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Analysis of a system describing proliferative-quiescent cell dynamics

Jean Clairambault∗† Benôıt Perthame†∗ Andrada Quillas Maran†∗

October 29, 2017

Abstract

Systems describing the dynamics of proliferative and quiescent cells are commonly used as
computational models, for instance for tumor growth and hematopoiesis. Focusing on the very
earliest stages of hematopoiesis, stem cells and early progenitors, we introduce a new method,
based on an energy/Lyapunov functional to analyze the long time behavior of solutions. Compared
to existing works, our method has the advantage that is can be extended to more complex situations.
We treat a systems with space variable and diffusion, then we adapt the energy functional to models
with three equations.
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Introduction

Systems describing the dynamics of proliferative and quiescent cells are commonly used as computa-
tional models, for instance for tumor growth and hematopoiesis [4, 10, 14, 15, 16, 23]. The typical
dynamical system, introduced in the papers of Gyllenberg and Webb [13], describes the populations
nP (t) ≥ 0 (proliferative cells) and nQ(t) ≥ 0 (quiescent cells) with a control by the total population
n(t), as 

d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t), nP (t = 0) = n0

P > 0,

d

dt
nQ(t) = s+(n(t))nP (t)− (s−(n(t)) + δ)nQ(t), nQ(t = 0) = n0

Q > 0,

n(t) := nP (t) + nQ(t).

(1)

Here, β > 0 represents the cumulated proliferation rate of proliferative cells, δ > 0 represents the
death rate of quiescent cells, the smooth function s+ > 0, s− ≥ 0 define controls of the system. The
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authors in [13] show the nonlinear stability of the non-zero steady state using the Poincaré-Bendixson
theorem.

Our purpose is to introduce another argument, based on an energy functional, or Lyapunov func-
tional in the language of dynamical systems, which leads to an analytical method that can be extended
to more elaborated models. We have in mind two extensions.

Firstly, we consider Partial Differential Systems which take into account spatial extension and
random motion of cells. Consider a smooth and bounded region Ω of Rd, the simplest system is

∂

∂t
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + ∆nP , x ∈ Ω, t > 0,

∂

∂t
nQ(t) = s+(n(t))nP (t)− (s−(n(t)) + δ)nQ(t) + ∆nQ,

n(x, t) := nP (x, t) + nQ(x, t),

∂
∂νnP = ∂

∂νnQ = 0, x ∈ ∂Ω,

with smooth initial data nP (x) > 0, n0
Q(x) > 0. Again our purpose is to study the long term

convergence in this case, using our energy functional.

Secondly, we have in mind to introduce more complex biological content. This is the case in
hematopoiesis where the dynamic (1) represents a two stage stem cell population. We may add a
third compartment which corresponds to the early progenitor cells encountered in hematopoiesis, and
written as

Figure 1: Diagram of the three compartmental model (2).



d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + ηu(t), nP (t = 0) = n0

P > 0,

d

dt
nQ(t) = s+(n(t))nP (t)− [s−(n(t)) + δ]nQ(t), nQ(t = 0) = n0

Q > 0,

d

dt
u(t) = −αu(t) + εnP (t), u(t = 0) = u0 > 0,

n(t) := nP (t) + nQ(t)

(2)

Here nP (t) and nQ(t) stand for a population of proliferative and quiescent stem cells, respectively,
while u(t) represents the corresponding population of early progenitor cells, assumed to proceed from
proliferative stem cells only. Note that we allow a fraction η of progenitor cells to de-differentiate
and go back to to the proliferative stem cell compartment, a case that in principle occurs only in
cancer (in particular leukemic) cell populations [3]. In this representation, we do not consider the
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whole hematopoietic tree (as done in, e.g., [2, 24]), but only its most immature components. Indeed,
having in mind, as in [2, 24], future applications to acute myeloid leukemia, that emerges from these
early stages [17], we believe that this is the right place in the hematopoietic tree to set the relevant
mathematical model and its analysis.

The rest of the paper is organized as follows. In the first section, we introduce the assumptions and
the energy method and we use it for the system (1) in order to prove its global, nonlinear asymptotic
stability. In section §2, we analyze the PDE system (16) and show that the energy functional can be
used to prove again the long time convergence to the homogeneous steady state. The last section is
devoted to the construction of a variant of the energy functional adapted to the three-compartment
system (2).

