
HAL Id: hal-01672218
https://hal.sorbonne-universite.fr/hal-01672218v1

Submitted on 23 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing subfields : Reverse of the primitive element
problem

Daniel Lazard, Annick Valibouze

To cite this version:
Daniel Lazard, Annick Valibouze. Computing subfields : Reverse of the primitive element problem.
Frédéric Eyssette, and André Galligo. Computational Algebraic Geometry (MEGA, Nice, 1992),
Birkhäuser Boston, pp.63–176, 1993, Progress in Mathematics 109, 978-1-4612-2752-6. �10.1007/978-
1-4612-2752-6_11�. �hal-01672218�

https://hal.sorbonne-universite.fr/hal-01672218v1
https://hal.archives-ouvertes.fr

Computing subfields :

Reverse of the primitive element problem

Daniel LAZARD, Annick VALIBOUZE∗†

LITP, Université P. et M. Curie,
4 place Jussieu,

F-75252 Paris Cedex 05

December 23, 2017

Abstract

We describe an algorithm which computes all subfields of an ef-
fectively given finite algebraic extension. Although the base field can
be arbitrary, we focus our attention on the rationals.

This appears to be a fundamental tool for the simplification of
algebraic numbers.

Introduction

Many algorithms in computer algebra contain subroutines which require to
use algebraic numbers. Computing with them is especially important when
polynomial systems of equation have to be solved. As an example let us
consider the now called cyclic 7th–roots of unit, which are the solutions of
the following system [4, 1] :

a+ b+ c+ d+ e+ f + g = 0
ab+ bc+ cd+ de+ ef + fg + ga = 0

abc+ bcd+ cde+ def + efg + fga+ gab = 0
abcd+ bcde+ cdef + defg + efga+ fgab+ gabc = 0

abcde+ bcdef + cdefg + defga+ efgab+ fgabc+ gabcd = 0
abcdef + bcdefg + cdefga+ defgab+ efgabc+ fgabcd+ gabcde = 0

abcdefg = 1.

Some of the solutions of this system are of the form (a, b, c, 1/c, 1/b, 1/a, 1)
where a (and also b) is a root of following polynomial, and b and c are

∗PRC–GDR Mathématique–Informatique
†e-mail : dl@litp.ibp.fr, avb@litp.ibp.fr

1

expressed as polynomials of degree at most 11 in a [6, 3, 10].

P (x) = x12 + 9x11 + 3x10 − 73x9 − 177x8 − 267x7 − 315x6 − 267x5

−177x4 − 73x3 + 3x2 + 9x+ 1.

Both from an intuitive and a computational point of view it is much
more suitable to represent the root a of P by the “nested” system :

x2 − 3x− 3 = 0,

y3 + y2 − 2y − 1 = 0,

a2 − (xy − 1)a+ 1 = 0.

This much simpler representation has also the advantage that it gives
some additional information on the Galois group of the polynomial P .

Generalizing this example, we can say that the simplification of alge-
braic numbers consists in two problems. The first one is to decompose the
extension in which the algebraic numbers are expressed in subextensions
of degree as low as possible ; the second, is to choose generators for these
subextensions which have a simple minimal polynomial and on which the
algebraic numbers to be expressed have a simple form.

We consider here only the first problem, but we have to mention the
function polred in the system PARI [2] which appears to be the best known
solution for the second problem.

For solving the first problem, we give in this paper an algorithm for
computing all subextensions of a given algebraic field extension K −→ L.

As a byproduct, the algorithm could also output the subfields of low
degree and index of the extensions of low degree of L. However, we have to
emphasize that the algorithm does not compute in general the Galois group
nor the Galois closure, not even when the Galois closure may be obtained
as a tower of extensions of low degrees.

We know of two previous algorithms ([5, 15], the latter seeming found
by S. Landau) for finding the subfields of an extension. It is rather difficult
to decide which of these three algorithms is the most efficient, because
their most time consuming steps are factorization of very different shape.
Moreover, for our algorithm, we need only the factors of low degrees as
output of the factorization ; thus the timings may very different when using
specially designed factorization routines instead of the standard ones.

1 Symmetric resolvents

The notion of resolvent were introduced by Lagrange [9] for studying the
solutions of an equation. We recall here the general definition of a resolvent
which is needed for our algorithm. The idea is to transform an equation
by means of an appropriate function in order to obtain some information

2

about its roots. In this paper the appropriate functions will be symmetric
polynomials.

