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We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study a angular plus radial flow between two (co-axial) rotating permeable cylinders. Full account is taken of compressibility, viscosity and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect-both in terms of temperature and the stagnation enthalpy decrease-seen in short uniflow vortex (Ranque) tubes. The cooling is not done due to an external work, and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the actually reached lowest temperature. We show that for the vortex cooling the efficiency is strictly smaller than 1, but we found a cooling effect, where the efficiency can be larger than 1. This cooling effect is achieved for the outward radial flow, it is partly geometric, and is also based on heat conductivity.

I. INTRODUCTION

Air swirling through a cylindrical tube achieves temperature separation: next to the swirling axis the temperature is lower than the input temperature T 0 , while far from the axis it is higher than T 0 . This is the vortex cooling-heating effect discovered by G. Ranque more than 80 years ago [START_REF] Ranque | Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[END_REF][START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF]; see [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF][START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF] for reviews. A temperature separation without cooling was observed also in highly-pressurized water [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF]. An overall cooling (both output temperatures lower than T 0 ) was seen for certain vortex tubes [START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF].

Coolers based on the Ranque effect are convenient in specific applications, e.g. because they do not have moving parts. However, their efficiency is smaller than 1. Much effort was devoted to increasing it, but the best efficiency is still ≃ 0.6 [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF].

The flow inside of the Ranque tube is highly complex: it is essentially three-dimensional and turbulent. The effect comes in two versions: counter-flow and uniflow [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF][START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF]. In counter-flow vortex tubes the output flows are collected from two different ends of the cylinder, the cold air comes out from the end closer to the injection point, while the hot air from the opposite end of the cylinder [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF][START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF]. Such tubes have both radial [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF] and axial temperature separation [START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF][START_REF] Hartnett | Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow[END_REF][START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF][START_REF] Secchiaroli | Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube[END_REF][13]. In the uniflow situation the air is injected circumferentially at one end of the tube, and both output flows are collected from the opposite end [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Eiamsa-Ard | Review of Ranque-Hilsch effects in vortex tubes[END_REF]. This radial temperature separation takes place close to the injection point of the air [START_REF] Torocheshnikov | A Study of the Effect of Temperature Separation of Air in a Direct-Flow Vortex Tube[END_REF].

The full theory of the Ranque effect is elusive; there are several different approaches that attempt to describe the complex three-dimensional flow inside of the tube [START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF][START_REF] Polihronov | Thermodynamics of Angular Propulsion in Fluids[END_REF][START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF][START_REF] Kalashnik | Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect[END_REF][START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF][START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF][START_REF] Reynolds | Energy flows in a vortex tube[END_REF][START_REF] Dornbrand | Theoretical and experimental study of vortex tubes[END_REF][START_REF] Pengelley | Flow in a viscous vortex[END_REF]. In particular, it is unclear what are the minimal ingredients needed to describe the effect.

Given the complexity of the original Ranque effect, and the necessity of understanding general limitations on the efficiency of gasodynamic cooling, it is desirable to come up with simpler cooling set-ups, where the complexities of the original Ranque effect are deliberately omitted. The quest for such a simplification was posed already in Ref. [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF], where Savino and Ragsdal reported on an experimental realization of a short uniflow tube, where the flow is injected from the surface via permeable rotating wall, and the colder air is collected from the axis [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF]. Axial separation of temperature is absent, and the whole outgoing flow is cooled [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF].

Guided by this experiment, we aim at understanding the phenomenon of vortex-and more general gasodynamic-cooling on a possibly simple theoretical model. We focus on a compressible angular flow between two rotating cylinders plus a radial motion via permeable cylinder walls; see Fig. 1. We work with a compressible flow, because experimental angular velocities are nearly sonic [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF]. Moreover, once we are interested by thermodynamic aspects (i.e. cooling efficiency), it is desirable to work in the compressible situation, where the thermodynamic description of the flow is complete and consistent 1 . We assume that the flow is viscous, because (according to the Bernoulli's theorem) the adiabatic motion of the fluid does not predict cooling in terms of stagnation enthalpy. However, precisely such cooling is observed experimentally [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF] 2 . Hence viscosity is important [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF], and then heat-conductivity is to be accounted for simultaneously with viscosity, because the Prandtl number of air is close to one both in laminar and turbulent regimes.

Our first result is that in the stationary regime of a weak radial flow and a quasi-solid angular (vortical) motion, the model predicts cooling both in terms of thermodynamic temperature and stagnation enthalpy. The efficiency of this cooling is smaller than 1. The finding is in a qualitative agreement with experiment [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF]. The agreement is achieved by using effective (turbulent or eddy) values of viscosity and heat-conductivity in the laminar flow model. Such an approach is well-known [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]. (At any rate, applications of turbulence theories are qualitative [START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF][START_REF] Reynolds | Energy flows in a vortex tube[END_REF].) It is crude, but it does allow a theoretical understanding of the cooling effect. The model predicts a stronger cooling effect for (radially) outward flow of fluid. The unique feature of this effect is that its cooling efficiency is larger than 1, i.e. the pressure gradient is employed more efficiently than for the adiabatic process. This effect agrees with the second law, and it is possible due to heat-conductivity.

Scenarios of cooling studied here do not amount to refrigeration, i.e. they are not achieved due to investing an external work. Naturally, they are also not due to low-temperature boundary baths; to ensure this we need to pay a special attention to boundary conditions. Hence their efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the actually reached lowest temperature.

Cylindrical vortices with radial flow were already studied in Refs. [START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF][START_REF] Dornbrand | Theoretical and experimental study of vortex tubes[END_REF][START_REF] Pengelley | Flow in a viscous vortex[END_REF][START_REF] Deissler | Analysis of the flow and energy separation in a turbulent vortex[END_REF][START_REF] Rott | On the viscous core of a line vortex, I[END_REF][START_REF] Bellamy-Knights | Viscous compressible heat conducting spiralling flow[END_REF][START_REF] Kolesov | Instabilities and transition in flows between two porous concentric cylinders with radial flow and a radial temperature gradient[END_REF][START_REF] Tilton | Pressure-driven radial flow in a Taylor-Couette cell[END_REF][START_REF] Terrill | Flow through a porous annulus[END_REF][START_REF] Terrill | An exact solution for flow in a porous pipe[END_REF][START_REF] Colonius | The free compressible viscous vortex[END_REF], but the problem of finding cooling scenarios with proper boundary conditions was (to our knowledge) not posed. Dornbrand [START_REF] Dornbrand | Theoretical and experimental study of vortex tubes[END_REF] and later on Pengelley [START_REF] Pengelley | Flow in a viscous vortex[END_REF] studied the problem precisely having the same purpose as we: to get a solvable model for vortex cooling. But they did not account for boundary conditions and heat conduction and thus did not obtain proper cooling. Pengelley proposed a necessary condition for cooling that relates to the work done by viscous forces [START_REF] Pengelley | Flow in a viscous vortex[END_REF]. Below we show that under certain additional limitations this condition is indeed able to produce cooling. Refs. [START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF][START_REF] Reynolds | Energy flows in a vortex tube[END_REF] employed simplified turbulence theories of various types that account for radial heat conductivity and viscous vortex motion. A related, but more complete turbulent theory that also accounts for axial motion was given in Ref. [START_REF] Deissler | Analysis of the flow and energy separation in a turbulent vortex[END_REF]. Refs. [START_REF] Rott | On the viscous core of a line vortex, I[END_REF][START_REF] Kolesov | Instabilities and transition in flows between two porous concentric cylinders with radial flow and a radial temperature gradient[END_REF][START_REF] Terrill | Flow through a porous annulus[END_REF][START_REF] Terrill | An exact solution for flow in a porous pipe[END_REF] focus on a laminar flow in the incompressible limit (but they account for axial motion). As our analysis shows, compressibility need not be large, but retaining it-and hence allowing for the proper coupling between thermodynamics and mechanics-is necessary for the proper theoretical description of cooling. Ref. [START_REF] Bellamy-Knights | Viscous compressible heat conducting spiralling flow[END_REF] did not employ the incompressible limit, but studied the problem without the outer cylinder. Several studies on convective heat transfer between concentric cylinders are reviewed in [START_REF] Kumar | Study of natural convection in horizontal annuli[END_REF][START_REF] Rashidi | Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method[END_REF][START_REF] Hona | Dynamic Behavior of a Steady Flow in an Annular Tube with Porous Walls at Different Temperatures[END_REF].

The paper is organized as follows. Next section defines the problem and sets notations and dimensionless parameters. There we also discuss general limitations (in particular, on the cooling efficiency) imposed by the first and second laws. Section III focuses on the definition of cooling, which is not trivial (especially for permeable walls) and thus demands clarifications. Cooling scenar-ios of inward radial flow are studied in section IV. The extent to which this scenario agrees with experiments is discussed in section V. Section VI discusses the cooling of outward radial flow and shows that its efficiency is larger than one. We summarize in the last section. Several technical questions are relegated to Appendices.

II. THE MODEL

A. Navier-Stokes equation

The flow between two rotating concentric cylinders is described via cylindric coordinates (r, ϕ, z), and ⃗ v = (v r , v ϕ , v z ) are components of the velocity. We assume that all the involved quantities depend only on r, e.g. ⃗ v = ⃗ v(r). We also assume that v z = 0, since in the context of our problem it is useless to keep v z ̸ = 0, if it is a function of r only. See Fig. 1 for a schematic representation of the flow.

