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Jean‑Yves Grandpeix1 

25°S–60°S) are significantly impacted by the WT, showing 
a decrease in air temperature (−0.5  K over mid-latitudes 
and −1 K over tropics) and an increase in precipitation. The 
latter can be explained by more vigorous updrafts due to 
an increased meridional temperature gradient between the 
equator and higher latitudes, which transports more water 
vapour upward, causing a positive precipitation change in 
the ascending branch. Over the West African Monsoon 
and Australian Monsoon regions, the precipitation changes 
in both intensity (increases) and location (poleward). The 
more intense convection and the change of the large-scale 
dynamics are responsible for this change. Transition zones, 
such as the Mediterranean area and central North America, 
are also impacted, with strengthened convection resulting 
from increased ET.

Keywords Groundwater table · Land–atmosphere · Near 
surface climate · IPSL-CM · West African Monsoon

1 Introduction

Groundwater systems are dynamic and adjust to many 
factors (e.g., climate changes, groundwater withdrawal, 
land use, terrain elevation, slope, etc.). Observations 
show that water table depths vary at diurnal, seasonal and 
inter-annual scales (Fan et al. 2007), and recent changes 
in groundwater storage can be detected across almost 
the whole globe (Richey et  al. 2015). Modelling studies 
based on climate change projections by General Circu-
lation Models (GCMs, e.g., ECHAM4, HadCM3), usu-
ally downscaled and bias-corrected, reveal large poten-
tial changes of groundwater recharge and related water 
resources, that can exceed ±30% by the 2050s, but with 

Abstract The main objective of the present work is to 
study the impacts of water table depth on the near surface 
climate and the physical mechanisms responsible for these 
impacts through the analysis of land–atmosphere coupled 
numerical simulations. The analysis is performed with 
the LMDZ (standard physics) and ORCHIDEE models, 
which are the atmosphere-land components of the Institut 
Pierre Simon Laplace (IPSL) Climate Model. The results 
of sensitivity experiments with groundwater tables (WT) 
prescribed at depths of 1 m (WTD1) and 2 m (WTD2) are 
compared to the results of a reference simulation with free 
drainage from an unsaturated 2 m soil (REF). The response 
of the atmosphere to the prescribed WT is mostly concen-
trated over land, and the largest differences in precipita-
tion and evaporation are found between REF and WTD1. 
Saturating the bottom half of the soil in WTD1 induces a 
systematic increase of soil moisture across the continents. 
Evapotranspiration (ET) increases over water-limited 
regimes due to increased soil moisture, but it decreases 
over energy-limited regimes due to the decrease in down-
welling radiation and the increase in cloud cover. The tropi-
cal (25°S–25°N) and mid-latitude areas (25°N–60°N and 
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uncertain regional patterns (Döll 2009; Taylor et  al. 
2013; Portmann et al. 2013; Habets et al. 2013).

Conversely, the fluctuations of groundwater levels have 
potential impacts on the climate due to their influence on 
soil moisture profiles and ET rates. Many studies have 
shown that the inclusion of groundwater processes in 
land surface models improves the simulated water budget 
over land (e.g. Ducharne et  al. 2000; Liang et  al. 2003; 
Xie et  al. 2012; Maxwell et  al. 2015). However, stud-
ies regarding the feedback of groundwater change to the 
climate are limited. Yuan et  al. (2008) show that incor-
porating water table dynamics into the regional climate 
model RegCM3 significantly increases the recycling rate 
and precipitation efficiency over semiarid regions (local 
aquifer-atmosphere feedbacks) in the East Asian mon-
soon area. Anyah et al. (2008) find that the groundwater 
table induces an enhanced ET in the more arid western 
regions of the United States, where soil water is a strong 
limiting factor of ET. In the more humid regions (where 
ET is rather limited by surface energy availability), the 
wetter soil does not generally lead to systematic increases 
in ET. Jiang et al. (2009) report that the incorporation of 
vegetation and groundwater dynamics into the Weather 
Research and Forecasting (WRF) model produces more 
precipitation in the Central United States, which is related 
to a positive land–atmosphere feedback mechanism in 
the summer, also reported over Europe by Campoy et al. 
(2013). Modelling studies also indicate that groundwater-
fed irrigation increases ET by 4% over the continental 
United States (Ozdogan et al. 2010) and increases down-
wind precipitation by 15–30% in the high plains of the 
United States in July (De Angelis et  al. 2010). Similar 
effects are found in response to anthropogenic groundwa-
ter exploitation by Zen et al. (2017) and Zou et al. (2014), 
at global and at regional scales, respectively.