Throughout the paper, p will be an irreducible univariate polynomial of
degree n over a field K, which is generally the field of the rationals. The set
of its roots in an algebraic closure of K will be denoted by α = {α1, . . . , αn}.

Let X = {x1, . . . , xn} be a set of n indeterminates. The symmetric
group Sn acts naturally on K(X) by permuting the elements of X. This
action leads to the following definition of a resolvent. (The notation is the
same as in [7].)

Definition 1 Let H be a subgroup of Sn and let f be an element of K(x1,
. . . ,xn). The set of functions f(xs(1), . . . , xs(n)), for s in H, is called the
orbit of f under the action of H and is denoted by H(f).

Definition 2 Let f be an element of K(x1, . . . , xn) and p be a univariate
polynomial, the roots of which are α1, . . . , αn. The (general) resolvent of p
by f , denoted by f∗(p), is the polynomial whose roots are the elements of
the orbit of f evaluated at the roots of p :

f∗(p)(y) =
∏

h∈Sn(f)

(y − h(α1, . . . , αn)).

In this case f is called a transformation function.

The irreducible factors over K of a general resolvent are polynomials in
y which are called irreducible resolvents.

When a function depends on exactly k variables we say that its arity is k.
If a transformation function of arity k is symmetric on these k variables we
say that the resolvent is k-symmetric. We will recall in Section 5 a method
for computing resolvents, which is very simple in the case of symmetric ones.
It is easy to see that when the transformation function is a polynomial the
resolvent may also be obtained by using resultants (see [7, 9] and also [11],
where Soicher uses them to compute linear resolvents.

2 Finding equations for subfields

In this section we give the main theorem of this paper. It gives a necessary
condition on the symmetric resolvents, for the existence of a field between K
and K(a). This condition leads to our algorithm for computing all subfields
of index k in K(a).

In what follows Irr(b,K) will denote the minimal polynomial of the
algebraic number b over the field K.

Theorem 1 Let p be an irreducible polynomial over K of degree n and a be
one of its roots. If L is a subfield of K(a) of index k, then any k-symmetric
resolvent s∗(p) has a factor of degree n/k which is a power of an irreducible

3

polynomial (over K) which has a root in L. More precisely, there exists a
polynomial q and an irreducible polynomial h of degree d over K with a root
in L such that s∗(p) = qhn/(kd)

Proof. Let a = α1, . . . , αk be the conjugates of a over L. The element
b := s(α1, . . . , αk) is in L. This symmetric function can be written by
means of the elementary symmetric functions of α1, . . . , αk which are, up
to their sign, the coefficients of the minimal polynomial of a over L. Thus,
Irr(b,K) has a degree d dividing n/k = [L : K] and we have the following
inclusion :

K
d−→ K(b)

n/(kd)−→ L
k−→ K(a).

We have to prove that Irr(b,K)n/(kd) divides s∗(p), i.e., that b is a
root of s∗(p) of multiplicity at least n/(kd). The symmetric group Sn

acts on the sets of k conjugates of a, and thus acts also on the roots of
s∗(p). The multiplicity of b is µ := [StabSn

(b) : StabSn
({α1, . . . , αk})]

(we recall that the roots of p are all distinct). On the other hand, let
H := StabG({α1, . . . , αk}) where G is the Galois groups of p over K ; it
is easy to verify that the map of homogeneous spaces H/StabG(b) −→
StabSn({α1, . . . , αk})/StabSn(b) is injective ; this implies that µ is larger
than the index of H in StabG(b). By Galois theory we know that StabG(b)
and H are the automorphism groups of the splitting field of K(b) and L ;
thus

[StabG(b) : H] = [L : K(b)] = n/(kd).

Hence we have µ ≥ n/(kd). ♦

Remark 1 When looking for subfields of index k of K(a), the following
kinds of factorization may occur for the k-symmetric resolvent s∗(p) :

(a) s∗(p) has a simple factor of degree n/k. Lemma 3 of Section 3 shows
that this factor is the minimal polynomial of a generator of a subfield
of index k of K(a).

(b) s∗(p) has an irreducible factor of degree n/k of multiplicity greater
than 1. This factor defines an extension of K, but further compu-
tations are needed to decide whether this extension has a conjugate
included in K(a).