In the stationary regime the Navier-Stokes equations for v r and v ϕ read [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]:

ρ(v r dv r dr - v 2 ϕ r ) = - dp dr + (ζ + 4η 3 ) d dr [ 1 r d(rv r ) dr ] , (1) 
ρ(v r dv ϕ dr + v r v ϕ r ) = η ( 1 r d dr [ r dv ϕ dr ] - v ϕ r 2 ) , ( 2 
)
where p is pressure, η and ζ are viscosities, ρ is the mass density; see Table I. We assume that η and ζ are constants, i.e. they do not depend on p, ρ or T . Conservation of mass reads ( ⃗ ∇ is the gradient):

∂ t ρ + ⃗ ∇(ρ⃗ v) = r -1 d dr (ρrv r ) = 0, ( 3 
)
ρrv r = c = const, (4) 
where c (a positive or negative constant) characterizes the radial flow. Eqs. [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF][START_REF] Gutsol | The Ranque effect[END_REF] transform to

ηr 2 d 2 v ϕ dr 2 + (η -c)r dv ϕ dr -(η + c)v ϕ = 0. ( 5 
)
This equation is linear over v ϕ . Its two independent solutions are obtained by putting v ϕ ∝ r a into (5). The latter produces a quadratic equation for a. This equation has two solutions a = -1 and a = 1 + c η . We now impose boundary conditions on (resp.) inner and outer cylinder

v 1 ≡ v ϕ (r 1 ), v 2 ≡ v ϕ (r 2 ), (6) 
where r 2 > r 1 . Then ( 5) and ( 6) are solved as a linear combination of a = -1 and a = 1 + c η solutions of (5):

v ϕ (r) = v 2 vϕ (x), x ≡ r/r 2 , ( 7 
) vϕ (x) = [(1 -α)x -1 + αx 1+κ ], (8) 
κ ≡ c η , α ≡ 1 -(v 1 r 1 )/(v 2 r 2 ) 1 -(r 1 /r 2 ) 2+κ , ( 9 
)
where we introduced the dimensionless coordinate x; see Table I. Eq. ( 8) is a weighted sum of two contributions: potential vortex 1/x and the quasi-solid vortex x 1+k . The weight α can hold both α > 1 and α < 0.

B. Energy equation

The fluid energy equation reads [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF] ∂

t ( ρ ⃗ v 2 2 + ρε) + ⃗ ∇[ ρ⃗ v( ⃗ v 2 2 + ε) + p ⃗ v + ⃗ µ -λ ⃗ ∇T ] = 0, (10) 
where ρ⃗ v 2 2 + ρε is the energy density (kinetic energy plus internal energy), ρ⃗ v( ⃗ v 2 2 + ε) is the advective energy flux, p⃗ v is the pressure-driven energy flux, T is temperature (measured in Kelvins), ⃗ ∇(λ∇T ) is the heat flux with heat conductivity λ (we assume that λ does not depend on p, ρ and T ), µ k = -∑ j v j σ jk is the energy flow due to viscosity, and σ jk is the stress tensor [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF].

With the assumptions and in the stationary regime the energy flux is c e /r, where c e is a constant [cf. [START_REF] Gutsol | The Ranque effect[END_REF]]:

c e = cE -rv r σ rr -rv ϕ σ rϕ -λr dT dr , ( 11 
)
E = v 2 r + v 2 ϕ 2 + ε + p ρ , ( 12 
)
σ rr = 2η dv r dr + (ζ - 2η 3 ) 1 r d(rv r ) dr , ( 13 
)
σ rϕ = η( dv ϕ dr - v ϕ r ). ( 14 
)
Here E is the full energy (kinetic + internal + potential) per unit of mass; -λ dT dr is the heat flux due to the radial temperature gradient; σ rr and σ rϕ are the components of the stress tensor [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF], v r σ rr (v ϕ σ rϕ ) is the rate of radial (angular) work done by viscous forces. Eqs. [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF][START_REF] Secchiaroli | Numerical simulation of turbulent flow in a Ranque-Hilsch vortex tube[END_REF](13)[START_REF] Eiamsa-Ard | Review of Ranque-Hilsch effects in vortex tubes[END_REF] express the first law for the radial flow.

Eqs. ( 1) and ( 11) become closed after specifying the thermodynamic state equation; we choose it by assuming that the fluid holds the ideal gas laws [see Appendix A]:

p = RρT /µ, ( 15 
) (ρε + p)/ρ = c p T, ( 16 
) c p = ĉp R/µ, ( 17 
)
where c p > 0 is the (constant) heat capacity at fixed pressure, and ĉp is a dimensionless number of order 1 (e.g. ĉp ≈ 3.5 for air); see Table I. R = 8.314 J/K is the gas constant and µ is the molar mass (29 g for air).

C. Dimensionless parameters and variables

Employing (13)[START_REF] Eiamsa-Ard | Review of Ranque-Hilsch effects in vortex tubes[END_REF][START_REF] Torocheshnikov | A Study of the Effect of Temperature Separation of Air in a Direct-Flow Vortex Tube[END_REF][START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF][START_REF] Polihronov | Thermodynamics of Angular Propulsion in Fluids[END_REF] in [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF], and [START_REF] Torocheshnikov | A Study of the Effect of Temperature Separation of Air in a Direct-Flow Vortex Tube[END_REF][START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF] in [START_REF] Ranque | Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[END_REF], we end up with the following dimensionless form of (respectively) [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF] and ( 1):

( κ 2 + 1)v 2 ϕ -xv ϕ v′ ϕ + b T -x T ′ -β +( κ 2 + 2) w 2 x 2 -(χ + 4 3 ) ww ′ x = 0, (18) 
(χ + 4 3 )w ′′ -(κ + χ + 4 3 ) w ′ x + κw x 2 + κv 2 ϕ w - b x ĉp ( T /w) ′ = 0, (19) 
where x = r r2 [cf. [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF]], prime means d dx , e.g.

v′ ϕ = dv ϕ dx , ( 20 
)
and where we introduced [cf. Table I]:

T = λ v 2 2 η T, w = xv r v 2 (21) b = cc p λ , κ = c η , ( 22 
)
χ = ζ η , β = c e ηv 2 2 . ( 23 
)
Here |κ| is the Reynolds number related to the radial flow, while b/κ is the Prandtl number. These and other dimensional and dimensionless parameters of the systems are discussed in Table I. The angular Mach number Ma of the outer cylinder reads via the above parameters as

Ma = √ (ĉ p -1)κ b T = |v 2 | v sound , ( 24 
)
where

v sound = √ cpT (ĉp-1) = √ ĉp ĉp-1
p ρ is the speed of sound for the ideal gas; see [START_REF] Torocheshnikov | A Study of the Effect of Temperature Separation of Air in a Direct-Flow Vortex Tube[END_REF] and [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]. The constant β in [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF] can be related to T ′ (1) via v′ ϕ [START_REF] Ranque | Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[END_REF] [see [START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF]]:

T ′ (1) = -β + b T (1) + (2 + κ 2 )w 2 (1) -(χ + 4 3 )w(1)w ′ (1) -α(2 + κ) + 2 + κ 2 . ( 25 
)

D. Scaling of temperature

The scaling over v 2 employed in [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF] and in [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF] does have a physical meaning, since below we show that cooling (i.e. temperature decrease) relates to the angular motion of the cylinders. The dimensionless temperature T is reasonable, also because with typical numbers of experimental vortex cooling [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF], we get T ∼ 1. Indeed, using (21) we get

T (r 2 ) = T (1)v 2 sound Pr Ma/c p , ( 26 
)
where v sound is the sound velocity, and where Pr ≡ ηc p /λ and Ma = v ϕ (r 2 )/v sound are the (resp.) Prandtl and 

= 1-(v 1 /v 2 ) x 0 1-x 2+κ 0 * (9)
The weight of the quasi-solid vortex in the angular motion Mach numbers; cf. [START_REF] Reynolds | Energy flows in a vortex tube[END_REF]. Recall that T (1) = T (x = 1), where x = r/r 2 ≤ 1 is the dimensionless length. For air we take in [START_REF] Pengelley | Flow in a viscous vortex[END_REF]: c p = 10 3 J/(kg K) and v sound = 3.31 × 10 2 m/s. In vortex cooling experiments, the input air has Ma ∼ 1 [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF]. Also Pr ∼ 1 holds for air 3 . For an inward flow c < 0, the input temperature is T (r 2 ). We get for it:

κ = c/η * (
T (r 2 ) ≃ T (1) × 100. ( 27 
)
Thus room temperature T (r 2 ) ≃ 300 K means T (1) ≃ 3. However, the above scaling of the dimensionless temperature T is not applicable for v 2 → 0. Then we should change v 2 → v 1 in [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF] and take instead of ( 7)

v ϕ (r) = v 1 vϕ (x), vϕ (x) = x -1 -x 1+κ x -1 0 -x 1+κ 0 , x 0 = r 1 r 2 .( 28 
)
3 This relation holds both for the laminar regime and in the fully developed turbulence regime [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF][START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]. For the former (latter) we employ molecular (turbulent) values of heat-conductivity and viscosity; see section V.

