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Abstract 

Uranium mineralization in the Kiggavik area, on the eastern border of the Thelon basin 

(Nunavut, Canada), hosts significant uranium resources within the basement and its 

understanding is critical to comprehending the genesis of unconformity-related deposits’ 

structural controls and therefore exploration of these types of deposits in this prospective 

district. This article deciphers the complex multiphase fracture network associated with uranium 

mineralization of the most recently discovered, basement-hosted prospect in the Kiggavik area, 

named Contact. The Contact prospect is located along the Andrew Lake Fault (ALF), a major 

NE-SW fault corridor in the area. This study combines field work, drillcore logging, sampling, 

and macro- to micro- petro-structural analyses. Key results from this study highlight that the NE-

trending ALF, along with the ENE-trending Thelon (TF) and Judge Sissons (JSF) faults, formed 

early during intracratonic rifting and deposition of the Baker Lake and Wharton groups (ca. 

1850–1750 Ma) in response to the Thelon and Trans-Hudsonian orogeny. The ALF was 

affected by a strong silicification-brecciation event that likely developed at ca. 1750 Ma, and 

partitioned later deformation and fluid circulation. In the Contact prospect, the ALF was 

reactivated multiple times and mineralized in three stages with distinctive secondary fracture 

patterns, alteration, and mineralization types. Ten fracture stages have been identified at the 

Contact prospect, f1 to f10. The first stage of mineralization, coeval with f5, is related to fluids of 

unconstrained origin that circulated through E-W faults in the area that locally re-activated 

quartz veins of the brecciation event at the intersection with the ALF. Mineralization at this stage 

is polymetallic and associated with weak clay alteration. The second stage of uranium 



 

 

mineralization occurred coeval with transtensional reactivation of the NE-SW trending ALF (f6c) 

and in relation to circulation of oxidizing basinal brines within the fault zone. Mineralization at 

this stage is monometallic and associated with illite and sudoite alteration. Later reactivation of 

the inherited fracture network (f8) led to strong illitization and bleaching of the host rock, with 

local reworking of the ore body. Finally, reactivation of the fracture network during f9 and 10 

lead to circulation of meteoric fluids that remobilized mineralization in a third stage of uranium 

re-concentration along redox fronts, with strong illitization and bleaching of the host rock. Unlike 

the classic unconformity-related uranium deposits in the Athabasca Basin where clay alteration 

halos occur around the ore bodies related to mineralizing processes, in the Contact prospect the 

strongest clay alteration event (f8) postdates both main stages of mineralization. Along with 

uranium remobilization, the basement-hosted Contact prospect is likely a relict of what was 

once a larger deposit. 
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1. Introduction 

 

Unconformity-related uranium deposits are important because they are among the major 

uranium metal contributors in the world (OECD, NEA and IAEA, 2016). Such massive and high 

grade uranium deposits are found close to the unconformity between an Archean to 

Paleoproterozoic metamorphosed basement rocks and an overlying non-metamorphosed 

Paleoproterozoic sedimentary basin-infill (Dahlkamp, 1993). Major uranium deposits of this type 

are found in Canada, in the Athabasca Basin (i.e., the Cigar lake deposit, Dahlkamp, 1993; 

Jefferson et al., 2007), or in Australia, in the McArthur Basin (i.e., the Ranger deposit, Jaireth et 

al., 2016; Skirrow et al., 2016). The uranium ore is located within the basement (e.g. Eagle 

Point, Mercadier et al., 2011), at the unconformity (e.g. Cigar Lake, Bruneton, 1993) or perched 

within basin sandstones (e.g. Shea Creek, Sheahan et al., 2016). In both the Athabasca and the 

McArthur basins, the importance of structural control has been recognized (Hoeve and Quirt, 

1984; Baudemont and Pacquet, 1996; Baudemont and Federowich, 1996; Tourigny et al., 2007; 

Jefferson et al., 2007; Kyser and Cuney, 2015). Uranium is linked to ductile to ductile-brittle 

shear zones in the Eagle Point (Mercadier et al., 2011), Nabarlek (Wilde and Wall, 1987), and 

Jabiluka (Polito et al., 2005a,b) deposits, to faults in the McArthur and Dominique-Peter 

deposits (Györfi et al., 2007; and Baudemont and Fedorowich, 1996; respectively), to breccias 



 

 

in the case of the Shea Creek deposit (De Veslud et al., 2009), and to a complex combination of 

folding and brecciation  in the Jabiluka deposit (Polito et al., 2005a,b). 

All this existing literature attributes a major role to shear zones, faults, and breccias in 

channeling metal-bearing fluids responsible for mineralization in unconformity-related uranium 

deposits, but none of these studies describes in detail the multi-scale organization of the 

mineralized fracture network and replaces it into the often long, polyphase and complex tectonic 

history. For instance, Dieng et al. (2013) reported the most complete review of the tectonic and 

uranium mineralizing events in the uraniferous Beaverlodge area (north-west of the Athabasca 

Basin), but they did not focus on the description of the related fracture network to which each 

stage of mineralization is linked. However, the understanding of the fracture network at different 

scales is essential to unravel the uranium-bearing fluid plumbing system and uranium trapping 

in this type of economic deposit, and also in order to help future exploration. The insertion of the 

uranium-related fracture system in the whole tectonic history of a region is another critical key to 

define the fertile tectonic episodes and for establishing the right metalotects. In fact, the lack of 

detailed structural studies in unconformity-related uranium deposits is overall due to the strong 

clay alteration associated with this type of deposits (Percival et al., 1993; Beaufort et al., 2005; 

Jefferson et al., 2007).The lack of oriented micro- and meso-structural data and the difficulty to 

visualize in 3D complex structures that show significant and rapid lateral and vertical changes 

between available drill holes constitute additional difficulties (Childs et al., 1996; 2009; Van der 

Zee et al., 2008; Lunn et al., 2008). 

The Kiggavik uranium project is located 80 km west of Baker Lake, on the eastern border of 

the Paleoproterozoic Thelon Basin in the Nunavut territory, northern Canada (Fig. 1). It is 

currently being explored by AREVA Resources Canada (ARC) as a prospective area for 

uranium due to the similarities in the geological context between the Thelon and the Athabasca 

basins (Miller and LeCheminant, 1985, Fuchs et al., 1986, Weyer et al., 1987, Fredrich et al., 

1989, Fuchs and Hilger, 1989; Jefferson et al., 2007). Uranium deposits in the Kiggavik area 

(Fig. 2) have recently been interpreted to have some characteristics of unconformity-related 

deposits (Kiggavik Main and Central Zone deposits: Farkas, 1984; Shabaga et al., 2017b; Bong 

deposit: Riegler et al., 2016; Sharpe et al., 2015; Quirt, 2017; End deposit: Chi et al., 2017; see 

also Fayek et al., 2017). In contrast to the Athabasca Basin, where ductile deformation involving 

graphitic and mineralized shear zones are commonly observed, the tectonic style of deformation 

and mineralization in the Kiggavik area is dominantly brittle, as exemplified by the presence of 

cataclastic to ultracataclastic fault rocks and mineralized veins. Ductile to ductile-brittle shear 

zones are rarely observed and their reactivation appears not to be a key process controlling 



 

 

uranium mineralization there (Johnstone et al., 2017). Previous studies of the various deposits 

in the Kiggavik area focused on the characterization of mineralizing fluids and their alteration 

products, through geochemical and isotopic analyses of uranium oxides and clay minerals 

(Farkas, 1984; Riegler et al., 2016a; Shabaga et al., 2015; Sharpe et al., 2015; Potter et al., 

2015; Chi et al., 2017; Fayek et al., 2017; Quirt, 2017; Shabaga et al., 2017a, 2017b). While the 

knowledge in these various fields has greatly improved in the last years, the tectonic history, the 

structural controls, and the relative timing of the deposits in the Kiggavik area remain poorly 

understood. Discovered in 2014, the Contact prospect is the latest discovery in the district and 

was found using a multidisciplinary approach combining GIS-based mineral prospectivity 

analysis of the available airborne and ground geophysical data (Robbins et al., 2015; Roy et al., 

2017). 

The aims of this paper are: (i) to accurately reconstruct the tectonic events and sequence of 

fracturing (mineralized and non-mineralized) in the Contact prospect, (ii) to decipher the spatial 

organization of the resulting fracture sets in order to unravel the structural controls and relative 

timing of uranium mineralization in the Contact prospect, and (iii) and in a more general 

perspective, to provide better constraints on classic models of mineralized fracture networks for 

unconformity-related uranium deposits. The identification and characterization of fractures along 

with the  reconstruction of the relative chronology on the basis of observed crosscutting 

relationships and widespread oriented data allows for accurately determining the structural 

control of the uranium mineralization and alteration at the Contact prospect for the first time in 

the Kiggavik area.  

 

2. Geological setting of the Kiggavik area 

2.1 Regional setting 

 

The Thelon (ca. 1670–1540 Ma, Hiatt et al., 2003; Davis et al., 2011) and Athabasca (1740–

1540 Ma, Ramaekers et al., 2007) basins are Proterozoic intracratonic basins (Gall et al., 1992) 

hosted by the Churchill-Wyoming craton, which resulted from the Paleoproterozoic collisional 

amalgamation of the Rae domain to the northwest with the Hearne domain to the SE (Hoffman, 

1988; Fig. 1). These basins are located between the eroded remnants of the Trans-Hudson 

orogenic belt to the SE (ca. 2070-1800 Ma, overall NW-SE shortening) and the Thelon-Taltson 

orogenic belt to the west (ca. 2020-1900 Ma, overall E-W shortening). At the regional scale, the 

main structural feature within the Churchill-Wyoming craton is the Snowbird Tectonic Zone (STZ 

in Fig. 1), a tectonic trend which has given rise to many interpretations  (see for example 



 

 

Hoffman, 1988, Hanmer et al., 1995; Ross et al., 2000; Berman et al., 2007). Recent field 

observations by Regan et al. (2014) on the Cora Lake Shear Zone lead them to propose an 

intracontinental crustal-scale structure formed at ca. 2600 Ma, which underwent several later 

episodes of transpressional reactivation, with sinistral and dextral motions in response to the 

Thelon and Trans-Hudsonian orogenies from 1900 to 1820 Ma (Sanborn-Barrie et al., 2001; 

Mills et al., 2007; Regan et al., 2014). Aeromagnetic maps show that a major fault trend in the 

Kiggavik area, the Andrew Lake Fault (ALF) connects to the STZ (Fig.1). 