1 Assumptions and the energy method

1.1 Assumptions and converge to the non-zero steady state

Following [13], we consider that the parameters satisfy
Assumption for the existence of a unique non-zero steady state

s′+(·) ≥ 0, s′−(·) ≤ 0, s+(∞) = lim
n→∞

s±(n) <∞, (3)

s′+(n)− s′−(n) > 0, ∀n ≥ 0, δs+(0) < β(δ + s−(0)), β(δ + s−(∞)) < δs+(∞), (4)

Assumption for global stability

β < s−(n) + s+(n) + δ, ∀n ≥ 0. (5)

With the assumptions (3), (4) , it is well established [13] that there is a unique non-zero steady
state of system (1) which is characterized by

δs+(n∞) = β
(
δ + s−(n∞)

)
, nP,∞ =

δ

β + δ
n∞, nQ,∞ =

β

β + δ
n∞. (6)

Additionally, with the assumption (5), these authors prove that, as t→∞,

n(t)→ n∞, nP (t)→ nP,∞, nQ(t)→ nQ,∞. (7)

1.2 The energy method

For convenience, we change the variables and the time of the system to

g(t) =
nP (t)

n(t)
∈ (0, 1), Σ±(n) =

s±(n)

β + δ
, τ = (β + δ) t. (8)

Nonetheless, in what follows we still note the time by t. In these new variables, the system reads

d

dt
g(t) = F (g(t), n(t)),

d

dt
n(t) = n(t)(g(t)− g∞), g∞ =

δ

β + δ
,

0 < g(0) = g0 < 1, 0 < n(0) = n0 <∞.

(9)
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The nonlinearity is defined as F (g, n) = −g2 + g [1− Σ+(n)− Σ−(n)] + Σ−(n), which we also write as F (g, n) = −(g − g∞)2 − a(n)(g − g∞) + b(n),

a(n) = Σ+(n) + Σ−(n) + 2g∞ − 1, b(n) = F (g∞, n).
(10)

With these notations and the assumptions (3)–(5), we obtain that a(·), b(·) are smooth and bounded
functions. The properties of a(·), b(·), and the definition of the steady state n∞, can be written as

b(0) = F (g∞, 0) > 0, b(∞) = F (g∞,∞) < 0, b(n∞) = F (g∞, n∞) = 0, (11)

a(n) > 0, b′(n) < 0, ∀n ≥ 0. (12)

We introduce the energy of the system

E(t) =
1

2
n(t)2(g − g∞)2 +G

(
n(t)

)
(13)

with, using assumption (11),

G(n) = −
∫ n

n∞

mF (g∞,m) dm = −
∫ n

n∞

mb(m)dm −→
n→∞

∞. (14)

Lemma 1.1 With the assumptions (11), (12), the energy E(t) defined by (13) is decreasing and, for
(g0, n0) 6= (g∞, n∞), we have

d

dt
E(t) = −n(t)2

(
g(t)− g∞

)2
a(n(t)) < 0. (15)

Proof. We compute

d

dt
E(t) = n(t)2(g(t)− g∞)3 + n(t)2(g(t)− g∞) [F (g(t), n(t))− F (g∞, n(t))]

= n(t)2(g(t)− g∞)2(1− Σ0(n(t))− Σ1(n(t))− 2g∞),

and we conclude using the definition of a(·) in (10).

1.3 The convergence theorem

We are now ready for our version of the convergence result in [13],

Theorem 1.2 With the assumptions (11), (12), the solutions of (9) are bounded and, as t → ∞,
g(t)→ g∞ and n(t)→ n∞.

Proof. (i) Because of the energy inequality (15), we have E(t) ≤ E(0) and thus G
(
n(t)

)
≤ E(0). We

conclude that n(t) is bounded using (14).

(ii) Because n and g are bounded, the equation (9) shows that n and g are Lipschitz continuous.
Therefore, n(·)2(g(·)−g∞)2 is also bounded and Lipschitz continuous. Since from the energy dissipation
we have ∫ ∞

0
n(t)2(g(t)− g∞)2a

(
n(t)

)
dt ≤ E0,
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we conclude that, as t→∞, we have

n(t)2(g(t)− g∞)2a
(
n(t)

)
→ 0.