E. First law

Using [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF][START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF], the energy balance [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF] can be written in terms of dimensionless, local rates of energy E, radial work W r , angular work W ϕ and heat Q:

E(x) = c ηv 2 2 [ v 2 r (r) + v 2 ϕ (r) 2 + c p T (r) ] = b T + κ 2 (v 2 ϕ + w 2 x 2 ), (29) 
W ϕ (x) = - r ηv 2 2 v ϕ (r)σ rϕ (r) = vϕ (x)[ vϕ (x) -xv ′ ϕ (x)], ( 30 
) W r (x) = - r ηv 2 2 v r (r)σ rr (r) = 2w 2 x 2 -(χ + 4 3 ) ww ′ x , (31) 
Q(x) = - λr ηv 2 2 T ′ (r 1 ) = -x T ′ (x), (32) 
where we employed [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF][START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF] and [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF][START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF]. The first law reads from [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF]:

∆ E + ∆ W r + ∆ W ϕ + ∆ Q = 0, (33) 
where ∆ E ≡ E(1)-E( r1 r2 ) etc. Note that ∆( W r + W ϕ ) > 0 means that the system does work on the external sources which immerse the fluid into the system and rotate the cylinders, i.e. the work is extracted 4 . We stress that this model of cooling is not completely autonomous, since it contains moving boundaries. The condition ∆ W r +∆ W ϕ ≥ 0 means that cooling (if it shown to exist) is not due to external forces that move boundaries.

Let us also give the dimensionless form of the stagnation enthalpy:

Û = 1 v 2 2 ( ⃗ v 2 2 + p ρ + ε) = v2 ϕ 2 + w 2 2x 2 + b T κ , ( 34 
)
which differs from (29) by the factor c/η only.

F. Angular work

The work [START_REF] Deissler | Analysis of the flow and energy separation in a turbulent vortex[END_REF] done by rotating cylinders can be calculated in a closed form from [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF][START_REF] Eiamsa-Ard | Review of Ranque-Hilsch effects in vortex tubes[END_REF]:

∆ W ϕ = 2(1 -α) -κα - [ 1 -α x 0 + αx 1+κ 0 ] × [ 2(1 -α) x 0 -ακx 1+κ 0 ] , x 0 ≡ r 1 r 2 . ( 35 
)
Now radially outward flow means κ ≥ 0 or c ≥ 0; see [START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF]. For this case we checked numerically that ∆W ϕ ≤ 0, i.e. the cylinders always invest work. In particular,

∆ W ϕ = 2(1 -α) 2 (1 -x -2 0 ) < 0 for κ = 0.
For inward flow κ < 0 there are situations, where ∆W ϕ > 0, i.e. the work is extracted. Note from (7, 8) that κ < 0 means the angular velocity v ϕ /r is a decreasing function of r.

G. Cooling efficiency

Any cooling process that is due to a pressure gradient can be usefully compared with the thermodynamic entropy-conserving (adiabatic) process, where the same pressure is employed for cooling. Let (p in , T in ) and (p out , T out ) be, respectively, the input and output pressure and temperature, and cooling T out < T in is achieved due to p out < p in . For the considered ideal-gas model, the lowest temperature T out, ad reached adiabatically reads [see Appendix A]:

T out, ad T in = ( p out p in ) 1/ĉp , ( 36 
)
where ĉp is defined in [START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF]; see also Table I. [START_REF] Hartnett | Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow[END_REF]. Hence a positive ∫ ∂V d⃗ s ⃗ µ means that the fluid in V does work on external sources.

into -∂t ∫ V dV ( ρ⃗ v 2 2 + ρε); see
Hence one defines the cooling efficiency [START_REF] Silverman | The vortex tube: a violation of the second law?[END_REF]:

ξ = T out, ad /T out , ( 37 
)
which has the standard meaning of efficiency (result over effort), since the achieved result of cooling is related with 1/T out . The pressure difference is a resource and it is quantified by 1/T out, ad , hence definition (37) 5 . When quantifying cooling, people sometimes employ the Hilsch efficiency [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF][START_REF] Gutsol | The Ranque effect[END_REF]:

ξ H = T in -T out T in -T out, ad . ( 38 
)
The meaning of ξ H differs from that of ξ, because ξ H directly accounts for the input temperature T in . But they are related. As shown by( 37), for T in -T out, ad > 0 (a natural condition for cooling), ξ < 1 (ξ > 1) implies ξ H < 1 (ξ H > 1). However, ξ H is less fundamental than ξ, since it does not appear directly in the efficiency bound imposed by the second law. We discuss this bound now.

H. Second law bound for cooling efficiency

The entropy balance of the fluid reads [29]

∂ t (ρs) = -⃗ ∇[sρ⃗ v - λ T ⃗ ∇T ] + s prod , ( 39 
)
where ρs is the entropy density, sρ⃗ v and -λ T ⃗ ∇T are, respectively, advective and thermal entropy flux. The entropy production s prod > 0 is positive due to viscosity and heat conduction 6 . In the stationary situation ∂ t (ρs) = 0, and (39) reads:

d dr ( cs - λr T dT dr ) = rs prod . ( 40 
)
where we used (4). The ideal-gas entropy is [cf. Appendix A]:

s = c p ( - 1 ĉp ln[p] + ln[T ] -ln [ µ R ] ) , ( 41 
)
where we employed [START_REF] Torocheshnikov | A Study of the Effect of Temperature Separation of Air in a Direct-Flow Vortex Tube[END_REF][START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF][START_REF] Polihronov | Thermodynamics of Angular Propulsion in Fluids[END_REF]. We consider two particular cases of the adiabatic process [START_REF] Terrill | An exact solution for flow in a porous pipe[END_REF]:

r in = r 2 , r out = r 1 , c < 0, (42) r in = r 1 , r out = r 2 , c > 0. ( 43 
)
5 Eq. ( 37) is different from the coefficient of performance (COP) of refrigerators, which is defined via the ratio of the heat transferred in refrigeration over the external work performed to achieve this transfer. We do not need the COP, since in our set-ups the cooling is not achieved due to external work. 6 The entropy production reads [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]:

s prod = η 2T [ ∂v j ∂x k + ∂v k ∂x j - 2δ jk 3 ⃗ ∇⃗ v] 2 + ζ T [ ⃗ ∇⃗ v] 2 + λ[ ⃗ ∇T ] 2 T 2 > 0.
Now [START_REF] Colonius | The free compressible viscous vortex[END_REF][START_REF] Hona | Dynamic Behavior of a Steady Flow in an Annular Tube with Porous Walls at Different Temperatures[END_REF][START_REF] Martynovskii | The efficiency of the Ranque vortex tube at low pressure[END_REF][START_REF] Dorfman | Hydrodynamic resistance and the heat loss of rotating solids[END_REF] imply:

s(r 2 ) -s(r 1 ) = sign[-c] c p ln[ξ]. (44) 
Integrating ( 40) over r for r 1 < r < r 2 , using s prod > 0, (41), ( 36) and ( 44), we get from [START_REF] Martynovskii | The efficiency of the Ranque vortex tube at low pressure[END_REF][START_REF] Dorfman | Hydrodynamic resistance and the heat loss of rotating solids[END_REF] an upper bound for the efficiency (37) that applies to both ( 42) and ( 43):

|b| ln[ξ] ≤ r 1 T (r 1 ) dT (r 1 ) dr - r 2 T (r 2 ) dT (r 2 ) dr , ( 45 
)
where |b| is the Peclet number; see [START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF] and Table I.

The right-hand-side of ( 45) is non-zero due to heat conductivity. Hence if the heat-conduction is neglected (i.e. λ = 0) the cooling efficiency holds ξ < 1; see [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]. We stress again that the inequality in ( 45) is due to positivity of the entropy production: s prod > 0.

III. BOUNDARY CONDITIONS FOR COOLING AND FOR PERMEABLE WALLS

When studying cooling due to a confined gasodynamic flow one should exclude physically uninteresting cases, where the fluid is cooled due to cold thermal baths attached to boundaries or due to external work done by external forces.

Cooling demands that the temperature of the (radially) incoming fluid is larger than the temperature of the outgoing fluid. If there is a low-temperature boundary bath, the flow should be thermally isolated from it (adiabatic cooling). Whenever the radial flow is absent, thermal isolation is ensured by imposing vanishing heat flux at boundaries, e.g. at the outer boundary:

dT (r 2 ) dr = 0. ( 46 
)
If there is a flow through boundaries (i.e. permeable or porous walls), (46) does not hold, because there is a heat conductivity due to the fluid at the boundary.

In addition to known conditions for continuity of temperature and heat flux [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF], there is now a specific condition to be satisfied on the adiabatic, permeable surface. To understand the origin of this condition, let us "decompose" the macroscopically homogeneous, permeable adiabatic outer surface into holes and solid parts. Recall that (r, ϕ, z) are the cylindric coordinates. Now for (ϕ, z) ∈ hole and a small positive δ, we get that

d dr T (r 2 -δ; ϕ, z) stays finite for δ → 0+. For (ϕ, z) ∈ solid, d dr T (r 2 -δ; ϕ, z) goes to zero for δ → 0. Hence | d dr T (r 2 -δ)| > | d
dr T (r 2 )| after averaging over (ϕ, z) that recovers the macroscopically homogeneous permeable wall. Hence instead of (46) we obtain the following boundary condition

dT (r 2 -δ) dr > dT (r 2 ) dr , sign [ dT (r 2 ) dr ] d 2 T (r 2 ) dr 2 < 0, ( 47 
)
where sign[a] = 1 if a ≥ 0 and sign[a] = -1 if a < 0, and where the second inequality in (47) follows from the first one under d dr T (r 2 ) ̸ = 0 and δ → 0+. Naturally, the first inequality in (47) also holds for d dr T (r 2 ) = 0, i.e. for an adiabatic wall.