Most of the above studies/analyses have been carried out 
at regional scales (e.g., over Asia and the United States). At 
the global scale, Lo and Famiglietti (2011) analyse the con-
tributions of groundwater dynamics to the spatial–temporal 
variability of precipitation by using the National Center for 
Atmospheric Research (NCAR) Community Atmosphere 
Model. The addition of groundwater yields an increase 
of precipitation in the tropical land regions of the North-
ern Hemisphere in the boreal summer (explained by the 
‘rich get richer’ mechanism; that is, the Hadley circulation 
transports more water vapour upward, causing a positive 
precipitation anomaly in the ascending branch) and in the 
transitional climatic zones (e.g., Central US, Sahel) where 
soil moisture and precipitation are strongly coupled (Koster 
et al. 2004). Krakauer et al. (2013) suggest that adding an 
aquifer to the Goddard Institute for Space Studies (GISS) 
ModelE GCM affects the seasonality and inter-annual per-
sistence of the soil moisture and climate.

The motivation of the present study is to further inves-
tigate the global scale responses of climatic variables and 
patterns to the groundwater table, through model analysis. 
We use a state-of-the-art land–atmosphere model, which 
is part of the full IPSL climate model involved in all the 
CMIP (Coupled Model Intercomparison Project) phases. 
Our specific objective is to elucidate the physical mecha-
nisms that are responsible for the precipitation changes 
when a groundwater table is accounted for beneath the 
land surface over the entire globe. To provide a systematic 
assessment of the impacts of water table depth (WTD) on 
near surface climate, the proposed protocol overlooks the 
space and time variations of the WTD, which is set to be 
constant at different depths. The numerical experiment and 
the methodology for the analysis are described in Sect. 2. 
The impacts of the water table depth on global scale evapo-
ration, precipitation and land–atmosphere coupling are dis-
cussed in Sect. 3. Conclusions are drawn in Sect. 4.

2  Numerical design

2.1  The LMDZOR model

The land–atmosphere coupled simulations are performed 
with the LMDZ-ORCHIDEE model, which is a compo-
nent of the IPSL climate model. It couples the ORCHI-
DEE land surface model (De Rosnay et al. 2002; Krinner 
et al. 2005) and the LMDZ5A atmospheric model (Hourdin 
et al. 2006), which includes a robust version of the physics 
code, known as the standard physics and also used in the 
IPSL-CM5A climate model (Dufresne et al. 2013). Radia-
tion follows the scheme of Fouquart and Bonnel (1980) for 
the solar contributions and of Morcrette et al. (1986) for the 
infrared contributions. In the planetary boundary layer, the 
turbulent transport is parameterized via a vertical diffusion 
approach (Laval et al. 1981), and the Louis (1979) method 
is applied to describe the surface boundary layer. Conden-
sation is parameterized separately for convective and non-
convective clouds. For non-convective clouds, the cloud 
cover and cloud water content are deduced from the large-
scale total water (vapor + condensed) and moisture at sat-
uration (Bony and Emanuel 2001). In convective regions, 
the parameterization of clouds is coupled to the convective 
scheme of Emanuel (1991), with condensation and rainfall 
as the fundamental outputs. The resulting precipitation is 
characterized as convective precipitation.

In this study, ORCHIDEE includes a dynamic phenol-
ogy (simulated by the STOMATE module), through which 
the leaf area index (LAI) responds to the environmental 
conditions (Krinner et  al. 2005). The vegetation carbon 
pools (including leaf mass and thus LAI) are prognostically 
calculated as a function of a dynamic carbon allocation, 



fed by photosynthesis, which is positively linked to tran-
spiration, and evolves with the surface water and energy 
budgets. The latter are calculated at the grid cell scale with 
classical soil-vegetation-atmosphere-transfer formulations, 
through which the evapotranspiration is partitioned into 
four parallel fluxes, namely transpiration, bare soil evapora-
tion, interception loss, and snow sublimation.