 

Figure 1: Geological map of the Churchill-Wyoming craton showing the location of the Athabasca 

and Thelon basins. The Kiggavik area is located between the Thelon fault and the Snowbird 

Tectonic Zone (STZ). CWB: Chipewayan-Wathaman batholith, ALF: Andrew Lake Fault, ASB: 

Aberdeen sub-basin. (modified after Eriksson et al., 2001; Peterson et al., 2002).  



 

 

The Thelon Basin consists of the Thelon Formation, an 1800 meter-thick sedimentary pile of 

conglomerates and coarse-grained sandstones, overlain by ca. 1540 Ma shoshonitic basalts of 

the Kuungmi Formation (Chamberlain et al., 2010) and Lookout Point Formation marine 

dolomites (Gall et al., 1992) of the Barrensland Group (Fig. 2). The Thelon Formation overlies a 

complex setup of sedimentary and bi-modal volcanic-sedimentary rocks of the Wharton and 

Baker Lake groups (Rainbird and Hadlari, 2000; Rainbird et al., 2003; Hadlari and Rainbird, 

2011), which filled up the Baker Lake Basin that developed between 1850 Ma and 1750 Ma 

(Rainbird et al., 2006; Rainbird and Davis, 2007). Development of the Baker Lake Basin 

occurred due to extensional to transtensional rifting tectonics in response to the Thelon-Taltson 

and Trans-Hudsonian orogenies and was followed by uplifting, extensive erosional planation, 

and regolith formation linked to thermal subsidence (Rainbird et al., 2003; Rainbird and Davis, 

2007; Hadlari and Rainbird, 2011). The Barrensland, Wharton, and Baker Lake groups are parts 

of the Dubawnt Supergroup (Peterson et al., 2006) (Fig. 2). Major ENE-trending dextral strike- 

and oblique-slip faults, including the Thelon-Fault (Fig. 1) became active at that time. The 

Dubawnt Supergroup unconformably overlies the metamorphosed basement consisting of 

Archean basement rocks that include Mesoarchean (ca. 2870 Ma) granitic gneisses, 2730–2680 

Ma supracrustal rocks of the Woodburn Lake Group (Pehrsson et al., 2013), and a distinctive 

package of 2620–2580 Ma felsic volcanic and related hypabyssal rocks known as the Snow 

Island suite (Jefferson et al., 2011a, 2011b; McEwan, 2012; Tschirhart et al., 2013, 2017; 

Peterson et al., 2015a; Johnstone et al., 2016). These rocks, together with overlying 

Paleoproterozoic (2300–2150 Ma) rocks of the Ketyet River Group (Rainbird et al., 2010), 

include a prominent unit of orthoquartzite (Zaleski et al., 2000). The Archean to 

Paleoproterozoic rocks where intruded by felsic to mafic rocks of the late syn-orogenic Trans-

Hudsonian suite and ca. 1750 Ma rapakivi-style Nueltin granite of the anorogenic Kivalliq 

igneous suite (Hoffman 1988; van Breemen et al., 2005; Peterson et al., 2015b; c.f., Scott et al., 

2015). The age of the Thelon Formation is thus bracketed by the age of emplacement of the 

Nueltin granite suite, ca. 1750 Ma,  the diagenetic fluoro-apatite in the basal Thelon Formation, 

ca. 1670 Ma (Davis et al., 2011), and by the alkali basaltic volcanism of the Kuungmi Formation 

at 1540 Ma that caps the Thelon Formation (Chamberlain et al., 2010).  

The diabase dikes of the Mackenzie diabase swarm that form prominent linear 

aeromagnetic features trending NNW-SSE (Tschirhart et al., 2013; 2017), cut across all of the 

previous rocks. This intrusive event is dated at 1267±2 Ma (Lecheminant and Heaman, 1989; 

Heaman and Lecheminant, 1993), and represents the last magmatic-tectonic event in the 

region. 



 

 

 

2.2 Lithostratigraphy and structural trends in the Kiggavik area 

 

Uranium mineralization in the Kiggavik area are hosted within the Archean and 

Paleoproterozoic basement rocks marginal to the Aberdeen sub-basin of the Thelon Basin 

(Jefferson et al., 2011a, b; Fig. 1). The Archean rocks include the Mesoarchean (ca. 2870 Ma, 

Davis et al., 2006) granitic gneisses, the 2730–2680 Ma (Pehrsson et al., 2010) supracrustal 

rocks of the Woodburn Lake Group and the distinctive package of 2620–2580 Ma (Rainbird et 

al., 2010) felsic volcanic and related hypabyssal rocks of the Snow Island suite (metarhyolites, 

epiclastics, and tuffs in Fig. 3). These rocks are overlain by the Paleoproterozoic (2300–2150 

Ma, Rainbird et al., 2010) orthoquartzite of the Ketyet River Group (Fig. 3). These various 

groups are intruded in the area by the Schultz Lake Intrusive Complex (SLIC) (Scott et al., 

2015). 

Figure 2: Simplified stratigraphic column of 

lithological and intrusive units in the Western 

Churchill Province (modified after Peterson et 

al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 The SLIC comprises two groups of rocks with contrasting origins, but with some overlap in 

geochemical and petrographic features (Scott et al., 2015): (i) the ―Hudson granite‖ consists in 

non-foliated granitoid sills, syenites, and lamprophyre dikes of the late syn-orogenic Trans-

Hudsonian suite. The Hudson granite represents the first pulse of magmatic activity at 1845–

1795 Ma in the Kiggavik area (peak around 1825 Ma, Van Breemen et al., 2005). (ii) The 



 

 

―Nueltin granite‖ consists in anorogenic granite to rhyolite of the Kivalliq igneous suite (1770–

1730 Ma, Peterson et al., 2015a), including the McRae Lake dikes and minor Dubawnt minette 

intrusives of the Dubawnt Supergroup (Scott et al., 2015). The Nueltin granite represents a 

second pulse of magmatic activity in the area dated at 1750 Ma. 

 

Figure 3: A) Simplified geology map of the Kiggavik area (AREVA internal document). 

Deposits and prospects are indicated with circles. The Contact prospect is located in the 

southwest, on the Andrew Lake Fault. The blue square locates B. B) Footprint of the 

mineralization (>0.0425 %U3O8, in red) and the alteration halo (in grey) projected on the Bouguer 

anomaly map of the Contact prospect distributed into three mineralized zones (NE, Center and SW 



 

 

zones) (from Roy et al., 2017). The black trend represents the trace of the ALF at the depth of the 

mineralization. 

All the previously described rock units are unconformably overlain by the Thelon Formation, 

which crops out in the northern part of the Kiggavik property (Fig. 3). The diabase dikes of the 

Mackenzie diabase swarm cut across all of the previous rocks in the Kiggavik area.  

 

The main structural features in the Kiggavik area are the ENE-trending Thelon fault (TF) and 

Main Zone fault (MZF) in the north of the permit, the ENE-trending Judge Sisson fault (JSF) in 

the central part, and the NE-trending ALF in the southwestern part (Fig. 3). The MZF hosts the 

85W and Granite prospects and the Kiggavik (Main, Central, and East Zones) deposits. The 

End deposit is hosted by the JSF, while the Andrew Lake deposit and the Jane and Contact 

prospects occur along the ALF (Fig. 3). Tectonic initiation of these faults goes back to the 

accretion of cratonic blocks during the Trans-Hudsonian orogeny. The TF constitutes the 

boundary between the siliciclastic sedimentary rocks of the Thelon Formation to the north and 

the metamorphosed basement rocks to the south (Fig. 3). The TF offsets the SLIC Hudson 

granite of at least 25 km with a right-lateral component (Tschirhart et al., 2013) and its northern 

hanging-wall is down-thrown by up to 700 m (Davis et al., 2011). South of the TF, magnetic 

maps show that the SLIC is crosscut by numerous ENE-trending parallel and sub-parallel faults 

with apparent right-lateral displacement. The second ENE-trending major fault is the JSF (Fig. 

3). The JSF dips steeply to the north on discontinuous outcrops and in drill holes. The NE-

trending ALF constitutes the mapped boundary between the Hudson granite to the west and the 

metamorphosed basement rocks to the east (Fig. 3). The ALF is delineated from interpretation 

of aeromagnetic and ground gravity maps (Tschirhart et al., 2017; Roy et al. 2017), as outcrops 

are almost non-existent. Its trend is reported on Figure 3.  A main feature of both the JSF and 

the ALF, which is observable on outcrops and systematically intersected by drill holes, is an 

extensive silicification characterized by a quartz-healed breccia, named in the literature as the 

Quartz Breccia (QB) and described in detail hereafter. 

 

3.  Sampling and methodology  

 

Eighteen inclined –mostly to the SE– drill holes from two exploration campaigns in 2014 and 

2015 were examined in this study. The drill holes targeted gravimetric anomalies related to ore 

and rock alteration (Roy et al., 2017). More than 4000 m of drillcores have been logged in order 

to identify mineralizations, lithologies, faults, and fractures. Fault zones were characterized by 



 

 

identifying the core of the fault (fault core) through the presence of fault rocks, such as breccias 

or gouges whereas fault damage zones (Chester and Logan, 1986; Wibberley et al., 2008; 

Faulkner et al., 2010) were documented by associated veins (mode I or mixed mode I-mode II), 

joints (mode I) and undifferentiated fractures; ―undifferentiated fracture‖ in this case relates to a 

fracture plane which cannot be unambiguously classified as vein, joint or fault/micro-fault (no 

evidence of kinematics) at the time of observation. Fracture corridors and isolated veins, joints 

and fractures were also systematically reported. Drillcore was oriented using a Reflex ACT III 

digital core orientation tool (Bright et al., 2014), and then a protractor was used to measure 

angles between fractures and the core axis (alpha angle). The angle between the bottom of the 

hole and the inflection line (beta angle) was also measured for calculation of true dip/dip 

direction data. Acoustic televiewer probing ABI40 (Williams et al., 2004) was run through key 

holes providing accurate oriented data in faulted core intervals. The data were processed to 

their true orientation and plotted with Dips 6.0 software by Rocscience. Uncertainty on 

orientation measurements is usually about 10° as estimated from the comparison between 

oriented core-measurements and acoustic televiewer data. Kinematic indicators are rare. Some 

were identified and measured occasionally, but the amount of collected data appeared to be 

statistically insufficient to insure proper interpretation. The acquisition of oriented data from 

exploration drillcores can be limited because the more the rock fractured and altered (i.e. fault 

damage zone or fault core) the lower the probability of getting drillcore suitable for orientation. 