(c) s∗(p) has a factor of degree n/k which is a power of an irreducible
polynomial h of degree dividing n/k. This situation may correspond
to a subfield of index k, which has itself a subfield with h as defin-
ing polynomial ; further computations are needed for deciding if the
subfield of index k exists and for finding it.

(d) s∗(p) does not have a factor of degree n/k which is a power of an irre-
ducible polynomial. This implies that K(a) does not have a subfield
of index k.

4

Our algorithm mainly consists in applying this remark to the elementary
symmetric functions. We recall that the i-th elementary symmetric function
of k variables, denoted ei(x1, . . . , xk), is the sum of the elements of the orbit
of the monomial x1 . . . xi under the action of the symmetric group Sn. It
is also the coefficient of ti in the polynomial

∏n
j=1(t+ xj).

We present now our algorithm for computing subfields ; beforehand, we
introduce a data structure for representing the fields which appear as a
tower of simple algebraic extensions embedded in K(a) :

Definition 3 Let a be an algebraic number over K. We say that the list

[[h1, b1, g1], [h2, b2, g2], . . . , [hr, br, gr]],

is a descriptive chain of an intermediate field L between K and K(a) if we
have a sequence of field extensions :

K
h1−→ K(b1)

h2−→ K(b1, b2)
h3−→ · · · hr−→ L = K(b1, b2, . . . , br)

gr−→ K(a)

such that hi = Irr(bi,K(b1, . . . , bi−1)) and gi = Irr(a,K(b1, . . . , bi)), for
i = 1, . . . , r.

The length of this chain is r. The descriptive chain of K is the empty
list [].

Algorithm Eqnfield(p, k)

Input : p an irreducible univariate polynomial over K
k an integer dividing the degree of p

a a root of p appearing implicitly as the variable of p

Output :A list of descriptive chains representing all subfields of index k

in K(a) ;

Begin

Eqnfield2(p, [], k, 1)

End.

Algorithm Eqnfield2(p, F, k, i)

Input : p an irreducible polynomial over K
a a root of p appearing implicitly as the variable of p

k an integer dividing the degree of p

F a descriptive chain representing a field between K and
K(a) of index greater than k in K(a)

i the index of the symmetric function to use, which is also
the depth of the recursion

Output : A list of descriptive chains representing all extensions of the
field defined by F, of index k in K(a)

Begin

sol := empty

5

n := deg(p)

s := i-th elementary symmetric function over k variables
if i > k then return empty {see Remark 2}
R := s∗(p) {see Section 5}
for all distinct irreducible factors h of R of degree dividing n/k

d:=deg(h)
m:=multiplicity(h,R)
if d=1 and m≥n/k then {case (c)}

sol := append(sol, Eqnfield2(p, F, k, i+1))

elseif d=n/k and m=1 then {case (a)}
b := a root of h in K(a), expressed as a polynomial in a

{see Section 4}
sol := cons(endcons([h,b,Irr(a,F(b))], F), sol)

elseif d=n/k and m>1 then {case (b)}
for all root b of h such that b ∈ K(a) do

{see Sections 3 and 4}
sol := cons(endcons([h,b,Irr(a,F(b))], F), sol)

elseif d<n/k and m≥n/(kd) then {case (c)}
for all root b of h such that b ∈ K(a) do

{see Sections 3 and 4}
g := Irr(a,F(b))

sol := append(sol,

Eqnfield2(g, endcons([h, b, g], F), k, i+1))

else {h does not define a subextension of index k}
return sol

End.

Remark 2 When a field of index greater than k is found, another sym-
metric functions is tryed, over the field generated by the preceding ones.
The following lemma ensures that if a field of index k in K(a) exists, it is
eventually found.

If one would try each new symmetric function with the same base field,
instead of increasing it as in Eqnfield, the computations would probably
be faster, but it may arise that none of the elementary symmetric function
generates over K the subfield of index k to be computed.

Lemma 1 If L is a subfield of index k in K(a) and a = α1, . . . , αk are the
conjugates of a over L, then L is generated over K by the k elementary
symmetric functions in α1, . . . , αk.

Proof. The elementary symmetric functions of a = α1, . . . , αk are (up
to sign) the coefficients of Irr(a, L). Thus they are in L. The field they
generate is clearly of index k in K(a), and is equal to L. ♦

6

3 Testing inclusion between fields

Assume that a k-symmetric resolvent s∗(p) has an irreducible factor h of
degree m < n = deg(p). By a permutation of the roots α = {α1, . . . , αn}
of p, we may choose a root a = α1 of p and a root b of h such that
b = s(α1, . . . , αk).