Likewise, we have for the thermally isolated inner wall (for δ → 0+):

dT (r 1 + δ) dr > dT (r 1 ) dr , sign [ dT (r 1 ) dr ] d 2 T (r 1 ) dr 2 > 0, (48) 
We stress that in the present model (with or without the radial flow) it is trivial to get arbitrary low temperatures in between of two cylinders. But generally these temperature profiles do not hold the boundary conditions (47) or (48), i.e. such scenarios of low temperatures do not constitute proper cooling, since they require that low temperatures pre-exist via boundary baths. In particular, Appendix B works out the Couette flow (laminar flow between 2 infinite rotating cylinders without radial motion) showing that the inhomogeneous temperature profile generated in this flow does not constitute cooling.

Conditions similar to (47, 48) are deduced for the radial velocity v r on a partially permeable wall. This is similar to the previous case in that v r = 0 for an impermeable wall; see (46). A derivation analogous to that of (47, 48) produces [cf. [START_REF] Gutsol | The Ranque effect[END_REF]]

sign[c] dv r (r 2 ) dr < 0, (49) sign 
[c] dv r (r 1 ) dr > 0, (50) 
for the outer and inner wall, respectively. In the present model there are no solutions that support conditions (47, 48) and (49, 50) for both inner and outer permeable walls. Thus we should put them on the wall from which the cold flow is coming out (to ensure that low temperatures do not exist before cooling), and left the other boundary as a control surface assuming that both the velocity and temperature on this surface are given.

IV. COOLING OF INWARD FLOW

A. Temperature profile for a weak radial flow

Recall from ( 21) and ( 9) that κ and w(x) are different dimensionless quantities although both are non-zero due to radial flow. We assume that w(x) and its derivatives are small. Hence factors ( κ 2 + 2) w 2 x 2 and (χ + 4 3 ) ww ′ x are neglected in [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF]. This can be done provided that x is not very small. But the influence of the radial flow on the vortex characteristics is not neglected, i.e. κ ̸ = 0; see [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF][START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF]. Now the remainder of (18), i.e. ( κ 2 + 1)v 2 ϕ -

xv ϕ v′ ϕ + b T -x T ′ -β = 0 can be solved explicitly as T (x) = g(x) + β b + x b C, ( 51 
)
where C is a constant, and where

g(x) ≡ 2x κ α(α -1) b -κ - (1 -α) 2 (4 + κ) 2(2 + b)x 2 - κα 2 x 2+2κ 2(2 -b + 2κ) . ( 52 
)
Now β and C in (51) are conveniently expressed via T (1) and T ′ (1), and the temperature profile reads from (51):

T (x) -T (1) = x b -1 b [ T ′ (1) -g ′ (1) ] + g(x) -g(1), (53) 
The approximation that led to (53, 52) is confirmed by solving numerically full equations [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF]; see Figs. 2 and3. So far the weak radial flow approximation amounted to neglecting the radial velocity v r in the energy equation ( 18), but retaining it in the angular Navier-Stokes equation [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF]; see also [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF][START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF][START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF]. If we neglect the radial velocity v r also in the radial Navier-Stokes equation [START_REF] Ranque | Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[END_REF] [or equivalently in [START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF]] we obtain

ρ(r)v 2 ϕ (r)/r = dp/dr. ( 54 
)
This known equation is solved as

7 p(x) p(1) = exp [ - κĉ p b ∫ 1 x dy v2 ϕ (y) y T (y) ] , ( 55 
)
where T (x) and vϕ (x) are given by (53, 52) and [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF], respectively. Eq. (55) shows that the (dimensionless) pressure is a monotonically increasing function of x.

There are cases, where (53, 52) are valid, but (54) [and (55)] is not. In section VI we show an important example of this type, where even if w(x) → 0 is imposed in the vicinity of x = 1, it does not hold for x < 1, because w(x) grows fast. 7 Let us mention the simplest (but incorrect) argument for the Ranque effect. Setting ρ(r)=constant in (54) and using the ideal gas law T (r) ∝ p(r), shows that T (r) is an increasing function of r (i.e. a radial temperature separation is achieved), formally resembling the Ranque effect. The problem with this argument is that imposes a constant ρ. This may look formally consistent with other equations, but it is incorrect, e.g. because it applies also for vr = 0 (no radial motion whatsoever), while our detailed analysis of this vr = 0 situation shows that no cooling scenarios are possible, because the proper boundary conditions are not satisfied; see Appendix B.

B. Boundary conditions for inward radial flow

For inward flow c ≤ 0 (hence b ≤ 0 and κ ≤ 0) we study cooling scenarios, where the higher temperature fluid enters into the system through the outer boundary at x ≡ r/r 2 = 1. Now for adiabatic boundary conditions, the lower temperature fluid leaves the system through the inner thermally isolated boundary at x = x 0 < 1 [cf. (48)]:

T (1) > T (x 0 ), T ′′ (x 0 ) > 0. ( 56 
)
No specific conditions are put at x = 1, i.e. it is taken as a control surface.

The adiabatic boundary condition (56) relates to the isothermal situation [

x 0 ≤ x ≤ 1] T (1) = T (x 0 ) > T (x), ( 57 
)
where T (x) assumes a minimum at some x = x min . Whenever (57) holds, one can take x 0 x min and this produce an example of (56).

Eq. ( 57) does not refer to a practically useful situation, since no cold fluid really comes out. Nevertheless, it is interesting, since the expected of behavior of the temperature is that it is larger inside of the fluid, i.e. for T (1) = T (x 0 ) we expect T (x) > T (1) = T (x 0 ) [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]. (The expectation is also confirmed by the example of the Couette flow in Appendix B.) This is because viscosity-which dissipates energy in the bulk of the fluid-generates heat that must be transported out of the boundaries [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]. The expected behavior holds for c > 0. But there are isothermal and adiabatic cooling scenarios for c < 0; see Figs. 2 and3. We now turn to discussing them.

C. Cooling via quasi-solid vortex

Let us start with a quasi-solid vortex in [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF]:

α = 1 or v 1 /v 2 = (r 1 /r 2 ) 1+κ . ( 58 
)
The temperature for this situation reads from (53, 52):

T (x) -T (1) = [ T ′ (1) + κ 2 ][x b -1] b + κ(x b -x 2+2κ ) 2(2 + 2κ -b) . ( 59 
)
Let us see to which extent (59) can hold condition (57). Now T ′ (x min ) = 0 leads to

x 2-b+2κ min = 1 + (2 -b + 2κ) T ′ (1) κ(1 + κ) , ( 60 
) T ′′ (x min ) = -κ(1 + κ)x 2κ min . ( 61 
)
Eq. ( 60) means that T ′ (x min ) = 0 has only one solution.

Since this solution ought to be a minimum [cf. (57)], we have to require T ′ (1) > 0 that together with 0 ≤ x ≡ r1 r2 ≤ 1 leads from (60, 61) to κ(1 + κ) < 0 and 2(1 + κ) > b, or equivalently to

-1 < κ < 0, 0 < T ′ (1) < - κ(1 + κ) 2(1 + κ) -b . ( 62 
)
Thus under conditions (62)-and naturally x 0 sufficiently smaller than x min -we get an isothermal cooling scenario (57). Taking x 0 x min we get instead an example of the adiabatic scenario (56); cf. the discussion after (57). Eq. (58, 62) imply a quasi-solid vortex that is frequently observed experimentally. Examples of the above cooling scenario are presented in Figs. 2 and3 for isothermal and adiabatic scenarios, respectively. Naturally, the cooling takes place both in terms of (thermodynamic) temperature T and stagnation enthalpy Û . We shall see below that conditions (58, 62) are sufficiently representative, i.e. more general cooling scenarios implied from (53) are close to those predicted by (58, 62).

D. Magnitude and efficiency of cooling

Both adiabatic and isothermal cooling scenarios lead to relatively weak effects in the sense of

T (1) -T (x min ) min[1, T (1)] ≃ 0.01 -0.1. (63) 
The cooling magnitude in terms of stagnation enthalpy is larger; see Figs. 234.

The efficiency (37) of cooling under condition (56) is smaller than 1:

ξ < 1. ( 64 
)
Whenever d dr T (r 1 ) is sufficiently small, (64) follows directly from the second law bound [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF], where d dr T (r 2 ) > 0; cf. [START_REF] Martynovskii | The efficiency of the Ranque vortex tube at low pressure[END_REF]. Otherwise, (64) is confirmed numerically; see Figs. 234. Hence the Hilsch efficiency (38) also holds ξ H < 1, as shown by Figs. 234.

For both isothermal and adiabatic cooling scenarios we obtain from [START_REF] Nusselt | Technische Mechanik und Thermodynamik[END_REF]64) for the entropy difference:

s(r 2 ) -s(r 1 ) = c p ln[ξ] < 0. ( 65 
)
Hence the final entropy is always larger than the initial one: s(r 1 ) > s(r 2 ).