Recent drilling in the Kiggavik area was done with NQ 4.5 cm of diameter double tubing. The 

holes drilled in the Contact prospect provided enough good quality oriented core to collect 

reasonable statistically representative data of the various fault and fracture sets. Oriented data 

was also supported by local acoustic televiewer probe. 

Ninety-six core samples were collected (10 and 20 cm in length) from fractured zones; forty-

nine of which were mineralized. All samples were studied from the macro- to the micro-scale in 

order to define fracture cross-cutting relationships, mineral paragenesis, and alteration. Sixty-

four thin sections were prepared for petrographic and microstructural studies. 

Optical microscopy (plane polarized transmitted and reflected light microscope Motic BA310 

POL Trinocular, equipped with a 5M pixel Moticam camera), Scanning Electron Microscopy 

(SEM) JEOL J7600F field-effect coupled with a X-Ray Microanalysis device (EDAX Genesis) 

and cathodoluminescence (CITL Cold Cathodoluminescence device Model MK5-1) were 

systematically used for accurate definition of fracture-cementing/coating phases and mineral 

paragenesis. Clay mineral species and uranium oxides (UO2) were characterized with an 

electronic microprobe (CAMECA SX-100) and by SEM performed at the ―Service Commun de 



 

 

Microscopie Electronique et de Microanalyses (SCMEM)‖ at the University of Nancy-CREGU, in 

France. The CAMECA SX-100 was operated at up to 30 kV for elements with high atomic 

numbers. The calibration used natural and synthetic oxides and/or alloys (orthoclase, albite, 

LaPO4, CePO4, wollastonite, UO2, PbCrO4, olivine, DyRu2). The analytical conditions at SCMEM 

were 10-nA current, accelerating voltage of 15 kV, counting time of 10 s (K, Na, Ca), 20s (Ce, 

U, Si), 40s (Dy), 50s for Pb, and 60s for La. The SEM was operated at low accelerating voltage 

(10 kV), 100 nA filament current, and 600 Å beam width for a working distance between 8 and 

39 mm. The cathodoluminescence microscopy was operated between 10 and 12 kV gun 

potential and between 150 and 350 µA beam current. Observations were performed at the 

―Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra‖, 

at the University of Barcelona, in Spain. 

 

4. Fracturing stages and mineral paragenesis  

 

The Contact prospect is located along the ALF, one kilometer east of the Hudson granite 

(Fig. 3A). Uranium mineralization is hosted in faults, veins, and other fractures (described in 

detail hereafter) that occur in moderately foliated, granitic to granodioritic gneiss of inferred 

Archean age. Granitic sills and dikes, syenites to granites, and lamprophyre dikes of the SLIC 

are common and are locally mineralized. Interpretation of the newly acquired ground magnetic 

and gravity data suggests that the ALF is divided in two overlapping fault segments between the 

Jane and Contact prospects (Fig. 3A) (see also Roy et al., 2017). The southern fault segment 

dips to the NW and hosts the Contact prospect, while the northern fault segment dips to the SE 

and hosts further north the Jane prospect and the Andrew Lake deposit (Fig. 3A). As presented 

by Roy et al. (2017), the mineralization in the Contact prospect is distributed in three pods called 

SW, Center, and NE zones (Fig. 3B). 

The microstructural and petrographic study combining optical, cathodoluminescence 

microscopy, and SEM observations has allowed for the recognition of ten main fracturing 

stages. We define ―fracturing stage‖ as the fracture set or group of fracture sets that are 

associated with the same paragenesis indicating the same step or period of fluid/fracture/rock 

interaction. A fracture stage can correspond to a well identified and unique tectonic episode, or 

to one or several episodes of fracture reactivation and mineralization. The various recognized 

fracture stages in the Contact prospect are presented below by their chronological order based 

on observed cross-cutting relationships. Three fracture stages are associated with uranium 

mineralization, of which two are primary mineralizing stages, and one is a remobilizing stage. 



 

 

The other seven fracture stages are barren and can be indirectly associated with the ore deposit 

either by having enhanced the permeability of the host rock by micro-fracturing or by having 

controlled fluids that have reworked uranium mineralizations in late stage. 

 

4.1 Fracturing stage 1: First tectonic activity observed on the Andrew Lake Fault 

 

The first fracturing stage (f1) is represented by the occurrence of cataclastic to 

ultracataclastic faults observed locally in some drill holes (Fig. 4A-B). Fault zones exhibit 

cataclasites and breccias of small clasts with weak illitic alteration, cemented with illite and finely 

crushed grains from the host rock; they are usually pervasively silicified and crosscut by quartz 

veins (Fig. 4B). 

Granitic gneiss and various intrusive rocks (granite, fig. 4A, lamprophyre, syenite) are 

crosscut by these fault zones and form the breccia clasts. This stage of faulting is the earliest 

brittle tectonic deformation stage recognized on the ALF. No evidence of ductile or ductile-brittle 

shearing was observed within the ALF at the Contact prospect. Related faults were observed 

only in the vicinity and/or within the quartz breccia of the following deformation stage that 

subsequently silicified and crosscut these faults (Fig. 4C to D). The strong overprinting by quartz 

veins and quartz breccias prevented the collection of statistically significant oriented data, and 

―screened‖ the full recognition of these faults. This fracturing stage is the oldest recognized at 

the Contact prospect (fig.4 E). 

 

4.2. Fracturing stage 2: quartz breccia (QB) and first stage of oxidation 

 

One of the most remarkable deformation features of the JSF and ALF in the Kiggavik area is 

the so-called hematitic quartz-rich breccia, first described in the area by Cogema’s field 

geologists in 1994 from outcrops along the JSF (Fig. 5A). This breccia is also called barren 

quartz breccia by Chi et al. (2017) in their fluid inclusion study at the End deposit and called 

hereafter the quartz breccia (QB). The QB consists of mosaic quartz-sealed breccia and veins 

(Fig. 5A-B), and reflects a major regional silicification event (Turner et al., 2001; Hadlari and 

Rainbird, 2011). Lithologies within and around the QB display a pervasive, red-purple 

hematization (Fig. 5B and C). This hematization is the first hematization event identified in the 

Contact prospect and Kiggavik area. 

 



 

 

 

Figure 4: Fracturing stage f1: A) Drillcore box photograph showing an ultracataclastic fault rock in 

a granite that intrudes a granitic gneiss. Both lithologies are then crosscut by quartz veins from 

fracturing stage 2. B) Drillcore photograph of a silicified and illitized cataclastic fault rock 

crosscut by white quartz and grey quartz veins of the second fracturing stage. C) Optical 

microscopy transmitted light photograph of an ultracataclastic fault rock crosscut by a thin quartz 

vein of the second fracturing stage. The black square locates picture D. D) Cathodoluminescence 

microscopy photograph. Zoom in showing the crosscutting relationship between the 

ultracataclastic fault rock and the quartz vein (dark blue weak luminescence). E) Sketch depicting 

the textural features with the paragenesis characterizing this fracturing stage. 

 

At the Contact prospect, the QB was intersected by most of the drill holes at the bottom of 

all mineralized pods discovered to date. The breccia zone displays abundant, pervasively 

hematized hetero-lithic clasts of various intrusive rocks such as lamprophyre, granite, or syenite 

and granitic gneiss, and a quartz-healed silicified matrix. The QB can be divided into damage 



 

 

zones characterized by numerous quartz veins (<5cm thick), and core zones characterized by 

dominant massive quartz sealed breccias (>50cm thick) over minor quartz veins. The QB 

crosscuts and postdates the fault of the first brittle tectonic event (f1), the associated fractures of 

which were re-activated as pathways for the silica-rich fluids. A similar chronology has been 

recognized at the Andrew Lake (Shabaga et al., 2017a) and End deposits. 

 

Figure 5: Fracturing stage f2 (QB): A) Outcrop view looking east on the N80-trending steeply 

dipping to the north JSF underlain by at least 10 meters of white quartz veins. B) Core box 

photograph showing examples of the quartz breccia and associated deep red to purple red 

pervasive hematization (Contact prospect). C) Massive white quartz breccia with opaque white 

quartz, grey microcrystalline quartz and angular granitic gneiss clasts. Colloform quartz texture is 

visible pointed by the arrow (Contact prospect). D) Cathodoluminescence microscopy photograph 

showing a vein of zoned quartz (white dot line) crosscutting microcrystalline quartz. E) 

Microscopy reflected light photograph showing alternating micro-crystalline quartz and hematite 

in a vein. F) Sketch depicting the textural features with the paragenesis characterizing this 

fracturing stage. 

 



 

 

Numerous generations of quartz veins crosscut each other (Fig. 5D), which makes it difficult 

to establish a proper chronology between all quartz textures. However, two groups of textures 

dominate: primary crustiform, comb and zonal growth textures, and secondary microcrystalline 

mosaic quartz, feathery and ghost sphere growth textures (Bodnar et al., 1985; Dong et al., 

1995; Moncada et al., 2012). The most representative quartz texture observed consists of white 

quartz crystals with alternating growth zones of blue and light brown colors under 

cathodoluminescence; this is usually observed as a late quartz generation (Fig. 5D). Micro-

crystalline quartz is observed in different settings: oriented along planes (stylolite-like), following 

boundaries of quartz veins or present in the center of quartz veins. 

The pervasive purple-red hematization of the breccia host rocks (Fig. 5C) is characterized at 

the micro-scale by disseminated, fine-grained hematite, magnetite and rare specular hematite 

(also filling vugs). Veins of crustiform hematite and anhedral microcrystalline quartz (Fig. 5E) 

attest for synchronous brecciation and oxidation phenomena, which is the second fracturing 

stage observed at the Contact prospect (fig. 5F). 