We have the following diagram of field extensions

XXXXXXXXz

���
���

��:

���
���

��:

XXXXXXXXz
K(a, b)

K(b)

K(a)

K

n

m r

e

where the labels of the arrows represent the degrees of the extensions.

Lemma 2 Let s be a symmetric function of arity k < n and h an irre-
ducible factor of the resolvent s∗(p). If h is a simple factor of s∗(p), then
the degree r of the extension K(a, b)/K(b) is less than or equal to k.

Proof. Let σ be a K–automorphism of the splitting field of K(a, b) and
α′1, . . . , α

′
k be the images of a = α1, . . . , αk by σ. If b is fixed by σ we have

s(α′1, . . . , α
′
k) = b = s(α1, . . . , αk) ; since b is a simple root of s∗(p) we have

{α′1, . . . , α′k} = {α1, . . . , αk} . Thus the orbit of a by the automorphisms of
the splitting field of K(a, b) which fix b may have at most k values ; since
this orbit is the set of the conjugates of a over K(b), the value k bounds
the degree r of the extension K(a, b)/K(b). ♦

Lemma 3 Under the hypotheses of previous lemma, if the degree of the
irreducible resolvent h is m = n/k, then K(b) is a subfield of K(a) and
r = k.

Proof. We have ne = mr, where e is the degree of the extension
K(a, b)/K(a). Previous lemma shows that r ≤ k ; thus r ≤ k = n/m = r/e ;
hence e = 1 and r = k. ♦

Lemma 4 Let p be an irreducible polynomial over K[x] of degree n and a
be a root of p. Let h be another irreducible polynomial over K[x] of degree
m < n.

(i) If h has a linear factor x− b in K(a)[x] then b ∈ K(a) and this factor
gives an expression of b as a polynomial in a.

(ii) If p has an irreducible factor of degree n/m over K[x]/(h) then h has
a root b in K(a) and the irreducible factor of p is Irr(a,K(b)), the
minimal polynomial of a over K(b).

Proof. Cases (i) and (ii) imply e = 1 in the previous diagram. ♦

7

Remark 3 In case (i) (resp. (ii)) we can obtain Irr(a,K(b)) (resp. Irr(b,
K(a))) by using linear algebra. This will be discussed in next section.

Remark 4 Dixon [5] tests such an inclusion by means of a factorization of
a polynomial of degree nm over Q.

4 Embedding subfields

At several steps of algorithm Eqnfield, we know of two extensions of K,
given by the minimal polynomials (p and h) of some generators (a and
b) ; we have seen in Section 3 how to test if the second extension may be
embedded in the first one, and this gives the minimal polynomial pa =
Irr(a,K(b)) or pb = Irr(b,K(a)).

XXXXXXXXz

���
���

��:

��
���

���:

XXXXXXXXz
K(a, b)

K(b)

K(a)

K

p

h pa

pb

We show here how compute one of these minimal polynomials from the
other. This can not be done by a second factorization, not only because of
it cost, but also because we would have to choose the good factor among
several ones.

Thus, we proceed by linear algebra, in the following way. As the problem
is symmetric in a and b, we only need to describe how to compute pa from
pb.

More precisely, we want a polynomial of degree r in a, with coefficients
in K(b) ; this means that these coefficients are univariate polynomials in b
of degree strictly less than m. We take the coefficients of these polynomials
in b as unknowns, i.e. we introduce mr new indeterminates umi+j and
write :

pa(x) = xr +

r−1∑
i=0

Ui(b)x
i where Ui(b) =

m−1∑
j=0

umi+jb
j .

The polynomial pa has to vanish for x = a. Computing pa(a) in K(a)(b),
i.e reducing the powers of b by pb and the powers of a by p, we get a
polynomial which is linear in the ui and has a degree less than n in a and
less than e in b. The fact that a is a root of pa implies that the en = mr
coefficients of the monomials in aibj are zero. This gives a square linear
system ; a solution of it gives a value for the ui and, thus, for the coefficients
of pa. Therefor, the linear system has a unique solution.