Because of assumption (12), this implies that

n(t)2(g(t)− g∞)2 → 0.

(iii) Because the energy decays, it has a limit E∞. Combined with the above information, we conclude
that , as t→∞, we have

G
(
n(t)

)
→ E∞,

and by continuity n(t) has a limit n̄∞.

(iv) Arguing by contradiction, we assume that n̄∞ = 0. Then, for t large enough, the dynamics of
g(t) resembles the solution of the Riccati equation

d

dt
g(t) = F (g(t), 0) = −(g(t)− g∞)2 + a(0)(g(t)− g∞) + b(0).

As t→∞, the solution g(t) of this equation tends to ḡ∞ = g∞ + 1
2

[
− a(0) +

√
a(0)2 + 4b(0)

]
> g∞.

This last inequality holds thanks to the assumptions (11), (12). But inserting this information in the
equation for n(t) shows that n(t)→∞ which is impossible, this is a contradiction. Therefore n̄∞ 6= 0.

(v) As a consequence, from step (ii) we deduce that g(t) → g∞. From the equation for g(t), we
conclude that b(n̄∞) = 0 which means that n̄∞ = n∞.

2 Model with space and diffusion

The method with the energy/Lyapunov functional presents another advantage which is a possible
extension to the context where spatial distribution is also considered. An example is the case with
spatial diffusion and we now consider distributions nP (x, t), nQ(x, t) with x ∈ Ω a smooth bounded
domain of Rd. We use the equations

∂

∂t
nP (x, t) = [β − s+(n(x, t))]nP (t) + s−(n(x, t))nQ(x, t) + ∆nP , x ∈ Ω, t > 0,

∂

∂t
nQ(x, t) = s+(n(x, t))nP (x, t)− (s−(n(x, t)) + δ)nQ(x, t) + ∆nQ,

n(x, t) = nP (x, t) + nQ(x, t),

∂
∂νnP = ∂

∂νnQ = 0, x ∈ ∂Ω.

(16)

This system is completed with smooth initial data n0
P (x) > 0, n0

Q(x) > 0. It is of semi-linear type
and global existence is granted because the nonlinearity is Lipschitzian, and solutions are smooth and
positive, see [6, 11, 20, 22]. Solutions are only locally bounded with possibly exponential growth.

In order to adapt the energy functional E(t) defined by (13) to the case at hand, we need to go back
to the unknowns nP , nQ and use

E(nP , nQ) =
1

2
(nP + nQ)2

(
nP

nP + nQ
− g∞

)2

+G(nP + nQ)
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We now define the total energy with

E(t) =

∫
Ω
E
(
nP (x, t), nQ(x, t)

)
dx.

We may now state our result for the system with space, it is of global nature but with a restriction
on the initial data which is limited by the convexity region of the energy E .

Theorem 2.1 We make the assumptions (3)–(5) and that maxx E(n0
P (x), n0

Q(x)) is small enough (less
than n∞ is enough). Then, there is a smooth solution to the semi-linear parabolic system (16) and it
satisfies n(x, t) ≤ n0

M, the total energy E(t) decays and, as t→∞,

n(x, t)→ n∞, g(x, t)→ g∞, in L2(Ω).

The end of the section is devoted to prove this theorem.

2.1 Convexity of E

To begin with, we need to study the convexity properties of E . For that purpose, we define a function
which is essential for our study

f(n) = F (g∞, n)− n∂F
∂n

(g∞, n) = b(n)− nb′(n).

We may calculate the Hessian of E

Hess(E) =

 (1− g∞)2 + f(n) −g∞(1− g∞) + f(n)

−g∞(1− g∞) + f(n) g2
∞ + f(n)


still with n = nP + nQ, g = nP

n . We can compute

Tr(Hess(E)) = g2
∞ + (1− g∞)2 + 2f(n),

det(Hess(E)) = f(n).

Because convexity is equivalent to the non-negativity of these two quantities, it is reduced to those n
such that f(n) ≥ 0. Clearly this is the case for n ≤ n∞ since F (g∞, ·) is positive on this interval and
decreasing (see assumptions (11), (12)).

