
ip )

Let y0 be a root of f∗(P ) ; then there exists common roots of the previous equations in the variables

x
(j)
i if we set y to y0.

Hence y0 belongs to the projection of V on the y-axis. Thus solving the problem of transforming
equations is part of an elimination problem of the variables x

(j)
i among the previous equations.

The variety V is obviously a complete intersection of dimension 0 and degree di11 . . . dipp . The projec-
tion of V on the y-axis is again of same dimension, hence is defined set-theoretically by a univariate
polynomial with well-defined roots, whose multiplicity varies unfortunately with the various defini-
tions of elimination.

Here it is one of the seldom cases where the elimination can be done by the use of two by two
resultants, since every variable x

(j)
i occurs only in two equations. We have the following theorem :

3.1.2 Theorem :

Let R(y) be the polynomial obtained by eliminating two by two the variables x
(j)
i among the equations

defining V . If GSI
(f) is the isotropy subgroup fixing f , the polynomial f∗(P )#GSI divides R.

Note that the degree of this factor F is the degree of f∗(P ) times the cardinal of GSI
(f), i.e. the

cardinal of SD divided by the cardinal of GD\I , i.e. eventually
∏p

r=1(dr − ir + 1) to be compared to
the degree of R(y), which is

∏p
r=1 d

ir
r .

Now to conclude it is enough to compute a squarefree decomposition of R, and to throw away the
other factors, which can be assumed known by induction. Actually if we consider the collapsed
transformations obtained by equaling two or more variables corresponding to the same component
of I, the parasite factors are some power of such transformations of P .



3.2 (T ) =⇒ (S)

It will be sufficient to show that we can compute change to and from a particular basis, i.e. the
symmetric elementary polynomials.

Given X = (x1, . . . , xn). we want to compute a monomial form MI(X) (i.e. the sum of the monomials
of the orbit of XI under the action of Sn) as a function of the elementary symmetric functions
e1, e2, . . . , en of the xi’s using (T ). Let us call P the polynomial xn +

∑n
i=1(−1)ieix

n−i. If we choose
p = 1 and f of type lg(I) = l as follows :

f(x1, x2, . . . , xl) = xi1
1 x

i2
2 . . . xil

l

the opposite of the coefficient of yn−1 in f∗(P )(y) is exactly MI . This is an immediate consequence
of the definition of f∗(P ).

3.3 (S) =⇒ (R)

Let P and Q be two univariate monic polynomials of degree respectively p and q, with coefficients in k.
Call x1, . . . , xp the roots of P in K. Then the resultant R of P and Q is the product Q(x1) . . . Q(xp),
which is a symmetric function of Q(x1), . . . , Q(xp), so can be expressed with the symmetric elemen-
tary functions of the xi’s, i.e. the coefficients of P up to the sign.

This transformation has been implemented in SYM. This gives an algorithm for the resultant wich
is experimentally much better than the subresultant method as implemented in MACSYMA, when the
coefficients of the polynomial depend on many parameters : for generic polynomial of degrees 3 and
6, this algorithm is 4 times faster than the subresultant algorithm. More generally, the computation
of the resultant of generic polynomials of degrees 3 and n needs about 2n, to be compared to about
5n by the subresultant algorithm. For higher degree, not enough memory was available.

4 Example

To illustrate different ways to solve T , it may be useful to consider the following example proposed
by P.Cartier, which led us to this theory. Consider the polynomial P (x) = x7 − 7x + 3. How to
compute the degree 35 polynomial whose roots are the sums of 3 distinct roots of P ?

4.1 Solving the problem through resultants

Here we may take f(x, y, z) = x+ y+ z. We want the direct image f∗(P ). Theoretically the problem
may be solved by computing
Q1 : Resultant(P(x), x + y + z - u, x)

Q2 : Resultant(P(y), Q1, y)

Q3 : Resultant(P(z), Q2, z)

Q : sqfr(Q3)

But pratically this fails for lack of memory.

Here is a more efficient program in MACSYMA wich gives the result in 1500 seconds (including 700
seconds of garbage collection) on a VAX 780 :

(c2) sum3(pol):=

block([a,b,c,d,sol],

a : resultant(pol,ev(pol,x=y-x),x),

b : rat(a/ev(pol,x=y/2),y),

c : sqfr(b),



d : part(c,2,1),

sol : resultant(ev(pol,x=z-y),d,y),

part(sqfr(sol),1,1,1));

4.2 A direct solution

Theoretically, the problem may be solved by use of symmetric functions, computing the above resul-
tants by algorithm 3.3.. But, in this special case, there is a direct way.
The coefficients of the wanted polynomial are symmetric functions of its roots. These can be ex-
pressed as sum of the k-th power of roots, p1, p2, . . . , p35. But

∑
(xi1xi2xi3)

k is easily expressed as
a symmetric function of x1, x2, . . . , x7 with the multinomial formula and thus as a function of the
coefficients of P . All these computations are done by Valibouze’s system SYM in 2 mn 30 s on the
same VAX 780.

Thus the problem may be solved in two different ways : the computation through the symmetric
functions is the most efficient one.
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