 

 

Figure 6: Fracturing stage f2: oriented data of quartz veins and breccia of QB. Bold black great-

circles indicate the main trend. Schmidt’s lower hemisphere plots. 

 

Veins of the QB are divided into massive quartz veins measured in the breccia core and 

minor veins measured in damage zones (Fig. 6). Data are separated by location: Southwest 

(SW), Center, and Northeast (NE) zones. Oriented data plots show that the massive quartz 



 

 

veins are mainly oriented N035°, with a steep dip to the NW. Minor quartz veins strike on 

average N060°, with a steep dip to the NW. Minor veins are much more focused along one 

direction in the Center Zone, compared to the SW and NE zones. The QB is also thicker in the 

Center Zone where it reaches up to 70 m in drill hole CONT-10, (Fig. 7), with 30 m of fault core 

zone and a well-developed damage zone up to 40 m thick. 

 

 

Figure 7: Distribution of fracture density as a function of depth. Fracture density as black lines; 0: 

non-fractured drill-core, 10: intensely fractured drill-core. Uranium mineralization in red: U in ppm 

measured by assays, logarithmic scale). The QB is highlighted by a yellow zone including both 

the core and the damage zone. 

 

4.3. Fracturing stages 3 and 4: carbonate-filled veins 

 

The fracturing stage 3 (f3) is characterized by isolated veins filled by dolomite. Dolomite 

cement fills newly formed veins and vugs in inherited quartz-filled veins (Fig. 8A). In the latter 

case, quartz crystals display edges with evidence of corrosion and microcrystalline quartz is 

replaced by dolomite (Fig. 8B). Dolomite crystals are also disseminated within the host rock. 

The fracturing stage 4 (f4) consists of isolated calcite-filled veins that crosscut f1 to f3, 

including the dolomite veins. Calcite occurs as the main vein cement and also as later cement 

infilling the remnant voids partially filled by dolomite or locally disseminated within the host rock. 

Calcite also appears as replacing pre-existing sulfide minerals. Calcite veins display two 

apparent pseudo-conjugate trends: E-W and NW-SE, with conjugate dip directions (Fig. 8C). 

Observations under cathodoluminescence confirm that dolomite and calcite veins crosscut 

quartz veins of the QB event (fig. 8D). 



 

 

 

Figure 8: Fracturing stage f3 and f4: A) Cathodoluminescence microscopy photograph showing a 

vein cemented with dolomite (f3) crosscutting quartz crystals (white arrow, quartz vein of the QB). 

B) Cathodoluminescence microscopy photograph showing calcite replacing polygonal shaped 

sulfide mineral phantoms (white arrows). C) Oriented data for calcite filled veins. Schmidt’s lower 

hemisphere plot. D) Sketch depicting the textural features with the paragenesis characterizing this 

fracturing stage. 

 

4.4. Fracturing stage 5: uranium-related faults (first stage of uranium mineralization) 

 

This fracturing stage (f5) is represented by mineralized faults and veins, and embodies the 

first stage of uranium mineralization in the Contact prospect. The mineralized fractures crosscut 

all features of stages f1 to f4, and reactivate and/or cause micro-fracturing of quartz veins of the 

QB. This initial mineralization with pitchblende and coffinite with other uranium oxides (see 

hereafter) generated the highest ore grades in the Contact prospect (i.e., 4.76 %U3O8 over 

50cm), although it is not the largest in terms of spatial extent. Uranium mineralization 

macroscopically appears in two settings that can coexist: i) in newly formed fault zones, coating 

undifferentiated fractures and veins, locally observed as disseminated within cataclastic fault 

rocks, and filling fault damage zone-related fractures with other ore minerals (Fig. 9A-B). ii) in 

re-opened and mineralized quartz veins of the QB (Fig. 9C-F). Both type of mineralized faults 

and veins are also characterized by iron oxide removal or bleaching with weak grey-greenish 

clay alteration and illitization (see table 1 for clay composition).  



 

 

 

Figure 9: Fracturing stage f5: A-B) Core box photograph and interpretation respectively showing a 

mineralized cataclastic fault with grey-greenish clay alteration. Mineralization is disseminated 

within the cataclastic fault core and fills fractures within the fault damage zone. C-F) Core samples 

exhibiting various examples of quartz veins (QB) with mineralized microveins (pitchblende and 

sulfide minerals) that orthogonally cut across the vein. G) Core samples displaying mineralized 

inherited micro-crystalline quartz veins (QB) with haloes of grey-greenish clay alteration. 

Mineralization (pitchblende) has leaked out into the foliation of the host rock. H) Core sample with 

mineralized quartz veins (QB) crosscut by a fracture (white dotted line) cemented with ore 

minerals. 



 

 

Bleaching varies from light (Fig. 9G) to strong (Fig. 9A and H) and correlates to the amount 

of uranium mineralization. No oxidation of the host rocks has been observed linked to this stage 

of mineralization. Dolomite and calcite veins from f3 and f4 can also be locally re-activated and 

mineralized during this stage. 

Quartz veins of the QB contain mineralization along the vein walls and leaking out into the 

foliation (Fig. 9G and H), or filling micro-veins that orthogonally cut across the veins (Fig. 9C-F). 

In both occurrences, vein edges show irregular boundaries indicating quartz corrosion or 

dissolution prior to, or synchronous with, mineralization. The mineralized fractures that 

orthogonally cut across the quartz veins are a notable macroscopic and microscopic feature of 

this stage of mineralization, which is still poorly understood. Their geometry varies depending on 

the texture of the crosscut quartz; microfractures are straight in the case of micro-crystalline 

quartz, while irregular and along grains boundaries in the case of sub-euhedral quartz (Fig. 10A 

and B). 

Dissolution has also been observed in re-opened and mineralized carbonate veins of the f3 

and f4. In this case, dolomite grains display dissolved boundaries where they are in contact with 

pitchblende, and calcite is observed as a rim between the pitchblende and dolomite (Fig. 10C). 

This texture suggests that calcite precipitated coevally with uranium mineralization: calcium was 

remobilized from the dissolved dolomite into calcite precipitated around the pitchblende or in 

nearby microfractures.  Observations under cathodoluminescence microscopy reveal specific 

pink-yellowish luminescence along the boundaries of quartz grains and along the boundaries of 

microfractures in quartz (Fig.10B), cemented with uranium oxides.  

Fracture set 5 6a 6c 6c 7 7 8 

mineral illite illite illite sudoite illite 
relict           

retromorphic chlorite 
illite 

SiO2 (wt. %) 53.5 47.25 48.97 33.54 46.89 37.88 51.14 

Al2O3 24.64 23.1 25.55 30.17 23.69 21.2 30.71 

K2O 6.97 7.05 5.65 0.48 6.79 0.28 9.97 

CaO 0.35 0.3 0.46 0.16 0.18 0.14 0.05 

FeO 2.09 4.3 0.19 1.45 5.08 19.37 1.03 

MgO 2.58 5.76 5.35 13.9 6.17 16.07 1.9 

MnO 0.1 0 0.04 0 0 0.23 0 

TiO2 0.03 1.12 0 0.04 0.2 0.1 0 

Na2O 0.07 0.07 0.07 0.05 0.09 0.08 0.17 

Total 90.33 88.95 86.28 80.06 89.09 89.35 95.01 

Table 1: Representative microprobe analysis of clay species from fracture sets associated with 

alteration of the host rock. 

 



 

 

 

Figure 10: Fracturing stage f5: A) Transmitted light microscopy photograph showing a quartz vein 

of the QB crosscut orthogonally by mineralized microveins (white dotted line on the left highlights 

the boundary of the vein). The microvein is filled with pitchblende, pyrite and chalcopyrite. The 

black square locates photograph B. B) Cathodoluminescence microscopy photograph showing 

the luminescence irradiation halo surrounding the mineralized microvein traced with the white dot 

line. C) Cathodoluminescence microscopy photograph showing dissolution of dolomite linked to 

pitchblende precipitation and carbonate re-precipitation as calcite. D) SEM microphotograph 

illustrating a microvein crosscutting a quartz vein and cemented with pyrite and bravoite which 

are coated with anhedral pitchblende. E) SEM microphotograph illustrating rutile with pitchblende 

micro-inclusions and mixed with uraniferous titanate. F) SEM microphotograph showing a vein 

(white dot line, from Fig. 10D) cemented with uranium minerals. White square locates photograph 



 

 

G. G) SEM microphotograph. Zoom into the core of the previous vein showing: rutile, pyrite, 

uraniferous titanate and illite. H) Subhedral rutile coated with U-As-Ni-Co compounds. I) Anhedral 

uranium, nickel-arsenide mineral and native bismuth. J) Sketch depicting the textural features 

with the paragenesis characterizing this fracturing stage. 

Uranium minerals at this stage are represented by colloform to xenomorph pitchblende (Fig. 

10D) and coffinite, uraniferous titanate, titanium-oxides with pitchblende micro-inclusions (Fig. 

10E), iron sulfides (mainly pyrite but also chalcopyrite and bravoite, see Fig. 10D and F-G), and 

illite (Table 1). Rare occurrences of native bismuth and unidentified As-Ni-Co (±U) xenomorphic 

minerals are also associated with xenomorphic pitchblende along microfractures (Fig. 10 H-I). 

Iron sulfides not associated with pitchblende are rare throughout the Contact prospect. The lack 

of iron sulfides is inferred to be associated to their remobilization (if they were present) due to 

the pervasive hematization of the QB event along the ALF. This first mineralizing stage which 

postdates carbonate and quartz veins (fig. 10J) is classified as polymetallic. 

Oriented data of the re-openend, orthogonally micro-fractured  and mineralized quartz veins 

show a dominant NE-SW and a minor NW-SE trends (Fig. 11), consistent with the main QB and 

ALF trends (Fig. 8F), while the newly formed f5 faults and fractures strike nearly perpendicular 

to the ALF, following the TF trend (Figs. 3, 11). 

 

 

Figure 11: Fracturing stage 5: Oriented data for newly formed mineralized faults, associated 

fractures (left and middle) and mineralized quartz veins (right). Schmidt’s lower hemisphere plot. 