Remark 5 Suppose that we have m < n and that we want to compute
both pa and pb. We need one factorization over an algebraic extension. It is

8

usually better to compute first pa by factoring p over K(b) and then pb by
linear algebra. In fact, the complexity of the available factorization routines
depend more on the degree of the field extension than on the degree of the
polynomial to factor. However, if pb is factorized first, we only need the
factors of degree 1, and this is probably faster if the factorization routine
is customized in order to compute only these factors.

Remark 6 When pa and pb are known, it is easy to convert the represen-
tation of an element in K(a)(b) (or in K(a), if e = 1) to its representation
in K(b)(a) or conversely : it suffices to reduce by pa and h or by pb and p.

5 Computing the symmetric resolvents

The most natural way for computing general resolvents consists in using
symmetric functions, but, for avoiding an exponential swell of the expres-
sions, it is necessary to contract them and to keep only one term by orbit.

In this section, we describe briefly an algorithm for computing a k-
symmetric resolvent of a univariate polynomial p of degree n. It appears in
[14] and is improved for the particular case studyed here.

The degree of a k-symmetric resolvent is
(
n
k

)
; its coefficients may easily

be deduced by Girard–Newton formulae from the power functions of the
roots of the resolvent.

We recall that the i-th power function on a finite set A is the sum∑
a∈A a

i. A monomial form on A is the sum of the orbit of a monomial
under the action of Sn; more precisely, if I a k-uplet of positive integers (the
exponent of the monomial) then MI(A) =

∑
J∈Sn(I)

AJ is the correspond-

ing monomial form. Generally we choose for I the partition (i.e., a decreas-
ing sequence of integers) of the orbit. For example M(2,1)(x, y) = x2y+xy2,
the elementary symmetric functions, ei are M(1,...,1) and the i-th power
function, pi, is M(i,0,...). Any symmetric polynomial is a linear combina-
tion of monomial forms, and any monomial form may be expressed as a
polynomial in the power functions or in the elementary symmetric func-
tions. For example M(2,1) = e1e2 − 3e3 = p2p1 − p3.

With these notations we can describe the computation of the resolvent.
Let s(x1, . . . , xk) be a symmetric function used as transformation function
for computing the resolvent. Since s is symmetric, we express it on the
base of monomial forms MI(x1, . . . , xk). Let r be an integer between 1 and
the degree

(
n
k

)
of the resolvent ; using the product formula for symmetric

functions [12], we can expand sr on the same base, in order to obtain

sr(x1, . . . , xk) =
∑
I∈E

cIMI(x1, . . . , xk), (1)

where E is some set of partitions, and the cI are integers.
For computing the r-th power function of the roots of the resolvent, we

have to compute the sum q of the elements of the orbit of sr(x1, . . . , xk)

9

under Sn (see definition 2). As s is symmetric, the expression of q is easily
deduced from (1) :

q(X) =
∑
I∈E

(
n− lg(I)

k − lg(I)

)
cIMI(x1, . . . , xk), (2)

where lg(I) denotes the length of the partition I (the number of non-zero
parts of I).

From this, the r-th power function of the roots of s∗(p) is obtained by
specializing the variables of q as the roots of p, i.e. by expressing q or the
monomial forms appearing in it as polynomials in the symmetric functions
of the roots of p, which are (up to the sign) its coefficients.

Remark 7 When the transformation function is the sum x1 + · · ·+xk, the
polynomial q is easily obtained by the multinomial formula : in (2) the set
E is the set of all partitions I = (i1, . . . , ik) of length at most k such that
i1 + · · · + ik = r and the coefficient cI of I is the multinomial coefficient
cI =

(
r

i1,...,ik

)
. In this case one may also use the algorithm of Soicher [11]

because s is linear.

Remark 8 Formula (2) avoids the computation of the action of the sym-
metric group. But an algorithm is needed for computing the expression of
q in function of the coefficients of p without expanding monomial forms.
Such an algorithm has been implemented in Macsyma [13].

6 An illustrating example

As an example, we show in this section how algorithm Eqnfield works on
the polynomial P of degree 12 given in the introduction. We call a one of
its roots.

This polynomial is clearly reciprocal and d := a+ 1/a generates a sub-
field of index 2. This element d is the sum of two conjugates of a ; thus its
minimal polynomial may be obtained by factoring the resolvent by x1 +x2.
But we already know a generator of the subfield ; thus its minimal polyno-
mial may more easily be obtained by computing the minimal linear relation
between the powers of d in Q(a). This minimal polynomial is

p(d) = d6 + 9d5 − 3d4 − 118d3 − 180d2 − 3d+ 43.