E. Work and energetics

As shown by [START_REF] Terrill | Flow through a porous annulus[END_REF]58), the work done by rotating cylinders is positive under conditions (62):

∆ W ϕ = -κ(1 -x 2+2κ 0 ) > 0, ( 66 
)
which means that the work is extracted. The work W r done by radial external forces is small, but negative (i.e.

it is invested), and the overall work is positive; see Figs. 2 and3. Thus the set-up does not demand an external investment of work 8 : cooling takes place due to the initial pressure larger than the final one, p(1) > p(x 0 ). In other words, cooling takes place due to the initial potential energy of the fluid. Under isothermal boundary conditions both thermal baths (at x = 1 and x = x 0 , respectively) provide heat to the system. Using (57, 58) (and the fact that w(x) is assumed to be small), we get from [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF][START_REF] Kolesov | Instabilities and transition in flows between two porous concentric cylinders with radial flow and a radial temperature gradient[END_REF])

∆ E = ∆ E kin = κ 2 (1 -v2 ϕ (x 0 )), (67) 
which is negative due to (58). Hence we also get cooling in terms of the stagnation enthalpy; see [START_REF] Tilton | Pressure-driven radial flow in a Taylor-Couette cell[END_REF][START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]. Eqs. (66, 67) are consistent with the first law [START_REF] Kolesov | Instabilities and transition in flows between two porous concentric cylinders with radial flow and a radial temperature gradient[END_REF], which for the present situation reads:

∆ E + ∆ W = | Q 1 | + | Q 2 |.
These features hold for other cases of isothermal and adiabatic cooling. Fig. 4 shows an isothermal scenario with α = -0.5, where vϕ (x) is again a concave, increasing function of x. Fig. 3 demonstrates an adiabatic cooling scenario that does not reduce to the isothermal case (whenever the latter holds one can obtain an adiabatic scenario by taking x 0 > x min ).

Let us write from [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF][START_REF] Landau | Fluid Mechanics, Second Edition[END_REF][START_REF] Deissler | Analysis of the flow and energy separation in a turbulent vortex[END_REF][START_REF] Rott | On the viscous core of a line vortex, I[END_REF][START_REF] Bellamy-Knights | Viscous compressible heat conducting spiralling flow[END_REF])

0 = [ -E(x) + x T ′ (x) -W ϕ (x) -W r (x) ] ′ . ( 68 
)
In (68) we assume that isothermal boundary conditions hold for c < 0; hence b and κ are negative. Now [-E(x)] ′ > 0 for x min x, because this means cooling in terms of the stagnation enthalpy. One also has [x T ′ (x)] ′ > 0 for x min ≈ x. It appears also that [-W r (x)] ′ > 0 has the same sign as [-E(x)] ′ > 0. Moreover, it quickly prevails over other factors; this is why for c < 0 cooling exists only in the weak radial flow situation, where W r → 0.

Thus for holding (68) and achieving cooling we need

W ′ ϕ (x) > 0, (69) 
which-using (30, 7, 8)-is equivalent to

0 > 4(1 -α) 2 + x 2+κ α(1 -α)κ(κ -2) + 2x 4+2κ α 2 κ(κ + 1). ( 70 
)
8 We mention another scenario of cooling, which is realized for the inward flow and the potential vortex vϕ (x) = 1/x; see [START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF] with α = 0. This scenario is less interesting, since it is driven by external investment of work [W ′ ϕ < 0, as seen from (69, 70)], while its efficiency and magnitude hold the same constraints (64, 63). An interesting point of this scenario is that it is accompanied by the kinetic energy that increases in the direction of the flow:

[ |κ| 2 v2 ϕ + |b| T (x)
] ′ ≤ 0 in (68). Appendix D studies details of this scenario.

Hence the validity of (69) (at least for certain values of x), i.e. the positivity of work, is a necessary condition for both isothermal and adiabatic cooling in the regime c < 0. This condition was obtained in [START_REF] Pengelley | Flow in a viscous vortex[END_REF], but its necessary character was not properly stressed, in particular, because the heat conductivity and boundary conditions necessary for cooling were neglected. In particular, (69) can lead to mistakes if it is taken as a sufficient condition for cooling.

F. Dependence of temperature profiles on the radial Reynolds number κ

The radial Reynolds number κ = c/η [see Table I] combines the radial flow c and the viscosity η. Hence it is important to understand how the cooling temperature profiles depend on κ.

Now κ can change-from one fluid to another-due to c and/or due to η. We shall focus on the later scenario recalling that η can be an effective (eddy or turbulent) viscosity; see section V for details. Anticipating some of discussions from section V, we recall that the effective viscosity changes together with the heat-conductivity λ such that the Prandtl number Pr = b/κ is roughly a constant (also in the turbulent regime) [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]. Also, we shall assume that the quasi-solid condition (58) holds, i.e. the ratio v 1 /v 2 changes together with κ so that α = 1 is kept fixed. All these conditions are observed in vortex tubes [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF].

Fig. 5 shows temperature profiles (53) for different values of κ. (Recall that the approximate formula (53) is well-confirmed numerically). It is seen that the cooling effect disappears both for sufficiently small and large values of κ (which we recall is negative for the outward slow due to c < 0; see Table I). This is because the boundary condition (56) ceases to hold. The cooling effect is locally maximal before its disappearance; see Fig. 5.

G. Dependence of cooling on the rotation speed

Since the angular (vortical) motion is necessary for above cooling scenarios, we turn to studying in detail the dependence of cooling temperature profiles on the rotation speeds v 1 and v 2 of cylinders. It is natural to assume that these variables change by keeping the ratio v 1 /v 2 fixed. Now α is fixed parameter as well [see [START_REF] Farouk | Simulation of gas species and temperature separation in the counter-flow Ranque-Hilsch vortex tube using the large eddy simulation technique[END_REF]] and hence we stay within the quasi-solid vortex regime. This is useful, because this regime is observed experimentally for a broad regime of experimental parameters [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF].

Since now v 2 is a variable we need to redefine T given by [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF]; see also Table I. Instead of T , we employ T0 =

v 2 2 v 2 2,0 T = λ v 2
2,0 η T that equals to T evaluated at some fixed reference value v 2,0 of the velocity v 2 , i.e. T0 does not already have a parametric depedence on v 2 . Now we get instead of (53):

T0 (x)-T0 (1) = x b -1 b [ T ′ 0 (1) -ϵg ′ (1) ] + ϵ[ g(x) -g(1) ], ϵ ≡ v 2 2 /v 2 2,0 , (71) 
where g(x) is still defined by (52), i.e. it does not have any parametric dependence on v 2 or on ϵ. According to (71), a larger ϵ means a bigger deviation of v 2 from its reference values. Fig. 6 shows temperature profiles (71) for different values of ϵ and for parameters given by (58, 62). For given values of parameters, there is a value of v 2 , where the cooling effect is maximal, i.e. the lowest temperature is reached. For the parameters of Fig. 6 this critical value is found from ϵ = 0.8. When v 2 decreases from this critical value, the cooling effect ceases to exist, since the cooling boundary conditions-as given by ( 56) or (57)-cannot hold anymore, i.e. the curve in Fig. 6 that corresponds to ϵ = 0.78 is void of physical meaning. When v 2 increases from the critical value, the magnitude of vortex cooling-as measured by the lowest temperature reached-monotonously decreases. In particular, for a larger ϵ, we need to take a larger x 0 = r 1 /r 2 (i.e. x 0 → 1) to achieve cooling; see Fig. 6.

V. RELATIONS WITH EXPERIMENTS

A. Effective viscosity

The actual flow in vortex tubes is highly turbulent [START_REF] Gutsol | The Ranque effect[END_REF]. Hence if one uses hydrodynamic equations (in particular, Navier-Stockes equations) with constant values of viscosities η and ζ and heat-conductivity λ, it is at very least necessary to employ there effective (i.e. turbulent or nonmolecular) estimates for these parameters [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF][START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF].

Taking into account that the considered flow is confined and inhomogeneous (i.e. there are radial and angular flows) we choose to estimate the turbulent viscosity η via the Nusselt's formula [START_REF] Nusselt | Technische Mechanik und Thermodynamik[END_REF], which was originally proposed for estimating the turbulent viscosity in pipes. Ref. [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF] found that this formula applies for describing compressible turbulence in a sufficiently wide range of Reynolds numbers. The formula reads [START_REF] Nusselt | Technische Mechanik und Thermodynamik[END_REF][START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]:

η = 0.15 η mol [ ρ v ϕ l /η mol ] 3/4 , ( 72 
)
where v ϕ is the characteristic value of the angular velocity, and l is the characteristic length, and η mol is the molecular viscosity: η mol = 1.8 × 10 -5 kg/(m s) for the air. Also, taking in (72) typical experimental parameters for vortex tubes [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF]:

ρ = 1.2 kg/m 3 , v ϕ ≃ v sound =331
m/s and l = 0.1 m, we get

η ∼ 0.085 kg/(m s), (73) 
which is several orders of magnitude larger than η mol . The estimate (73) roughly coincides with an estimate

given in [START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF] via the mixing-length formula [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]: η = ρℓ 2 dv ϕ dr , where ℓ = β

dv ϕ dr / d 2 v ϕ
dr 2 is the mixing length and where β is a suitable numerical constant. It is this specific form of the mixing-length formula that can apply to compressible turbulence [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF].