 

4.5. Fracturing stage 6: faulting, second oxidation stage and second stage of uranium 

mineralization  

 

The fracturing stage 6 (f6a to f6c) is the more complex deformation stage.  Two sub-stages 

(f6a and f6c) displaying strong similarities in fault rocks, alteration type, and oriented data were 



 

 

distinguished on the basis of crosscutting relationships at the micro-scale and on the presence 

of uranium mineralization since they are separated by a sub-stage of calcite vein formation 

(f6b). The spatial association of these calcite veins with the oxidized fault rocks is however 

difficult to establish precisely because of the small size of the calcite veins (<3 mm) and the 

discontinuous picture of the fault zone given by drilling.  

 

4.5.1 Fracturing stage 6a (f6a): faulting and second stage of oxidation 

 

Faults that characterize f6a were observed both on outcrops and in drillcores. Fault core 

rocks contain reworked clasts of the QB (Fig. 12A) and of the Thelon Formation (Fig. 12B). 

These faults display characteristic oxidized and illitized (Table 1) tectonic breccias and 

cataclasites (Fig. 12C). Calcite veins are fractured and stained with hematite (Fig. 12D, E) and 

reworked clasts (Fig. 12F) with remnant minerals like iron sulfide, rutile, and micro-grains of 

pitchblende of the first mineralization stage are also common (Fig. 12E).  

This stage postdates the first stage of uranium mineralization (Fig. 12G). Fine-grained 

crushed aluminum-phosphate-sulfate (APS) minerals were observed in one sample of 

hematized ultracataclastic fault rock. 

The f6a event is associated with a second oxidation event of the host rock. This oxidation is 

more closely spatially associated with fault zones and the hematization is less penetrative 

(centimetre scale) into the host rocks than in the case of the first hematization event linked with 

the QB (metre scale). It is characterized by fine-grained hematite that imparts the bright reddish 

color to the fault (Fig. 12E). 

Oriented data of f6a (Fig. 13A) needed specific sorting as fracture directions vary with depth 

and from the Center Zone to the outer zones (SW and NE zones). In the Center Zone, above 

170m, faults orientations are scattered in three different trends (Fig. 13B).  

 



 

 

 

Figure 12: Fracturing stage f6a: A) Tectonic breccia on outcrop in the Kiggavik area embedding 

heterometric fragments of QB with purple-red hematization (first hematization stage) floating in a 

matrix consisting of bright red hematized clay (second hematization stage). B) Cataclastic fault 

rock displaying yellow clasts of the Thelon Formation in bright red hematized clay matrix (second 

hematization stage). Sample from an outcrop 30km west of the Kiggavik area. C) Protocataclastic 

hematized fault rock. Brecciation of a quartz vein (QB) is visible (white arrow). D) Transmitted light 

microscopy photograph. Closer view of the hematized fault rock of picture C: brecciated (red dot 



 

 

line) quartz vein (white dot line) with vugs filled by calcite (f4). E) Reflected light microscopy 

photograph showing a hematized ultracataclastic fault rock with microclasts of calcite and quartz. 

F) SEM photograph. Zoom in a hematized fault rock with reworked quartz vein with calcite-

cemented fractures hosting remnant xenomorphic pitchblende and rutiles. G) Sketch depicting 

the textural features with the paragenesis characterizing this fracturing stage. 

 

 

Figure 13: Fracturing stage f6a. A) All oriented fault data sets. B) Depth selection for oriented data. 

Faults above 170m display two directions, NE-SW and NW-SE; C) faults below 170m have a 

dominant N040° trend, steeply dipping to the NW. D) Zone selection for oriented data. Faults in the 

outer zones are dominantly subvertical or dip steeply  to the NW; E) Faults in the Center Zone 

display synthetic dip directions, one to the SE, and a steeper one to the NW. Outer zones 

correspond to northwest and southeast zones. F) Simplified sketch of the inferred spatial 

organization of f6a faults, flower type fault geometry. Schmidt’s lower hemisphere plot. 

 

Below 170 m, the dominant fault set is better defined along a NE-SW trend, with steep dip to 

the NW (Fig. 13C). Faults in the Center Zone display opposing dips (Fig. 13E), while in the outer 

zones faults are dominantly sub-vertical or dip steeply to the NW. This complex arrangement is 

sketched in figure 13F. 

 

 

 

 



 

 

4.5.2. Fracturing stage 6b: second generation of calcite veins 

 

Figure 14: Fracturing stage f6b: A) Cathodoluminescence microscopy photograph showing crack-

seal calcite fractures. B) Cathodoluminiscence microscopy photograph. Zoom in a crack-seal 

fracture exhibiting calcite banding. C-D) Optical and cathodoluminescence photographs 

respectively of vein in D. Reworked pitchblende is observed as micro-clasts. E) Sketch depicting 

the textural features with the paragenesis characterizing this fracturing stage. 

 

This fracturing event (f6b) is characterized by a second generation of calcite veins. These 

veins are anastomosed and the calcite is dark orange to yellowish (Fig. 14A). 

Cathodoluminescence microscopy observation reveals calcite crack-seal (as defined by Bons et 

al., 2012) (Fig. 14B). The crack-seal mechanism, together with the orthogonal to the vein edges 

growth of calcite crystals support a dominant opening mode (mode I). These calcite veins 

crosscut hematized cataclastic faults of the f6a (Fig. 14C) and locally contain reworked micro-

clasts of the mineralized veins of the first stage of mineralization (f5) (Fig. 14D, E). No oriented 



 

 

data are available for these veins that were only observed microscopically and characterized 

under cathodoluminescence.  

  

4.5.3. Fracturing stage 6c: second stage of uranium mineralization 

 

At this stage (f6c), uranium mineralization occurs in faults of the f6a stage after the calcite 

event f6b (Fig. 15A). Mineralization is associated with a phase of illite and sudoite alteration 

(Fig. 15 and 16, Table 1), and is medium grade (i.e. 3.06 %U3O8 over 4m). Macroscopically, the 

mineralization consists of spherulitic pitchblende within fault cataclasites, coating fractures, and 

leaking out into the foliation in altered host rocks associated with clay alteration (Fig. 15A-C). 

The spherules of pitchblende are typically rimed by a halo of iron removal or bleaching (Fig. 15B 

and C). This characteristic rim of bleaching is linked to the pitchblende precipitation process 

itself with transfer of electrons between Fe2+ and U6+: Fe3+ travelled very locally and re-

precipitated as hematite (Wallis et al., 1985; Alexandre et al., 2006). Microscopically, the 

spherules are made by pitchblende (clay-shaped) co-precipitated and/or impregnated by fine-

grained illite (Fig. 16A-B, Table 1). Although sudoite (Table 1) has been observed associated 

with this pitchblende, illite remains the dominant clay mineral. The ore mineralogy is made of 

pitchblende, coffinite, and rare occurrences of galena. Locally, pitchblende displays cubic habit, 

indicating probable replacement of pyrite (Fig. 16B). The arrangement of ore minerals within 

some fractures often displays anastomosed textures possibly indicating syn-kinematic 

precipitation (Fig. 16C and D). 

 

Figure 15: Fracturing stage f6c: A) Drillcore example of a uranium-mineralized cataclastic to 

ultracataclastic fault rock with reworked purple hematized clasts of the QB, matrix-supported by 



 

 

red hematized clay. B) Core sample photograph showing a mineralized fracture. Pitchblende 

(black spherulites) is altered to secondary yellow crystals of uranophane (black arrow). The white 

bleaching halo is characteristic of this mineralization stage (see text for explanation). C) Core 

sample photograph showing a fracture coated with numerous small spherulitic pitchblende rimed 

with the halo of bleaching. 

 

 In comparison with the first stage of uranium mineralization, this second stage shows 

three main differences: (i) where quartz veins from the QB are locally re-opened and 

mineralized, quartz dissolution is more intense (Fig. 16E); (ii) mineralization lacks iron sulfides 

or other metallic minerals, it is monometallic; and (iii) mineralization spreads far from faults into 

the host rock (at metre scale) with spherulitic pitchblende, making of this type of mineralization 

the most extensive ore type in the Contact prospect. Within the mineralized faults f6b, 

anastomosed calcite veins are locally brecciated and cemented by pitchblende indicating that  

this mineralization episode postdates f6b (Fig. 16F, G). 

 

Oriented data of mineralized f6c faults display expected similar trends and dip directions 

(Fig. 17) than non-mineralized f6a faults (Fig. 13), with the same NW-SE and NE-SW two 

dominant trends. The fracture set 6c and the related uranium mineralization are better 

developed in the Center Zone where the composite fault zone is wider (Fig. 17).  

 



 

 

 

Figure 16: Fracturing stage f6c: A) Transmitted light microscopy photograph. Spherulitic 

pitchblende surrounded by a halo of bleached hematite. B) SEM photograph showing 

xenomorphic to cubic pitchblende wrapped by illite. C) SEM photograph showing the 

anastomosed texture of fractures with hematite and illite typical of the second stage of uranium 



 

 

mineralization (6c). D) SEM photograph showing the anastomosed texture of pitchblende infill of 

anastomosed fractures. E) Transmitted light microscopy photograph showing corroded quartz in 

a QB vein (white arrows) with pitchblende infilling. F) SEM photograph showing brecciated f6b 

calcite veins cemented by pitchblende. G) Sketch depicting the textural features with the 

paragenesis characterizing this fracturing stage 

 

 

Figure 17: Fracturing stage f6c. Left: Oriented data of f6c mineralized faults and fractures, second 

stage of uranium mineralization. Dominant trend is NE, with a secondary NW one. Schmidt’s lower 

hemisphere plot. Right: synthetic cartoon showing the spatial arrangement of the composite f6. 

Red arrows indicate dominant second stage uranium mineralization better developed in the 

Center Zone where the composite fault zone is larger. 

 

4.6. Fracturing stages 7 and 8: cataclastic faults and post-primary uranium mineralization 

alteration  

 

These two faulting stages (f7 and f8) represent the latest major tectonic events observed at 

the Contact prospect, and both are accompanied by strong clay alteration and removal of iron 

oxides (bleaching).  