Q(a) has a subfield of index 3, not contained in Q(d), but, from now on,
we restrict ourselves to the subfields of Q(d). Since the degree of a subfield
divides the degree of the field, the only possible values for k are 2 and 3.
For k = 3 and s = x1 + x2 + x3 we have:

factor(s∗(p)) = (x2 + 9x+ 15)

(x6 + 27x5 + 204x4 + 27x3 − 3681x2 − 4698x+ 13581)

10

(x6 + 27x5 + 246x4 + 720x3 − 972x2 − 5454x+ 2241)

(x6 + 27x5 + 246x4 + 846x3 + 729x2 − 1107x− 1161).

Thus, by case (a) of Remark 1, Q(d) has exactly one subfield of degree 2
generated by, say, b0 := (

√
21 − 9)/2, such that Irr(b0,Q) = x2 + 9x + 15.

This subfield has a simpler generator b := (3 −
√

21)/2 = −b0 − 3 with
minimal polynomial h1 := Irr(b,Q) = x2−3x−3. This minimal polynomial
has smaller coefficients ; we have preferred it on x2−5x+1 (which generates
the same field) because it gives simpler results in the computations which
follow.

Similarly, for k = 2 we obtain one subfield F = Q(c0) of index 2 in Q(d),
such that Irr(c0,Q) = x3 + 9x2 + 6x− 43 ; if we set c1 := c0− 3 we obtain a
new generator of F such that Irr(c1,Q) = x3−21x−7. A simpler generator
is c = (c1−1)/3 with minimal polynomial h2 := Irr(c,Q) = c3+c2−2c−1 ;
it is better because the powers of c generate the ring of the integers of F
and also because this generator leads to a very simple final result. Note
that c = ω + 1/ω where ω is a primitive 7–th root of unity.

Now, as 2 and 3 are relatively prime, we have Q = Q(b) ∩Q(c) ; thus
Q(b, c) is of degree 6 and equal to Q(d). We shall “compute” this equality
by expressing d as a function of b and c, and also b and c as functions of d.

For this purpose we first compute the minimal polynomials of d over
Q(b) and Q(c). This polynomials are respectively obtained by the factor-
izations :

factor(p, h1) = (d3 + (b+ 3)d2 + (−4b− 3)d− 17b− 14)

(d3 + (−b+ 6)d2 + (4b− 15)d+ 17b− 65),

factor(p, h2) = (d2 + (−3c+ 2)d− 3c2 − 3c+ 1)

(d2 + (−3c2 + 8)d+ 3c− 2)

(d2 + (3c2 + 3c− 1)d+ 3c2 − 8).

We find several polynomials of the same degree which correspond to the
fact that Q(b) and Q(c) are Galois extensions and have several generators
with the same minimal polynomial. In both cases we choose the first factor,
which is the simplest ; let us call it h3 and h4, respectively.

This gives the following diagram of extensions, where the labels are the
polynomials defining the extensions.

XXXXXXz

��
���

�: XXXXXXz

���
���:

-Q Q(a)

Q(b)

Q(c)

Q(d)

h1

h2

h3

h4

a2 − ad + 1

Now, having computed the minimal polynomial of each extension of this
diagram, the algorithm of Section 4 may compute the expressions of b and
c as polynomials of degree 5 in d or of degree 12 in a.

11

For computing the expression of d in term of b and c, we may reduce
this expression of c by h3 = Irr(d,Q(b)) and h1 = Irr(b,Q), to obtain a
polynomial cval in b and d. Reducing similarly the monomials bicjval for
i = 0, 1 and j = 0, 1, 2, we get the expression in Q(d) of the elements of
the canonical basis of Q(b, c). The expression of d as a linear combination
of these basis elements may be found by solving a linear system, as in
Section 4. This gives the expression d = bc − 1, which completes the
simplification of a given in the introduction.

Remark 9 The only part of above computation which is not completely
algorithmic is the choice of the generators of Q(b) and Q(c).

7 Using known facts

It arises frequently that some information on the subfields or on the Galois
group is directly available or easily detected. This is the case (as above)
for reciprocal polynomials and for decomposable polynomials of the form
h(g(x)), for example the even polynomials of the form p(x2).

Incidentally, the present paper may be viewed as a generalization of
decomposition algorithms (see [8]) not only because any decomposition de-
fines a subfield, but also because we compute a decomposition of the form
h(g(x)) ≡ 0 mod p(x).