However, we can see that for n large, this condition cannot be fulfilled. Indeed, f(n) ≥ 0 means
b(n) − nb′(n) ≥ 0, which would imply that b(n) = F (g∞, n) → −∞ as n → ∞ while we assume that
F is bounded.

2.2 Condition on the initial data

When the Laplacian is considered, it is useful to preserve the convexity zone all along the dynamics,
see e.g. [6, 11, 20, 22]. Therefore, we need a condition on the initial data which we state as follows.
Consider the value n0

M, necessarily larger than n∞, such that

f(n0
M) = 0 and f(n) > 0 for n < n0

M. (17)
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We assume that

E(nP , nQ) ≤ max
x
E(n0

P (x), n0
Q(x)) =⇒ nP + nQ ≤ n0

M. (18)

This somehow abstract condition can be satisfied with more explicit assumptions, for instance

max
x
E(n0

P (x), n0
Q(x)) ≤ min

0≤g≤1
E(g, n0

M).

This is the precise size condition needed in the statement on Theorem 2.1.

2.3 Conclusion

We may now conclude the proof of this theorem which relies on very standard tools for parabolic
systems. Therefore, we just indicate the reason why assumption (17) is used. We compute the energy
dissipation relation

∂

∂t
E = ∆E −(∇nP ,∇nQ).Hess(E).(∇nP ,∇nQ)

−n(x, t)2(g(x, t)− g∞)2a(n(x, t)).

Because initially we have Hess
(
E(t = 0, x)

)
≤ 0 for all x ∈ Ω, we conclude from the maximum principle

that

E(x, t) ≤ max
x
E(n0

P (x), n0
Q(x)), ∀x ∈ Ω, t ≥ 0.

Therefore the condition (18) tells us that n(x, t) ≤ n0
M and the definition (17) implies that E(t, x)

remains convex all along the dynamics. Therefore the solution satisfies

n(x, t) ≤ n0
M ∀x ∈ Ω, t ≥ 0.

Standard use of the energy dissipation leads to the conclusion that (∇nP (x, t),∇nQ(x, t)) belongs to
L2(R+; Ω). Time compactness follows from the Lions-Aubin Lemma, and thus the family (∇nP (x, t),∇nQ(x, t))
converges, as t → ∞ to an homogeneous state for large times. Finally, the reasoning of Section 1.3
leads to the conclusion of Theorem 2.1.

3 The 3-compartment hematopoiesis system

The flexibility of the energy method for the model with proliferative and quiescent cells can also be
illustrated with a 3 by 3 system. This type of model is used for describing hematopoietic stem cell dy-
namic and a third compartment corresponds to the early progenitor cells encountered in hematopoiesis
which are denoted by u(t) in this section. Hematopoiesis is a wide subject, with several mathematical
faces and the interested reader can consult for instance [1, 9, 21].
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3.1 The model equation

The system proposed here is the extension of (1) written

d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + η n(t)

1+n(t)u(t),

d

dt
nQ(t) = s+(n(t))nP (t)− [s−(n(t)) + δ]nQ(t),

d

dt
u(t) = −α n2(t)

(1+n(t))2
u(t) + n(t)

(1+n(t))2
εnP (t),

n(t) = nP (t) + nQ(t),

(19)

where we still use the notations and assumptions of section 1. We consider that the exchanges between
the proliferating hematopoietic stem cells and the early progenitor compartment are small, i.e., we are
going to consider the perturbative regime

εη � 1.

We assume here that de-differentiation of the progenitor cells into hematopoietic stem cells (the
passage from u to nP measured by η) is much less important that the maturation of hematopoietic
stem cells (the converse passage). De-differentiation has been observed in recent biological studies on
cancers [5, 12, 25], and investigated in modelling studies by varying its rate [3, 18]. However, nothing
is known for certain concerning its actual rate in different types and stages of cancers, nor whether it
is cause or consequence of cancer emergence, except the fact that high de-differentiation rates seem
to be related to cancer aggressiveness. The case η � ε is thus relevant, at least in health or in very
early cancer initiation.