The f7 stage is characterized by faults that principally re-activated f6a faults. Fault zones 

exhibit multi-episodic cataclastic fault rocks with reworked clasts from previously formed fault 

rocks. Fault reactivation is easily recognizable because fault cores are typically greenish colored 

as a result of the presence of mint green colored clay (Fig. 18A), in strong contrasts with the 



 

 

reddish color of the previously formed iron oxides (Fig. 19A and B). Clay alteration is usually 

moderate and is characterized by illitization.  

 

Figure 18: Fracturing stage f7 (A-B) and f8 (C-E): A) Core sample photograph and interpretation 

showing the typical aspect of a f6 type fault (cataclastic to ultracataclastic fault, light brown) 



 

 

reactivated during stage f7 (mint green ultracataclastic fault rock at the fault core). B) Transmitted 

light microscopy photograph at the core of the mint green ultracataclasite formed by illite. C) Core 

sample photograph and interpretation. Typical protocataclastic fault rock with its characteristic 

white clay alteration (illitization) and bleaching of iron oxides of f6. D) Same as in picture C but 

involving a mineralized zone. Note that mineralization (black pitchblende) is crosscut by fracture 

cemented with illite. E) Transmitted light microscopy photograph. Closer view on a reworked clast 

(yellow line) of second stage mineralization (pitchblende, illite and sudoite), crosscut by fractures 

cemented with illite. Thin section was made from sample shown in picture D. F) Sketch depicting 

the textural features with the paragenesis characterizing this fracturing stage 

 

Chlorite minerals were not observed, suggesting that the particular mint greenish alteration 

color of f7 might be the result of fine crushing of retrograde metamorphic chlorite (Table 1, f7, 

relict of chlorite analyzed in a greenish cataclastic fault rock). In addition, the greenish color 

could also be due to a fine intergrowth of sudoite and illite. The f8 stage is characterized by 

strongly clay altered protocataclastic (Fig. 18C) to cataclastic fault rocks that crosscut and 

rework previously formed fractures and ore-bodies (Fig. 18D and E). Fluids driven by these 

fractures destabilized and removed earlier iron oxides and dissolved and illitized (table 1) other 

minerals such as chlorite and quartz, thus giving a completely bleached aspect to the rock (Fig. 

18D). The whitening illitic clay alteration accompanying f8 is observed as the strongest 

alteration in the Contact area like in all other Kiggavik deposits, producing destabilization and 

desilicification of most minerals of the host rock, even leading to a complete argillization of the 

rock. Therefore it is placed chronologically after the greenish illitic alteration of f7. 

The relative chronology between f7 and f8 is unconstrained because crosscutting 

relationships were not observed at any scale, but both crosscut, thus postdate, the second 

mineralization stage (Fig.18F). Both fracture sets are similar in clay mineralogy with strong 

illitization. 

Oriented data for f7 and f8 are shown in Figure 19. Mint greenish illite faults (f7) are oriented 

NE-SW in the NE Zone, and NW-SE to N-S in the SW Zone (Fig. 19A). Strongly whitening clay 

altered fractures (f8) are oriented N-S and NW-SE in the Center Zone, and NE-SW to E-W in 

the NE Zone (Fig. 19B). 

 

4.7. Fracturing stage 9: uranium remobilization and supergene alteration (third stage of uranium 

mineralization) 

 



 

 

This stage (f9) is characterized by the local re-concentration of earlier mineralization along 

reduction–oxidation (redox) fronts marked by the separation between two zones (Fig. 20A-B): 

one oxidized, reddish to orange, with hematite and goethite (low-temperature iron oxide) 

minerals and the other reduced, grey, with pitchblende and pyrite. This episode constitutes the 

third uranium mineralization stage. Mineralization is low to high grade, depending on the 

remobilized uranium stage, and is only locally present at the Contact prospect. This stage is 

also characterized by alteration of tetravalent pitchblende and uraninite to secondary hexavalent 

uranium minerals, like uranophanes and autunite (Fig. 20C) and by alteration of iron oxides with 

the formation of dusty, yellow limonite coating fractures (Fig. 20D). Although this stage of 

mineralization is often observed spatially related to limonitic joint corridors, no reliable oriented 

data could be obtained. Nevertheless, the scattering of oriented data for limonitic joints (Fig. 

20E) reflects the reactivation of preexisting fractures as passive conduits for a likely downward 

flow of oxidizing supergene fluids (Fig. 20F). 

 

 

Figure 19: A) Oriented data for faults of f7. No oriented data are available for the Center zone. B) 

Oriented data for faults of f8. No oriented data are available for the SW zone. Schmidt’s lower 

hemisphere plot. 

 

4.8. Fracturing stage10: weak fracture reactivation and latest recognizable alteration (bleaching) 

 

The f10 stage is characterized by a weak bleaching of the host rock (Fig. 20A). This 

bleaching is fracture-controlled, spreads out along the foliation and produces local zones where 



 

 

iron oxides oxides were destabilized, remobilized and likely re-precipitated locally (orange 

goethite). This stage is the latest stage of fracturing and alteration observed at the Contact 

prospect (Fig. 20F). 

 

 

Figure 20: Fracturing stage f9 and f10: A) Drillcore showing redox fronts inducing remobilization 

of uranium from the first mineralizing stage (stage 5) and re-concentration at the front boundary 

between the orange oxidized zone (goethite) and the grey reduced zone. Uranium mineralization is 

in dark grey. B) Drillcore displaying supergene alteration of spherulitic pitchblende (the second 

stage of mineralization here) to uranophane. C) Drillcore showing supergene alteration of the 

granitic gneiss characterized by dusty limonite spreading out from fractures. D) Drillcore showing 

a bleached redox front with remobilized pitchblende but without iron oxides. E) Oriented data for 

joints (fracture set 9) coated with limonite. Schmidt’s lower hemisphere plot. F) Sketch depicting 

the textural features with the paragenesis characterizing this fracturing stage 

 

 

 



 

 

5. Discussion 
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Figure 21: Sequence of structural/microstructural events at the Contact prospect 

recognized from macroscopic, microscopic, cathodoluminescence and SEM observations. 

Oriented fracture data in the third column are plotted on Schmidt’s lower hemisphere, equal area 

projection. Mineral paragenesis associated with either mineral precipitation or destabilization is 

indicated on the last right column. 

 

The identifying characteristics of fracture sets, mineralization and alteration along with 

the reconstruction of relative chronology (fig. 21) on the basis of observed crosscutting 

relationships among oriented data allows for the first time in the Kiggavik region to accurately 

determine the structural controls of uranium mineralization and alteration at the Contact 

prospect. The synthesis of the fracturing events at the Contact prospect is summarized 

chronologically in Figure 21, along with oriented data and mineralogical paragenesis. Figure 22 

summarizes the main lithological and structural characteristics of the prospect, both in map view 

(Fig. 22A) and in serial cross sections (Fig. 22C). 

As shown on the interpretation of the airborne and ground magnetic maps (Fig. 22B), the 

ALF is the major structural trend in the area. It runs along the eastern edge of the Hudsonian 

granite (Fig. 2) and hosts, among others, the Contact prospect (Fig. 2). The Contact prospect is 

located in the relay zone between the two overlapping AFL fault segments (Fig. 22B). No 

evidence of ductile or ductile-brittle shear zones was found within the ALF in the Contact 

prospect. 

Furthermore, the ALF likely corresponds to a crustal-scale discontinuity as on the 

western side of the Kiggavik area the SLIC (Hudson and Nueltin granites) displays a clear NE-

trending ellipsoidal shape on aeromagnetic maps (Tschirhart et al., 2013; 2017), which suggests 

that its emplacement was controlled by a structural discontinuity probably reactivated during the 

rift episode and deposition of the Baker Lake and Wharton groups. This first fracturing stage is 

probably linked to the extensional to transtensional tectonics that controlled deposition of these 

formations between 1850 Ma and 1750 Ma (Hadlari and Rainbird, 2011). 

 

5.1 Role and timing of the QB 

 

The QB is a regional feature that has been recognized in the Contact prospect in all drill 

holes along the ALF (Fig. 22). The silicification-brecciation event is a key element in the 

structural analysis which additionally constrains the timing of fracturing and mineralizing events. 

The fact that (i) quartz fractures of the QB were reactivated at the two main mineralizing 



 

 

fracturing stages f5 and f6; (ii) fracturing stages f5 to f10 have only been recognized within the 

hanging wall of the QB, and  the mineralization as well (Fig. 22); and (iii) the prospect footprint is 

parallel to the NE-trending ALF, as depicted in Fig. 22A, supports the role of the QB as a 

mechanical pre-existing discontinuity that has been tectonically reactivated several times, has 

strongly partitioned deformation and focused mineralizing fluid flow, leading to greater uranium 

concentrations at the Contact prospect. On the basis of drillcore oriented data from the QB 

veins (Fig. 6) and outcrop observations (Fig. 5A), the QB appears to  underline a complex fault 

zone made of major NE-trending fault segments and step overs with complex fractured relay 

zones in which veins are oriented ENE-WSW, indicating apparent transtensional right-lateral 

motion. Segmentation and step overs are responsible for along-strike local changes in 

directions and thickness of the QB: the breccia is much thicker in the Center Zone where the 

mineralization is better developed than in the outer zones (Fig. 22C). The role played by the QB 

as a mechanical discontinuity is also attested by the fact that most of the E-W trending 

mineralized f5 faults stop eastwards and turn toward a NE trend when connecting to the ALF 

(Fig. 22A). Such a re-orientation of E-W trending faults is also clear at the regional scale south 

of the JSF (Fig. 2), whereas north of the JSF all E-W faults delineated from magnetic maps 

extend farther eastwards parallel to the TF (Fig. 2). The QB therefore behaved both as a 

mechanical discontinuity and as a transversally impermeable but longitudinally permeable 

barrier, and therefore exerted the first structural control on Uranium mineralization at the 

Contact prospect (Fig. 23).  

On top of that, the QB constrains the maximum age of the observed mineralization in the 

Contact prospect. As observed on drillcores, the QB cross-cuts Hudson and Nueltin granites  

dated  ca. 1750 Ma (Peterson et al., 2015b), and on outcrops, the QB is covered by the Thelon 

Formation, thus bracketing the brecciation / silicification event between 1750 Ma and 1667 Ma. 