For all of above cases we know a generator of a subfield, a + 1/a, g(a)
or a2 , where a is a root of the initial polynomial. When a generator
of a subfield is known, there is no need to compute a resolvent nor to
factorize : the minimal polynomial of the generator of the initial field over
the intermediate one may be computed by linear algebra, with the method
of Section 4.

Sometimes, an automorphism of the field Q(a) is known. This is the case
for reciprocal and even polynomials. When this arise, a symmetric function
of the images of the field generator by the powers of this automorphism gives
a generator of a subfield, the index of which is generally the order of the
automorphism.

For example, in the case of a reciprocal polynomial, the automorphism
is x → 1/x, and a + 1/a is the result of the symmetric function x1 + x2
applied to a and its image 1/a ; in this case, the symmetric function x1x2
gives 1 which generates the trivial extension.

With even polynomials, the automorphism is x→ −x . Taking the sum
as symmetric function leads to a trivial result, but the symmetric function
−x1x2 gives a2 which is usually taken for simplifying even polynomials.

For the above polynomial of degree 12, an automorphism of order 3
was known[3], which consists in replacing a by the second component b
of the solution of cyclic 7th roots problem. The decomposition described
in the introduction were first found by using this automorphism, without
computing resolvents.

12

This possibility of using known automorphisms or known generators of
subfields is in practice very important, because it avoids the computation of
the resolvent and any factorization, which may be rather time consuming.

References

[1] Baeckelin, J. and Fröberg, R (1991). How we proved that there are exactly
924 cyclic 7–roots.Proceedings of ISSAC’91 (S.W. Watt ed.). ACM Press
(New–York), 103–111.

[2] Batu, C., Bernadi, D., Cohen, H. and Olivier, M. (1991). User’s Guide to
PARI-GP. Available by anonymous ftp from math.ucla.edu (128.97.4.254).

[3] Björck G. and Fröberg, R., (1989), A faster way to count the solutions of
inhomogeneous systems of algebraic equations, with applications to cyclic n-
roots, Reports, Matematiska Institutionen, Stockholms Universitet, 1989-No
7.

[4] Davenport, J.H. (1987). Looking at a set of equations. Technical report 87–
06, University of Bath.

[5] Dixon, J.D. (1990). Computing subfields in algebraic number fields. J. Aus-
tral. Math. Soc. (serie A) 49, 434-448.

[6] Faugère, J.C., Gianni, P., Lazard, D. and Mora, T. (1989). Efficient Compu-
tation of Zero–dimensional Gröbner Bases by Change of Ordering. Submitted
to J. Symb. Comp. Technical Report LITP 89–52.

[7] Giusti, M., Lazard, D. and Valibouze, A. (1988). Algebraic transformations
of polynomial equations, symmetric polynomials and elimination. Symbolic
and Algebraic Computation, International Symposium ISSAC ’88 (P. Gianni,
ed.), Lect. Notes in Comp. Sc. 358, 309–314

[8] Kozen, D and Landau, S (1989). Polynomial decomposition algorithms. J.
Symb. Comp. 7, 445–456.

[9] Lagrange, J.L., (1770–1771). Réflexions sur la résolution algébrique des
équations. Nouveaux Mémoires de l’Académie royale des Sciences et Belles-
Lettres de Berlin.

[10] Lazard, D. (1992). Solving zero–dimensional algebraic systems. J. Symbolic
Computation 13, 117–131.

[11] Soicher, L. (1981).The computation of the Galois groups.. Thesis, Concordia
University, Montreal (Quebec, Canada, 1981).

[12] Valibouze, A. (1987). Fonctions symétriques et changements de bases. Eu-
ropean Conference on Computer Algebra, Leipzig, GDR, 1987. (J.H. Daven-
port, ed.) Lect. Notes in Comp. Sc. 378.

[13] Valibouze, A. (1989). Symbolic computation with symmetric polynomials,
an extension to Macsyma. Computers and Mathematics (1989, MIT, Cam-
bridge, Mass.). Springer-Verlag.

[14] Valibouze, A. (1989). Résolvantes et fonctions symétriques. Proc. of the
ACM-SIGSAM 1989 Intern. Symp. on Symbolic and Algebraic Computation,
ISSAC‘89 (Portland, Oregon). ACM Press, 390-399.

[15] Zippel , Book to appear.

13