B. Comparison with experiment

Let us recall that the present model omits several physical factors that are met in realistic vortex tubes; see section I for a discussion of basic set-ups for vortex tubes. In particular, the axial motion is neglected, and the fluid is removed radially (in contrast to axial removal in vortex tubes). Hence the model set-up has one (not two) output temperatures, and the whole output is fluid is cooled (in contrast to the standard Ranque tube which has two output flows and achieves temperature separation [START_REF] Gutsol | The Ranque effect[END_REF]).

Recall relation [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF] between dimensional and dimensionless velocities of air obtained for sonic velocities. Then the magnitude of cooling is predicted from (63) to be around 10 K. Note that best vortex tubes provide (starting from 300 K) a larger cooling of order 70-80 K [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF][START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF]. Though such a stronger effect is lacking in the present model, we recall that in those cases only a part (e.g. ∼ 20 % according to [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF]) part of the overall flow is strongly cooled, the remaining part is heated up. In the present model the whole outgoing fluid is cooled.

The Hilsch efficiency ξ H of cooling obtained in the present model is of order of 0.1 -0.4; see Figs. 234. It also agrees with experiments, though not for the most efficient vortex tubes, where ξ H can be as high 0.6 -0.7 [START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF][START_REF] Gutsol | The Ranque effect[END_REF].

The magnitude of the radial flow over the angular flow, expressed by

w(1) = 10 -3 -10 -4 , ( 74 
)
also agrees with experimental measurements [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF], though it is to be stressed that these measurements were carried out for sufficiently long vortex tubes, where the axial velocities (neglected altogether in the present model) are definitely larger than the radial velocities. The quasi-solid vortex (58) for vϕ (x) is also seen experimentally, though the experimental results also indicate that for x ∼ 1, vϕ (x) starts to decay, i.e. the quasi-solid vortex vϕ (x) ∼ x 1+κ (for our model we took κ ∼ -0.5) changes towards the potential vortex vϕ (x) ∼ x -1 [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Xue | A critical review of temperature separation in a vortex tube[END_REF]. This change of vϕ (x) is given much importance in certain theories of vortex cooling [START_REF] Graham | A theoretical study of fluid dynamic energy separation[END_REF][START_REF] Gutsol | The Ranque effect[END_REF], but is not present here. The input density is estimated from [START_REF] Gutsol | The Ranque effect[END_REF][START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF]:

ρ(r 2 ) = |κ| η w(1) r 2 v ϕ (r 2 ) . ( 75 
)
Estimating r 2 ≃ 0.1 m (reasonable value for the outer radius of a vortex tube), v ϕ (r 2 ) ≃ v sound and η for air as η ≃ 0.085 kg/(m s) [see 73], we end up with ρ(r 2 ) ≃ 10 -3

w(1)
kg/(m s) in (75). Estimating from the present model w(1) ≃ 10 -4 (and recalling p = RρT /µ) we get that the input pressure is few times larger than the atmospheric pressure [START_REF] Ranque | Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[END_REF]. Altogether, given limitations of the present model, and complications of the flow in real vortex tubes, one can say that the model is in a fair qualitative agreement with experiments, though it is far from predicting (and explaining) the features of best vortex tubes, those providing the largest efficiency or the largest magnitude of cooling.

Savino and Ragsdal presented a simplified set-up of vortex cooling effect [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF] that in several respects is similar to the present model. They studied two short (compared to the diameters) concentric cylinders; the length to diameter ratio was 0.1 and 0.5 for two different samples. (For traditional Ranque-Hilsch tubes the length to diameter ratio is 20-50). The rotating air enters radially from the whole outer permeable cylinder and leaves through the inner (smaller) cylinder. Rotational flow was created via the outer cylinder with the Mach number ≃ 0.2. The velocity of this flow was much larger than that of the radial flow. The authors established here cooling effect in terms of the radial variation of the stagnation enthalpy9 (no data on thermodynamic temperature or velocities was given). The magnitude of this cooling effect is lower than predictions of the present model; cf. the stagnation enthalpy data in Figs. 23. They confirmed that the radial distribution of the stagnation enthalpy is established already near the end-wall of the tube and is not affected by the weak axial flow. In particular, the axial change of the stagnation enthalpy was much smaller than the radial one. (Hence it was legitimate to neglect the axial flow in the model.) They found that the experimental data can be described by (54), where pressure is balanced by the centrifugal force (this equation does not contain the viscosity explicitly). It was observed that the pressure decreases monotonically with the radius, as confirmed by (55) of the present model.

VI. COOLING OF OUTWARD FLOW

A. Conditions for cooling

Now we assume that c > 0 (i.e. κ > 0 and b > 0) and the outer boundary of the system is thermally isolated in the sense of (47). Hence the outgoing fluid being colder than in-coming implies (for c > 0) T ′ (1) < 0, and then (47) demands

T ′′ (1) > 0, ( 76 
)
at the adiabatic outer boundary. No specific conditions are imposed at the inner boundary r = r 1 that can be thus considered as a control surface. The full expression for T ′′ (1) is worked out from [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF] [recall [START_REF] Dornbrand | Theoretical and experimental study of vortex tubes[END_REF]]:

T ′′ (1) = b T ′ (1)w ′ (1) ĉp w(1) + [ b(ĉ p -1) ĉp -1] T ′ (1) (77) -(χ + 1 3 )w ′ (1) 2 -(2w(1) -w ′ (1)) 2 -(α(2 + κ) -2) 2 . ( 78 
)
The first line (77) contains potentially positive terms, while all terms in (78) are non-positive. Hence (76) demands that (78) is sufficiently small, e.g. via w ′ (1) → 0. Likewise, T ′ (1) cannot be very small. If w(x) and w ′ (x) are sufficiently small, T (x) can be approximately determined from (53, 52). However, (54, 55) do not apply anymore, because the (dimensionless) pressure p(x) = T (x)/w(x) is now a decreasing function of x for x ∈ [x 0 , 1]. Thus, w(x) is now essential in [START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF] and it is important for determining the energetics. The physical reason for this is that the work ∆ W r [see [START_REF] Rott | On the viscous core of a line vortex, I[END_REF]] done by viscous radial forces is relevant, as seen below. Fig. 7 demonstrates the main outward-flow cooling scenario for α = 1; cf. [START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF]. The magnitude of cooling is now sizable

[ T (x 0 ) -T (1)]/ T (x 0 ) ≥ 10. (79) 
The temperature profile T (x) shown in Fig. 7 with a very good precision coincides with that found from (59, 60), where now T ′ (1) < 0 and x min in (60) should be changed to x max , because this is now the maximum of T (x). Then one should take x 0 > x max so that the temperature decreases for x 0 < x < 1.

B. Energetics, entropy and efficiency

We expectedly have

Q(x 0 ) = -x 0 T ′ (x 0 ) > 0, Q(1) = -T ′ (1) > 0, (80) 
i.e. the heat enters from the inner boundary x = x 0 and leaves at the outer boundary x = 1 due to the heat present at this boundary (but not via to the outer wall itself, which is thermally isolated due to T ′′ (1) > 0; see (48)). We see numerically that Q1 Q2 ; see Fig. 7. Now ∆ W ϕ < 0 (rotating cylinders invest work), as we discussed after [START_REF] Deissler | Analysis of the flow and energy separation in a turbulent vortex[END_REF]. But the radial external forces do extract work, ∆ W r > 0 as much that the total work is extracted [see Figs. 7,8]:

∆ W = ∆ W r + ∆ W ϕ > 0. (81) 
Moreover, the overall kinetic energy (see [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF]) also increases, ∆ E kin > 0 (albeit slightly, as seen in Fig. 7) due to contribution κ 2 (1 -x 2+2κ 0

) of the vortex.

The most interesting aspect of this cooling scenario is that the cooling efficiency [START_REF] Colonius | The free compressible viscous vortex[END_REF] is larger than 1 [see Fig. 7]:

ξ ≥ 1, (82) 
i.e. the adiabatic process provides less cooling, since now the heat transfer from the system is essential; see after [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF]. Together with (82) also the Hilsch efficiency [START_REF] Kumar | Study of natural convection in horizontal annuli[END_REF] is larger than 1: ξ H > 1; see Fig. 7. Eq. ( 82) is thermodynamically consistent. Recalling [START_REF] Rashidi | Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method[END_REF][START_REF] Dorfman | Hydrodynamic resistance and the heat loss of rotating solids[END_REF], we see that the upper bound [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF] amounts to

x0 T ′ (x0) T (x0) - T ′ (1)
T (1) . This expression is positive; cf. (80). Hence it is possible to have (82) provided that the entropy production is sufficiently small, which appears to be the case, as confirmed numerically. We stress again that ξ > 1 is possible due to heat conductivity; cf. the discussion after [START_REF] Shirokov | Physical Principles of Gasdynamics (Fizmatgiz[END_REF].

Due to [START_REF] Rashidi | Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method[END_REF] and ( 82), the entropy entering to the system is larger than the one that leaves it [cf. (65)]:

s(r 2 ) -s(r 1 ) = c p ln[1/ξ]. (83) 
Thus we get that (without any investment of overall external work) the temperature, stagnation enthalpy and entropy decrease, while the kinetic energy increases. The outgoing fluid is more ordered, since not only its thermal energy decreases, but also the kinetic energy increases.