However a difficulty remains; the energy dissipation −n2a(n)(g − g∞) in (15) does not provide
enough coercivity by lack of a term n− n∞. For that technical reason, we have introduced a modula-

tion of the exchanges with the ratio n(t)2

(1+n(t))2
and the energy modulation has to be tuned appropriately.

We notice that solutions exists globally because positivity is preserved and the total number of cells
is controled by

d

dt
[nP (t) + nQ(t) + u(t)] ≤ (β + ε)nP (t) + ηu(t) ≤ max(β + ε, η)[nP (t) + nQ(t) + u(t)],

and the Gronwall lemma controls the solutions with an exponential growth in time.

We perform the same change in unknowns (equations (8)) as in section 1, set u = εv, and we get:

d

dt
g(t) = F̃ (g(t), n(t)) + ηε

1+n(t)(1− g(t))
[
(v(t)− ṽ∞)− ṽ∞

1 + ñ∞
(n− ñ∞)

]
,

d

dt
n(t) = n(t)(g(t)− g̃∞) + ηε n(t)

1+n(t)(v(t)− ṽ∞)− ηε ṽ∞
1 + ñ∞

n(t)

1 + n(t)
(n(t)− ñ∞),

d

dt
v(t) = −α n(t)2

(1+n(t))2
(v(t)− ṽ∞) + n(t)2

(1+n(t))2
(g(t)− g̃∞),

(20)

with the following definitions, in particular of the steady state (ñ∞, g̃∞, ṽ∞),

g̃∞ =
δ

β + δ + γ
, γ =

ηε

α
· 1

1 + ñ∞
, αṽ∞ = g̃∞.
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F̃ (g, n) = g [1− Σ+(n)− Σ−(n)] + Σ−(n)− g2 + ηε
ṽ∞

1 + ñ∞
(1− g), F̃ (g̃∞, ñ∞) = 0.

As before, we can rewrite F̃ (g, n) as

F̃ (g, n) = −(g − g̃∞)2 − (g − g̃∞)ã(n) + b̃(n), ã = Σ+ + Σ− + 2g̃∞ − 1 + ηε
ṽ∞

1 + ñ∞
,

b̃(n) = F̃ (g̃∞, n) = g̃∞(1− g̃∞)− g̃∞Σ+(n) + (1− g̃∞)Σ−(n) + ηε
ṽ∞

1 + ñ∞
(1− g̃∞)

and the assumptions (3)–(5) have to be reinforced so as to yield the positivity of ã and the property
b̃(0) > 0, b̃(∞) < 0, then there are a0 and ñ∞ such that

ã(n) ≥ a0 > 0, b̃′ < 0, b̃(ñ∞) = 0. (21)

We also define G(·) with
G′(n) = −nb̃(n), G(ñ∞) = 0.

3.2 The energy functional and long-term convergence

We need to introduce a modulation of the energy functional E(t) in order to take into account the
third component. Now, we define the energy by

Ẽ(t) =
1

2
n(t)2(g(t)− g̃∞)2 +G(n(t)) +

λ

2
(v(t)− ṽ∞)2 (22)

where the constant λ is positive and small.

Theorem 3.1 For λ > 0 small enough compared to α, a0 and b(·), and ηε small enough, we have,
for some p ∈ (0, 1),

d

dt
Ẽ(t) ≤ −1

2
n2a(n)(g − g̃∞)2 − ηεp n2

(1 + n)2
(n− ñ∞)2 − pα n2

(1 + n)2
(v − ṽ∞)2.

Therefore, we have the long term convergence

n→ ñ∞, g → g̃∞, v → ṽ∞.

In this theorem, the only new difficulty relies on the elaboration of the energy dissipation. The
convergence result then follows exactly as in section 1 and we skip its proof. In the end of this section,
we concentrate on the dissipation of energy.

3.3 Proof of the Theorem 3.1

We may compute

d

dt
Ẽ(t) = −n2a(n)(g − g∞)2 − αλ n(t)2

(1+n(t))2
(v − ṽ∞)2 − (n− ñ∞)2A+ (g − g̃∞)(n− ñ∞)B

+(v − ṽ∞)(n− ñ∞)C + (v − ṽ∞)(g − g̃∞)D,

(23)
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with A, B...F determined below.