The recognition in the QB of microcrystalline mosaic quartz, feathery and ghost sphere growth 

textures (indicating rapid silica boiling) and crustiform, comb and zonal growth textures 

(indicating non-boiling fluid conditions) (Bodnar et al., 1985; Dong et al., 1995; Moncada et al., 

2012) is typical of geothermal systems (Simmons and Christenson, 1994; Moncada et al., 

2012). All these textures show multiple crosscutting relationships indicating that they formed 

alternatively during the same tectonic phase, and point to an epithermal origin of the QB at the 

Contact prospect, and more generally in the Kiggavik area. This epithermal origin is also 

supported by the presence of two groups of fluid inclusions with low temperature-high salinity 

and high temperature-low salinity, respectively (Chi et al., 2017) as observed in the same type 

of quartz textures by Turner (2000) and Turner et al., (2001) in the Mallery Lake epithermal Au-



 

 

Ag deposit, 50km south of Kiggavik. The QB occurrence at the Contact prospect thus reflects a 

major silicification event in the region that predated deposition of the Thelon sandstones at ca. 

1750 Ma (Turner et al., 2001; Hadlari and Rainbird, 2011) in a transtensional right-lateral 

tectonic setting. The first pattern of deformation identified in this work -the f1 brittle faulting that 

is observed along the ALF- therefore occurred after the Hudsonian intrusive event at 1850 Ma 

and before the quartz-sealed breccia at ca. 1750 Ma. 

 

5.2 Structural controls and timing of uranium mineralizations 

 

Three stages of uranium mineralization have been recognized at the Contact prospect. Their 

timing is inferred from crosscutting relationships and complementary information from the 

existing literature about uranium deposits at Kiggavik. 

 

5.2.1 First stage of uranium mineralization 

 

The oldest stage of uranium mineralization, the fracturing stage f5 (Fig.21), is structurally 

controlled by faults and related fractures, as well as by micro-fracturing and re-activation of QB 

veins. Oriented data indicate a dominant E-W strike for the mineralized faults and a NW-SE and 

E-W strike for the associated fractures; secondary directions are ENE-WSW and ESE-WNW 

(Fig. 11). Re-activated, orthogonally micro-fractured and mineralized quartz veins of the QB 

show dominant NE-SW and minor NW-SE trends (Fig. 11), consistent - as expected- with 

oriented data for quartz veins of the QB along the ALF (Fig. 8C). Locally, mineralization is 

associated with dolomite-calcite veins, which display NW-SE and E-W trends; complementary 

observations in drillcores from other deposits in the Kiggavik area, for instance occurrence of 

stepped calcite veins with similar orientations (Grare et al., 2017), allows the interpretation of 

this set of fractures as right-lateral shear veins (mixed mode I-mode II veins). The E-W trending, 

Thelon-type faults are the second structural control in the Contact prospect. They formed as 

right-lateral strike-slip faults in response to a compressional stress oriented approximately 

WNW-ESE (Anand and Jefferson, 2017; Johnstone et al., 2017). Such kinematics was also 

recorded in the ENE-WSW Thelon fault, during and after deposition of the Thelon Formation 

(Anand and Jefferson, 2017). As already mentioned in Section 5.1, most of these E-W trending 

mineralized f5 faults stop eastwards and connect to the ALF, while turning toward a NE trend 

(Fig. 22A), which explains the reactivation of the QB veins and the change in orientation of part 

of the fractures moving NE-ward. 



 

 

 

Figure 22: A) Lithology and structural map of the Contact prospect.  Fractures sets f1, f5, f6, f7 

and f8 are represented, including the two stages of primary uranium mineralization (f5, f6c); the 

other fractures sets are not represented due to the small scale of related fractures or because 

they could not be linked to any major fault. B) Insert map of the local cartographic organisation of 

the ALF, location of the drillholes (white dots) and connections between the northern and 

southern branches of the ALF. C) Serial NW-SE oriented sections across the Contact prospect. 

Holes Cont-04 and Cont-05 were drilled by former company exploring the Kiggavik area, they are 

vertical and do not display any oriented data. Furthermore, they do not crosscut any uranium 

mineralization. Set f8, which drives white clay alteration, consists of NNW faults steeply dipping to 

the East and NE in the Center zone, so they appear with an apparent shallow dip on NW cross-

sections. 

 

 



 

  



 

 

At the Contact prospect, the first stage of uranium precipitation (f5) corresponds to a 

polymetallic mineralization with pitchblende, coffinite, uraniferous titanate, titanium-oxides with 

pitchblende micro-inclusions, sulfides (pyrite, chalcopyrite and bravoite), occurrences of native 

bismuth and unidentified As-Ni-Co (+-U) compounds, whereas the second (f6c) and third stages 

(f9) correspond to monometallic mineralization with pitchblende, coffinite, rare occurrences of 

galena and pyrite. Rutile, brannerite-like and uraniferous titanium-bearing minerals are not 

common minerals in unconformity type mineralization in the Athabasca Basin deposits (e.g., 

Jefferson et al., 2007). Furthermore, the polymetallic mineralization described in the Athabasca 

uranium deposits are sandstone-hosted (e.g., Cigar Lake and Midwest deposits), while 

mineralization hosted in basement are predominately monometallic (e.g., McArthur River and 

Eagle Point deposits; Ruzicka, 1989; 1996; Jefferson et al., 2007). Brannerite is described as 

related to pre-Athabasca mineralizing events in the Beaverlodge District (Dieng et al., 2013), in 

the Baker Lake Basin (Miller, 1980), and at the Karpinka uranium prospect in the southern 

Athabasca Basin (Williams-Jones and Sawiuk, 1985). By analogy, the presence of brannerite 

minerals in the first stage of mineralization at the Contact prospect may therefore reflect a pre-

Thelon uranium source, probably an evidence of relict ―magmatic‖ uranium mineralization 

present at Contact, described in other deposits of the Kiggavik area (Grare et al., 2017), and 

remobilized by hydrothermal fluids during the first mineralizing stage. F5 postdates the 

formation of the QB, which is bracketed between 1750 Ma and 1667 Ma, and thus constrains 

this mineralization to be younger than 1667 Ma. Pitchblendes within quartz veins reveal U-Pb 

isotopic ages of 1403±10 Ma (Farkas, 1984) at the Kiggavik Main Zone and of 1520±79 Ma at 

the Bong deposit (Sharpe et al., 2015). The age of ca. 1500 Ma is the age of the emplacement 

of the Kuungmi lavas over the Thelon Basin (1540±30 Ma, Chamberlain et al., 2010). This age 

was obtained in several studies throughout the Western-Churchill province (Turner et al., 2003; 

Bridge et al., 2013; Gandhi et al., 2013; Dieng et al., 2013; Sheahan et al., 2015) and is possibly 

linked to a regional thermal event possibly reflecting a craton-scale process. If this thermal 

event has reset the U-Pb isotopic system (Davis et al., 2011; Peterson et al., 2015b), then the 

ages of the first stage of faulting and mineralization could be bracketed between ca. 1667 Ma  

and 1420 Ma; although this remains speculative to date. 

 

 

 

 

 



 

 

 

Figure 23: 3D synthetic blocks of the Contact prospect with the main fracturing stages depicted. 

A) Quartz breccia (f2) along the NE-SW ALF. B) First stage of uranium mineralization (f5). C) 

Second stage of uranium mineralization (f6). D) Late clay alteration (f8), reworking uranium 

mineralization of stages 1 and 2. 

 

5.2.2 Second stage of uranium mineralization 

Stage f6 corresponds to a new tectonic event responsible for the second stage of 

mineralization at Contact. This event can be divided into three sub-stages, f6a to f6c, because 

of the close spatial relationships and the same typological characteristics of the fracture sets 

(Figs. 12 and 15). As explained above, the sub-stages f6a and f6c display strong similarities in 

fault rocks, alteration type and oriented data (Figs. 13 and 17), but are separated by a sub-stage 



 

 

of calcite vein formation, f6b, and mineralization only occurs in f6c veins (Fig. 15).  Although a 

NE trend of f6 fracture set is dominant (Fig. 13), this fracture stage displays a more complex 

spatial architecture than the f5 that drove the first stage of mineralization, with conjugate NW-

trending fractures (Fig. 17), conjugate dip directions particularly in the Center Zone, and 

anastomosing fault arrangement mimicking the anastomosed geometries observed at the micro-

scale (Fig. 16C and D). On the basis of drillhole correlation and oriented data, we deduce that 

faults become vertical at depth, whereas all fracture sets turn to the NE and connect at depth to 

the ALF (QB) zone (Figs. 22C and 23). This occurs specifically in the Center Zone, making it a 

wider fractured zone, which likely enhanced fluid circulation and uranium precipitation. As 

fractures density decreases when moving from the Center to the outer zones, mineralization 

does too (Fig. 22). We consider that sub-stages f6a, b and c are synchronous of the same 

tectonic phase, corresponding to successive tectonic pulses. The lack of kinematic indicators 

prevents any determination of the precise kinematics for this fracture stage. Nevertheless, the 

cartographic organisation suggests it has occurred under right-lateral strike-slip kinematics of 

the ALF (fig. 23) enhancing local fluid circulation. This would be consistent with the NE-SW 

oriented compression prevailing at this stage (Grare et al., 2017) as deduced from other places 

in the Kiggavik area, causing dextral motion along the reactivated ALF. This tectonic phase and 

the related reactivation of the ALF are considered as the third structural control of mineralization 

at the Contact prospect. 

Other studies of the Kiggavik deposits have described and dated pitchblende with 

characteristics similar to those of the second stage of uranium mineralization (f6c) in Contact; U-

Pb isotopic ages range between ca. 1200 and 1300 Ma with various episodes of pitchblende 

precipitation (Shabaga et al., 2017a, b; Ashcroft et al., 2017). Additionally, at the Kiggavik Main 

Zone deposit, the orebody is cut by the 1267±2 Ma Mackenzie dikes (Fuchs et al., 1986; 

Lecheminant and Heaman, 1989). Therefore this second mineralizing stage would be older than 

the Mackenzie intrusive event, being therefore bracketed between ca. 1500 Ma and 1270 Ma. 