C. Physical mechanisms of the effect and cooling without vortical motion

We saw around (68, 69) that for the inward flow cooling it is necessary to have an angular motion with the viscous forces doing work of the proper sign. Here the physical meaning of cooling can be clarified along the same lines. We get from ( 18) and (29-32)

0 = [ E(x) + Q(x) + W r (x) + W ϕ (x) ] ′ . ( 84 
)
Now cooling implies that outgoing fluid has lower energy: E ′ (x) < 0. Possible necessary conditions for cooling is provided by the heat conductivity: Q ′ (x) > 0, and/or by the work done via radial viscosity: W ′ r (x) > 0. Figs. 7 and8 show that both these conditions hold. The contribution of Q ′ (x) > 0 is larger than that of W ′ r (x) > 0. But the vortex contribution has the same sign as energy: W ′ ϕ (x) < 0; cf. with (69). Hence a similar cooling scenario is also possible without vortex, i.e. for vϕ = 0 in [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF]. In fact, eliminating the angular motion almost does not change the temperature profile in Fig. 7. The main difference with the above situation is that the kinetic energy decreases, ∆E kin < 0, since the vortex motion is now absent.

Note that to eliminate the vortex from equations of motion, one should take v ϕ = 0 in [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF], and to suppress the last factor -α(2 + κ) + 2 + κ 2 in (25), as well as

-(α(2 + κ) -2)
2 in (78). Definitions [START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF][START_REF] Kassner | Friction laws and energy transfer in circular flow[END_REF][START_REF] Van Deemter | On the theory of the Ranque-Hilsch cooling effect[END_REF] of dimensionless parameters still apply, where now v 2 = v 2,0 is an arbitrary characteristic velocity; see section IV G. It drops out from [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF].

A simple analytical description of the temperature profile can be obtained from [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF] assuming that the change of w(x) can be neglected. (But note that the change of w(x) within ( 19) cannot be neglected.) Taking in (18) vϕ = 0, w(x) = w(1) and w ′ (x) → 0, we get

T (x) -T (1) = γ[1 - 1 x 2 ] + [2γ -T ′ (1)] 1 -x b b , (85) γ ≡ w(1) 2 (4 + κ) 2(2 + b) . ( 86 
) Now T ′ (x) = 0 is solved as x b+2 max = 2γ 2γ-T ′ (1)
. This solution exists only for T ′ (1) < 0 (recall that b > 0) and it is a maximum of T (x). Hence one should take x 0 > x max in order to get a monotonic decrease of temperature T (x) from x = x 0 till x = 1.

One feature of this cooling scenario is that once w(1) (the boundary condition for the outward flow) decreases, the solution of hydrodynamic equations [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF]) ceases to exist below a certain critical value of w( 1), because now w(x 0 ) becomes negative. Recall from (4) that a negative w(x 0 ) for c > 0 is not acceptable, since it would mean a negative mass density ρ. Thus, if w( 1) is decreased, then c also has to decrease, to keep the solution physical.

Generally, the magnitude (79) of the cooling increases upon decreasing the radial flow c, i.e. for c → 0. This can be seen from (85) or from Figs. 8. But this limit c → 0 is not useful, since it diminishes the cooling power b( T (x 0 ) -T (1)).

D. Geometric aspects of the cooling effect

Note that the present cooling scenario (without vortex) is specific for the cylindrical geometry. Its traces are seen in 1d (plane geometry), but the cooling as such is negligibly weak there; see Appendix C.

To understand the origin of this effect, let us take the situation, where all the velocities vanish (hence c = 0). Due to the cylindrical geometry, [START_REF] Behera | Numerical investigations on flow behaviour and energy separation in Ranque-Hilsch vortex tube[END_REF] there is still a nontrivial stationary temperatures profile, c e = -λrT ′ 0 that reads in terms of the dimensionless temperature T and dimensionless length x = r/r 2 (x 0 ≤ x ≤ 1):

T0 (x) -T0 (1) = T ′ 0 (1) ln x. ( 87 
)
Now it should be clear that (87) does not describe as such any cooling effect. Indeed, for T ′ 0 (1) ≤ 0 we should put a thermally isolated wall at x = 1 (to avoid assuming the existence of even colder temperatures), which leads us to T ′ 0 (1) = 0, and hence to a constant temperature profile.

However, there is a relation between (87) and the temperature profiles obtained above for c > 0 and illustrated in Figs. 7, and8:

T0 (x) > T (x), (88) 
if T ′ 0 (1) = T ′ (1) < 0 and T0 (1) = T (1),

where we note from (87) that T ′′ 0 (1) = -T ′ 0 (1), i.e. for T ′ 0 (1) = T ′ (1) < 0, T ′′ 0 (1) agrees with the boundary condition (47) required for cooling.

Eqs. (88, 89)-which we verified numerically-show that the reported cooling effect is the modification of the formal temperature profile (87) to the physical, situation with c > 0. In the 1d case (plane geometry) the general zero-velocity temperature profile (the analogue of (87)) is just T 0 = const, which explains why the cooling effect is negligible there; see Appendix C.

VII. SUMMARY

We worked out a tractable model for describing gasodynamic cooling. The model extends the standard Couette flow between two coaxial cylinders by adding there a radial flow (hence demanding that cylinders are permeable). Only the radial dependence of relevant quantities is retained and the axial flow is neglected.

The model accounts for viscosity, heat-conductivity and compressibility; see section II. They are generally important for gasodynamic cooling, and there are at least two reasons for keeping each of them in the description. Viscosity is to be retained, (first) since we should achieve cooling also in terms of the stagnation enthalpy (as observed experimentally [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF]), and (second) since due to turbulence the actual viscosity is much larger than its molecular value. Heat-conductivity is to be considered simultaneously with viscosity, since the Prandtl number of air is close to one. It is also important for ensuring boundary conditions of cooling. Compressibility is needed, because we need the proper relation between fluid mechanics and thermodynamics, and also because the involved angular velocities are sonic.

The emphasize of our study is not so much in describing details of the vortex cooling effect as observed in experimental examples of vortex tubes, but rather in showing how a hydrodynamic model can account for cooling via specific boundary conditions (see section III), and how already the simplest model can provide new (and thermodynamically consistent) predictions for cooling with efficiency larger than 1.

We show that the model predicts a vortex cooling effect for an inward radial flow; see section IV. Though the general cause of cooling is in the pressure gradient that drives the flow, the local cause is related to the work done by viscous forces. The cooling effect comes in two versions-adiabatic and isothermal-that are closely related, but differ from each other by the boundary conditions. In several ways the obtained cooling effect is similar to what was experimentally seen in Ref. [START_REF] Savino | Some Temperature and Pressure Measurements in Confined Vortex Fields[END_REF] for a short uniflow vortex tube. In accordance with experimental results, the model predicts that the efficiency of vortex cooling is generically smaller than 1 [see section II G], though the concrete values for the efficiency and for the magnitude of cooling are lower than what was observed for best vortex tubes.

The model predicts as well a cooling effect that was (to our knowledge) so far not observed experimentally; see section VI. This effect is realized for an outward flow and it does not need an angular (vortical) motion. Its cooling efficiency is larger than one, i.e. for the given gradient of pressure, this cooling is more efficient than the adiabatic (i.e. entropy conserving) thermodynamic process. This cooling effect is consistent with the second law, and it is possible due to heat-conductivity. It has partly a geometric origin, since it is negligible for the plane geometry.

There is an experimental report on the Hilsch efficiency being larger than 1 for a counter-flow tube (where only a part of the air is cooled) [START_REF] Martynovskii | The efficiency of the Ranque vortex tube at low pressure[END_REF]. However, this result was was shown to be not reproducible in [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF]. According to the author of Ref. [START_REF] Gulyaev | Vortex tubes and the vortex effect[END_REF], the report concerned externally cooled vortex tubes; cf. our discussion in section III. Hence we finalize by stressing that the issue of cooling with an efficiency larger than one is open.

Note that taking the inner radius r 1 to zero, r 1 → 0, does not lead to anything interesting: in this limit we get α → 1, (B2) implies T (x) = T (1) + T ′ (1) ln x, but we have to assume also T ′ (1) = 0 for preventing the singularity at x → 0. Then T (x) does not depend on x. Hence r 1 should be kept finite.

Interesting (stationary) cooling scenarios are those, where the low temperatures created inside of the fluid are not due to even lower temperatures imposed on its boundary. In particular, if one of the boundaries is left without thermal isolation-so there is an active thermal bath working at this boundary-then the inside temperature should be lower than the temperature of this bath.

Let us start with the case, where no thermal isolation is imposed for both boundaries. Then T (x) should have a local minimum at some x ∈ (x 0 , 1). Eq. (B2) shows that there is only one solution x = x max of T ′ (x) = 0:

x max = √ 2(1 -α) 2 2(1 -α) 2 -T ′ (1) . ( B4 
)
If 0 < x max < 1 (for which it is necessary and sufficient that T ′ (1) < 0), then x max is the local maximum (not minimum) of T (x). Hence we get no cooling for this case.

Next, let us thermally isolate the outer boundary: T ′ (1) = 0. We get from (B2):

T (x) -T (1) = -(1 -α) 2 ( 1 x 2 -1 -ln[ 1 x 2 ]
) . (B5)

Then T (x) is a monotonically increasing function of x, i.e. the inside temperature T (x) is larger than the (inner) bath temperature T (x 0 ). For a thermally isolated inner boundary, T ′ (x 0 ) = 0, T (x) is a monotonically decreasing function of x [see (B4)], i.e. again we get no interesting scenarios of cooling. There are no solutions when both boundaries are thermally isolated; see (B2). The absence of interesting cooling scenarios is confirmed by looking at the total work produced by external forces that rotate the cylinders. It reads from [START_REF] Terrill | Flow through a porous annulus[END_REF] [with κ = 0]:

W ϕ = 2(1 -α) 2 (1 - 1 x 2 0 ) < 0. (B6)
The negativity of (B6) means that the work is invested externally and dissipated for overcoming the viscous forces. This work leaves the system as heat. Thus three regimes are impossible for the considered Couette flow:

-It cannot cool the fluid isothermally, i.e. when both boundaries are kept at the same temperature.