We obtain only a control on (n− ñ∞)2 of order εη, which is given by

A = ηε
ṽ∞

1 + ñ∞

n2

(1 + n)2
c(n), c(n) := −(1 + n)

b̃(n)− b̃(ñ∞)

n− ñ∞
≥ c0,

Then, the other terms are

B = −ηε ṽ∞
1+ñ∞

n2

1+n(1− g̃∞), C = −ηε n2

1+n
b̃(n)−b̃(ñ∞)
n−ñ∞ ,

D = ηε n2

1+n(1− g̃∞) + λ n2

(1+n)2
.

Then, we can estimate the terms with products rather simply. We have

|(g − g̃∞)(n− ñ∞)B| ≤ ηε ṽ∞ñ∞n
2(1− g̃∞)(g − g̃∞)2

+ηε ṽ∞ñ∞
n2

(1+n)2
(1− g̃∞)(n− ñ∞)2

which, for ηε small enough compared to c0 and a0, are both absorbed by negative terms coming from
A and from the first negative term in the energy dissipation (23).

The next term is

|(v − ṽ∞)(n− ñ∞)C| ≤ ηεb1
n2

(1+n)2
)[(n− ñ∞)2 + (v − ṽ∞)2]

which again, for ηε small enough compared to c0, α and 1/b1, contribution is absorbed by the negative
terms. Here we have used

b1 = sup
n≥0

(1 + n)
∣∣ b̃(n)− b̃(ñ∞)

n− ñ∞
∣∣.

The last term (v − ṽ∞)(g − g̃∞)D, can be treated in the same way and, there, we require that λ is
small enough compared to a0.

3.4 Simulations

We illustrate the behaviour of the 3 ∗ 3 system (19) with some numerical simulations. We have used
the parameters

α = 0.06, β = 0.2, δ = 0.15, ε = 0.1,

and the functions {
Σ+(n) = a∗ng

Kg+ng , Σ−(n) = b
Lh+nh ,

a = 0.9, g = 2, K = 1000, b = 0.1, h = 2, L = 1000.

The Figure 2 displays the solution with three values of the de-differentiation parameter η,

η = 0, η = 0.01, and η = 0.05.
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Figure 2: Numerical solution of the 3 ∗ 3 system (19) with three values of the de-differentiation
parameter. Left: η = 0. Center: η = 0.01. Right: η = 0.05.

4 Conclusion and perspectives

In this study, we have considered a new method, of the energy/Lyapunov type, to analyze the asymp-
totic behavior of a stem/progenitor cell population model representing the very early stages of cell
lineage maturation in health and cancer. Knowing the very low level of division in stem cells (as low
as once a year for hematopoietic stem cells, as measured in [7, 8]), it has appeared relevant since the
studies of Gyllenberg and Webb [13] (and earlier, of Mackey and followers [19], using age-structured
models) to represent the stem cell population as compartmentalized between proliferative (cells that
are engaged in the division cycle) and quiescent cells (those that are not). We have adpted this point
of view here as well, with the adjunction of another maturation state, early progenitor cells, for which,
for the sake of simplicity, we do not distinguish between proliferative and quiescent states.

Taking advantage of recent biological observations [5, 12, 25], we have introduced the possibility of
de-differentiation from this early progenitor state to stem cell state. As briefly sketched in the text,
not much is known about the actual rate of de-differentiation in health and disease, except that it
has been observed at high levels in aggressive cancers. We have assumed in our proofs low levels of
this rate, meaning that its rigorous relevance may be limited to health settings or initiating cancers.
Nevertheless, numerical studies in other modelling contexts [3, 18] have shown that increasing its level
increases the severity of the cancer at stake, and its evolution towards insensitivity to therapy, i.e.,
drug resistance.

Last but not least, the method we have developed in this analytical study, of the energy/Lyapunov
type, allowed us to extend previous studies, initiated by Gyllenberg and Webb [13], who took advan-
tage of the Poincaré-Bendixson theorem for plane analysis, to higher-dimensional analysis on the one
hand, and to a 2-dimensional spatial model with diffusion on the other hand. We believe that both
these extensions open new directions of research in the study of proliferative-quiescent cell population
models.
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