The presence of sudoite (Table 1) in the mineralogical association with uranium minerals within 

f6c fractures fingerprints the circulation of basinal brines (Percival et al., 1989; Renac et al., 

2002; Beaufort et al., 2005). Unfortunately, our study does not allow determining whether this 

basinal fluid introduced more uranium into the system or just remobilized the pre-existing 

mineralization due to the oxidizing nature of brines (Fayek and Kyser, 1997; Cuney, 2005). 

However, basinal brines would have likely leached uranium from the various stocks available in 

the Kiggavik area: metamorphosed epiclastic rocks of the Puqik Lake Formation (Johnstone et 

al., 2017), rhyolitic flows of the Wharton group (Blake, 1980; Peterson et al,, 2015a), 



 

 

fluorapatite-cemented breccia at the base of the Thelon Formation (Davis et al., 2011), U-

enriched intrusions (Scott et al., 2012) and/or much more probably the uranium concentrated 

during the first stage of mineralization. 

Cathodoluminescence observations on quartz in mineralized zones reveal haloes with 

distinct colors (yellow-red) around fracture-bearing ore minerals. This phenomenon, known as 

irradiation halo, is due to the structural modification of quartz linked with the travel of an alpha 

particle through the crystal lattice (Meunier et al., 1990; MacRae et al., 2013), inferred as being 

due to uranium remaining in contact with quartz crystal or uraniferous fluid flow through the 

fracture. As such, even when uranium minerals are no longer observable (i.e., due to later 

remobilization), this interaction between quartz and uranium allows assessing whether or not 

uranium was present in the host rock or in fluids that circulated through a fault zone. 

 

5.3 Post-primary ore fracturing and alteration 

 

Two faulting stages occurred after fracturing stages f7 and f8. They represent the latest 

major tectonic events observed at the Contact prospect, and both are accompanied by strong 

clay alteration and iron oxides bleaching. Oriented data for f8 display NE-SW and NNW-SSE set 

trends. The first trend is interpreted as related to the reactivation of the previously formed f6 

faults, while the second would correspond to newly formed faults. N-S faults highlight the 

formation of a hard-linked overlapping step over through the final branching of both fault 

segments of the ALF leading to the present-day architecture of the relay fault zone array (Fig. 

22A, regional insert-map). We speculate that this fault relay zone developed in response to left-

lateral strike-slip kinematics, favoring connection of the two branches of the ALF and enhancing 

circulation of acidic, reducing fluids. Such kinematics could have occurred in response to a 

NNW-SSE oriented compression (Fig. 23). 

Interestingly, the reducing fluids that circulated thanks to fault reactivation and new rock 

fracturing at stage f8 caused intense desilicification, illitization, and bleaching of the host rocks 

through dissolution and destabilisation of iron-bearing minerals (mainly chlorite and hematite). 

This strong argillization altered the original texture of rocks and lowered their electrical 

resistivity, density and magnetic susceptibility leading to significant geophysical anomalies that 

facilitated the discovery of the uranium deposits in Kiggavik, including the Contact prospect (see 

Roy et al., 2017 and references therein). Nevertheless, unlike the classic unconformity-related 

uranium deposits in the Athabasca Basin where clay alteration haloes around the ore bodies are 

associated with mineralizing stages (Hoeve and Sibbald., 1978; Hoeve and Quirt, 1984; Fayek 



 

 

and Kyser, 1997; Jefferson et al., 2007), the strongest clay alteration event (f8) in the Contact 

prospect clearly postdates the second stage of mineralization (fig. 23). 

 

The presence of goethite (that usually forms at low temperature), limonite (that usually 

results from supergene alteration of iron oxides), along with the presence of redox fronts, 

characterizes the in-coming of supergene, oxidizing, low temperature fluids of meteoric origin 

(Devoto, 1978; Mercadier et al., 2011) circulating through f9 fractures. It is unknown whether 

there was only remobilization or also new uranium input at that stage. However, the nature of 

the circulating fluids, which is very different in terms of chemistry (chlorinity, pH, NaCl content) 

from basinal brines (Richard et al., 2011), makes it unlikely that a new significant uranium input 

occurred. Moreover, the supergene mineralization is observed locally at the Contact prospect, 

which indicates that this fluid circulation did not have a significant impact on the grade and 

extension of the uranium ore body. Although this stage of mineralization is observed often 

spatially related to limonitic joint corridors, no reliable oriented data could be obtained. 

Nevertheless, the scattering of oriented data for limonitic joints (Fig. 20E) reflects the re-

activation of previously formed fractures and utilisation of other fracture zones as passive 

conduits for an inferred downward penetration of oxidizing supergene fluids. This stage is 

considered the fourth structural control in the Contact prospect. The supergene fluid-related 

mineralization (redox front type) of stage f9 has been dated in other deposits of the Kiggavik 

area at ca. <1200 Ma, with various episodes of uranium precipitation between ca. 850 and 500 

Ma, as also at ca. 300 and 100 Ma (Farkas, 1984; Sharp et al., 2015; Shabaga et al., 2017a, b; 

Ashcroft et al., 2017). 

A final fracturing event associated with f10, occurred at Contact and is responsible for post-

redox front bleaching. The origin and the nature (fluid or gas?) of the reducing fluid remain 

unconstrained. This bleaching stage does not seem to be associated with any clay alteration, 

but only with iron-bearing minerals destabilization. Contrary to this, at the Eagle Point uranium 

deposit in Athabasca, Mercadier et al., (2011) proposed that this bleaching post-redox front was 

associated with kaolinization and linked to renewed circulation of meteoric-derived fluids. 

 

Conclusions 

 

This work describes in detail the multi-scale organization of the mineralized fracture 

network at the Contact uranium prospect and places it into the long polyphase tectonic history of 



 

 

the Kiggavik area. This is the first time such a mineralized and non-mineralized fracture network 

is decrypted and described in unconformity-related uranium deposits hosted within the 

metamorphosed basement. The identification and characterization of the nature and kinematics 

of fracture sets along with the reconstruction of the relative chronology on the basis of observed 

crosscutting relationships, mineral paragenesis, and widespread oriented data allows for 

identifying four major structural controls. These structural controls can help and guide future 

exploration in the Kiggavik uranium province to help find new deposits. 

Ten fracturing stages (f1 to f10) were identified with three stages directly controlling 

mineralization. Each of them is characterized by distinct fault rocks, fracture infill, and host rock 

alteration. The key conclusions are summarized as follows: 

1- There is a long lived and polyphase brittle tectonic history in the Kiggavik area, spanning 

from the emplacement of the Hudsonian Schultz Lake Intrusive Complex at ca. 1850 Ma, 

to the later stages of circulation of supergene meteoric fluids, which has been recorded 

by various fracture generations overprinting the Andrew Lake Fault (ALF) and before the 

emplacement of the Mackenzie dikes at 1267 Ma. The most significant event that 

exerted the strongest structural control was the formation of the quartz breccia (QB) at 

ca. 1750 Ma. The QB acted as a mechanical barrier that partitioned deformation and 

favored later fracturing within its hanging wall. The silicified AFL was also a transverse 

impermeable barrier for fluids, focusing fluid flow longitudinally (or vertically) dominantly 

within the hanging wall. This tectonic episode was critical in preparing the impermeable 

metamorphic gneissic basement for later fluid circulation and uranium entrapment, 

constituting the first structural control. 

2- Three stages of uranium mineralization were determined. 

a. Mineralization precipitated during the first stage (f5) is the highest grade (e.g., 4.76 

% U3O8 over 50cm) and is polymetallic with colloform to xenomorph pitchblende and 

coffinite, uraniferous titanate, titanium-oxides with pitchblende micro-inclusions and 

sulfides (pyrite, chalcopyrite, and bravoite). Mineralization is associated with quartz 

dissolution in veins and weak grey clay alteration of the host rock. The uranium-

bearing fluids are of unconstrained origin. In this first stage, mineralization is 

controlled by E-W faults and reactivated, micro-fractured quartz veins of the QB (f2). 

As the QB is inferred to be bracket between 1750 Ma and 1667 Ma, this mineralizing 

event postdating the QB, has to be younger than 1667 Ma. F5 mineralized faults 

formed in response to a compressional stress oriented approximately WNW-ESE 



 

 

leading to right-lateral strike-slip motion along these faults which constitute the 

second structural control.  

b. The second stage of mineralization is controlled by NE-trending, faults and fractures 

(f6c), which drove oxidizing fluids and partially reactivated, likely under right-lateral 

strike-slip kinematics, and overprinted the ALF. They constitute the third structural 

control. Mineralization is low to medium grade (e.g., 3.06 % U3O8 over 4m) and is 

essentially monometallic with pitchblende and coffinite. Spherulitic pitchblende is 

disseminated within fault cataclasites, nearby host lithologies or coating fractures. 

The spherules of pitchblende are typically rimmed by a halo of iron bleaching and are 

formed by pitchblende (clay-shaped) co-precipitating with fine-grained illite, locally 

associated with sudoite. This stage of mineralization is linked to oxidizing basinal 

brines, following an episode of hematization, and is the most penetrative outward 

from faults into the host rock. It has not been determined whether the brines 

remobilized preexisting mineralization or brought new uranium into the system. This 

tectonic and mineralization event likely occurred between ca. 1500 Ma and 1270 Ma. 

c. In the third stage, mineralization was remobilized by supergene oxidizing fluids 

circulating though pre-existing fractures of various orientations and re-concentrated 

uranium along redox fronts. Mineralization is low to high-grade with secondary 

uranium minerals, such as uranophane and alteration of iron oxides to limonite. The 

exploitation of the pre-existing fractures networks as conduits for downward 

permeating supergene fluids is considered to be the fourth structural control in the 

Contact prospect. By association with other dating of Kiggavik deposits, this 

mineralization occurred at ca. <1200 Ma, with various episodes of uranium 

precipitation between ca. 850 and 500 Ma, as also at ca. 300 and 100 Ma. 

3- Unlike the classic unconformity-related uranium deposits in the Athabasca Basin, in 

which clay alteration extends as haloes around the ore bodies associated with 

mineralizing stages, the strongest clay alteration of event f8 postdates the two stages of 

primary uranium mineralization in the Contact prospect, and seems to have caused 

significant uranium remobilization. This suggests that the basement-hosted Contact 

prospect is a relict of what was once a bigger deposit, and that a part of uranium ore 

could have been remobilized toward the now eroded overlying Thelon sandstones. 
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