-It cannot cool the fluid adiabatically: no regime exists when one boundary is thermally isolated, while another one is subject to a thermal bath, and it is demanded to get the fluid colder than the active bath temperature.

Hence low-temperatures present in the system according to (B2) do not constitute any non-trivial cooling: they are due to the low-temperature bath present at one of boundaries. Put differently, for the Couette flow the active bath is the one with the lower temperature.

The above two conclusions seem to hold rather generally for stationary hydrodynamic systems without mass flow, though we so far did not get a general argument for their validity. At any rate they hold for the (generalized) Couette (sometimes also called Taylor-Dean) flow, where the fluid is subject to azimuthal driving with a volume force ⃗ f , where only the ϕ-component f ϕ (r) of ⃗ f is non-zero, but it is an arbitrary function of r.

-The Couette flow cannot also function as a heatengine, since-irrespectively of the values of T (r 2 ) and T (r 1 )-the work is always dissipated; see (B6).

APPENDIX C: 1D EXAMPLE OF WEAK ADIABATIC COOLING

Consider a 1d flow (from left to right) between two permeable plates separated by distance L. Continuity of mass leads to

ρv = c 1 = const. (C1)
1d Navier-Stokes and energy equations read in dimensionless form

κv 2 (x) + b ĉp T (x) -(χ + 4 3 )v(x)v ′ (x) = γv(x), (C2) κ 2 v2 (x) + b T (x) -(χ + 4 3 )v(x)v ′ (x) -T ′ = β, (C3)
where 0 ≤ x ≤ 1, L is the distance between two plates, β and γ are constants, and we introduced the following dimensionless parameters:

T = λ v 2 2 η T, v(x) = v(x) v(L) (C4) b = c 1 c p L λ , κ = c 1 L η , (C5) χ = ζ η , ĉp = c p (µ/R). (C6)
The constants β and γ can be expressed via (respectively) v′ (1) and T ′ (1):

γ = κ + b ĉp T (1) -(χ + 4 3 )v ′ (1), (C7) β = 1 2 κ + b T (1) -(χ + 4 3 )v ′ (1) -T ′ (1). (C8)
We obtain from (C4-C7): 

T ′′ (1) = b T ′ (1)(1 - 1 ĉp ) -(χ + 4 3 )v ′ (1) 2 + b ĉp T (1)v ′ (1). (C9)
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TABLE I :

 I Variables and parameters. Dimensionless quantities are indicated by * .

	Variable/Parameter Defined in Eq.	Description
	r2 > r1	(6)	Radii of the coaxial cylinders
	x = r/r2 *	(7)	Dimensionless radial distance
	x0 = r1/r2 *	(28)	Dimensionless ratio of the radii
	v ϕ		(1,2)	Angular velocity
	v2 = v ϕ (r2), v1 = v ϕ (r1)	(6)	Angular velocities of the coaxial cylinders
	vr		(1,2)	Radial velocity
	w = xvr/v2 *	(21)	Dimensionless radial velocity
	ρ		(1,2)	Mass density. Under normal conditions for air: ρ = 1.2 kg/m 3
	p		(1,2)	Pressure
	ρϵ		(10)	Internal energy density
	ρs		(39, 41)	Internal entropy density
	λ		(10)	Heat-conductivity. Molecular value for air:
				λ mol = 0.02 J m s K . For turbulent value see section V B.
	T		(10)	Temperature measured in Kelvins
	T = λT /(v 2 2 η) *	(21)	Dimensionless temperature
	c = ρvrr	(4)	Radial flow. c is a constant with this model
	cp ĉp	*	(4) (17)	Isobaric heat capacity. For air: cp = 10 3 J kg K Dimensionless isobaric heat-capacity; ĉp/(ĉp -1) = cp/cv
				is the ratio of isobaric and isochoric heat-capacities
	η, ζ	(1,2)	Viscosities. Molecular value of air:
	χ = η/ζ *	(23)	η mol = 1.8 × 10 -5 kg m s . For turbulent value see section V B. Ratio of viscosities
	α			

The incompressible limit is singular from the viewpoint of thermodynamics[START_REF] Ansumali | Thermodynamic theory of incompressible hydrodynamics[END_REF]. Despite of the widespread usage of this limit, its consistent thermodynamics was developed only recently[START_REF] Ansumali | Thermodynamic theory of incompressible hydrodynamics[END_REF].

[START_REF] Hilsch | The use of the expansion of gases in a centrifugal field as cooling process[END_REF] Thus adiabatic theories of the Ranque effect[START_REF] Liew | Maxwell's Demon in the Ranque-Hilsch Vortex Tube[END_REF][START_REF] Polihronov | Thermodynamics of Angular Propulsion in Fluids[END_REF][START_REF] Alekseev | The Nature of the Ranque Effect[END_REF][START_REF] Hashem | A Comparative Study of Steady and Nonsteady-flow Energy Separators[END_REF][START_REF] Kalashnik | Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect[END_REF] do not describe the full cooling effect[START_REF] Merkulov | A note on Alekseev's article "The nature of the Ranque effect[END_REF].

Note from[START_REF] Hartnett | Experimental study of the velocity and temperature distribution in a high velocity vortex-type flow[END_REF] that the integral ∫ ∂V d⃗ s ⃗ µ, over a closed surface ∂V is the work done by viscosity forces on the substance enclosed into ∂V. The sign of the work is determined as follows: with the normal vector ⃗ s of ∂V pointing outside, the integral contributes

Recall that (due to the Bernoulli's theorem) cooling in terms of the stagnation enthalpy cannot be explained via adiabatic fluid dynamics.

APPENDIX A: IDEAL GAS THERMODYNAMICS

We briefly recall ideal-gas formulas as applied in hydrodynamics. Thermodynamic relations of hydrodynamics are written for extensive quantities are divided by the overall number N of involved particles and by the mass m of a single particle. Thus the extensive ideal gas entropy

where C v and C p are heat-capacities and V is the volume, becomes

where ρ = N m/V is the mass density, N A is the Avogadro number, and where ĉv and ĉp are dimensionless numbers of order one:

After denoting

where R = 8.314 J/K is the gas constant, and µ is the molar mass, (A2) reads:

The full entropy S (and similarly other extensive quantities) is obtained as S = ∫ V d 3 x ρ s. Noting that the temperature T is measured in Kelvins, the ideal gas equation of state

For purposes of dimensionless analysis, we write (A5) as

Eq. (A8) implies that if the pressure and temperature adiabatically (i.e. for a constant entropy) change as p → p ′ and T → T ′ , then

APPENDIX B: VORTEX FLOW WITHOUT RADIAL MOTION (COUETTE FLOW)

Consider the distribution of temperature inside of the vortex [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF] when the radial motion is absent. This is one of standard problems of hydrodynamics (the Couette flow) and it is studied in many places; see e.g. [START_REF] Landau | Fluid Mechanics, Second Edition[END_REF][START_REF] Dorfman | Hydrodynamic resistance and the heat loss of rotating solids[END_REF]. We reconsider this problem here, because we want to understand why specifically this situation does not contain any interesting stationary cooling scenario (contrary to remarks given in [START_REF] Dorfman | Hydrodynamic resistance and the heat loss of rotating solids[END_REF]). For [START_REF] Alekseev | The Nature of the Ranque Effect[END_REF]. This equation integrates and determines temperature inside of the vortex (x ≡ r/r 2 )

where we employed (25, B1) for expressing β via T ′ (1), and where α is given by ( 9) under κ = 0:

Let us now look at conditions for adiabatic cooling. Now c 1 > 0 (hence b > 0 and κ > 0) and v > 0 from (C1). Hence we look for

The temperature profiles appear to be monotonic so that the first condition in (C10) can be written as T ′ (1) < 0.

Then the first and second term in the right-hand-side of (C9) are negative. Hence T ′′ (1) > 0 can be satisfied only due to sufficiently large b ĉp T (1)v ′ (1) > 0. This implies limitations on T (1) (which cannot be sufficiently small) and on | T ′ (1)| (which cannot be sufficiently large). Eventually, the adiabatic cooling appears to be a relatively small effect, though it is still possible in this model. For example, under χ = 10, b = κ = 10, ĉp = 3.5, T (1) = 1, T ′ (1) = -0.1 and v′ (1) = 0.1 (we have v(1) = 1 by definition) we get for the cooling magnitude [ T (0) -T (1)]/ T (0) = 0.037.

APPENDIX D: POTENTIAL VORTEX

Another familiar type of vortex in [START_REF] Balmer | Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids[END_REF][START_REF] Finko | The Peculiarities of Gas Cooling and Condencing in Vortical Flow[END_REF] is:

Eqs. (53, 52) imply In other respects the two scenarios of cooling (quasisolid and potential) are similar to each other: both have roughly the same magnitude, both need small radial velocities and both have efficiency ξ smaller than 1.