In each grid cell, the vegetation heterogeneity is 
described using fractions of different plant functional types 
(PFTs), deduced from high resolution land cover maps. In 
the present study, we use the maps used for the IPSL-CM5 
simulations (Dufresne et al. 2013). In each PFT but the bare 
soil one, all the vegetation properties depend on the PFT 
through look-up tables. This is the case of the root density, 
which decreases exponentially with depth, with a decay 
factor depending on the PFT (Fig. 1a). The resulting root 
profiles are constant over time, and expand over the full soil 
depth for all the PFTs, although the forest PFTs have more 
deep roots than the crops and grasses (Fig.  1b). Another 
important PFT property is the fraction that is effectively 
covered by foliage, which increases exponentially with the 
LAI owing to an extinction coefficient of 0.5 (Krinner et al. 

2005). The complementary fraction is assumed to be bare 
of vegetation, and does not contribute to interception loss 
nor transpiration but only to bare soil evaporation.

The latter two fluxes depend on soil moisture and their 
calculation is coupled to the soil hydrology processes. As 
detailed in Campoy et  al. (2013), the unsaturated water 
flow is described at each land point by the one-dimensional 
Richards equation, transformed to use volumetric water 
content θ (in  m3/m3) as a state variable:

in this equation, z is the vertical coordinate (m), counted 
positively downward; t is time (s); K is the unsaturated 
hydraulic conductivity (m/s); and D is the soil water dif-
fusivity  (m2/s), which links θ to the matric potential. 
These two parameters are described based on the Mualem 
(1976)—Van Genuchten (1980) model, with parameters 
taken from Carsell and Parrish (1988). They depend on the 
dominant soil texture of each grid cell, defined here from 
the soil texture map of Reynolds et al. (2000). The lateral 

(1)
��

�t
= −

�

�z

[

D(�)
��(z, t)

�z
− K(�)

]

− s(z, t),

Fig. 1  The vertical profile of 
root density over 2 m depth 
over three different plant func-
tion types a: category 1 (blue, 
c = 0.8) corresponds to tropical 
broad-leaved evergreen, tropi-
cal broad-leaved rain-green, 
temperate broad-leaved ever-
green, temperate broad-leaved 
summer-green, and boreal 
needleleaf summer-green, 
category 2 (orange, c = 1) corre-
sponds to temperate needleleaf 
evergreen, boreal needleleaf 
evergreen, and boreal broad-
leaved summer-green, category 
3 (green, c = 4) corresponds to 
C3/C4 grass/agriculture; and the 
cumulated root density below 
1 m compared to total root 
density (%, b)
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fluxes between adjacent grid cells are neglected, and the 
internal vertical water fluxes are only driven by a sink term, 
s(z,t) (in  m3/m3/s), representing the extraction of water by 
roots to fulfil transpiration, and by water fluxes at the top 
and bottom soil boundaries: infiltration and bare soil evapo-
ration at the top; gravitational drainage at the bottom. The 
soil depth is 2 m with 22 layers, including 22 calculation 
nodes (the 16 deepest nodes are regularly spaced at every 
12.5 cm, while the top 6 are denser).

At the soil bottom, gravitational drainage equals the 
hydraulic conductivity K(θ) of the bottom node. At the soil 
surface, the water infiltration rate is limited by the hydrau-
lic conductivity of the surface layers, which defines a Hor-
tonian surface runoff (d’Orgeval et  al. 2008). The bare 
soil evaporation originates from the bare soil fraction of 
the grid cell, and proceeds at a potential rate, unless soil 
water becomes limiting. The transpiration originates from 
the grid cell fraction that is effectively covered by foliage, 
for the part with no intercepted water. It is calculated from 
the potential evaporation limited by a stress function which 
depends on the soil moisture profile convoluted to the root 
density profile (de Rosnay et al. 2002).

The solar forcing, greenhouse gases, aerosols, land-use, 
sea surface temperatures (SST), and sea-ice exhibit inter-
annual variability, following the AMIP5 protocol (the fifth 
phase of the Atmospheric Model Intercomparison Project, 
Taylor et  al. 2012). The model resolution used for this 
study is 144 (longitude) × 142 (latitude) with 39 vertical 
levels, and the integration time step is 30-min. The LMDZ-
ORCHIDEE model demonstrates good skills in simulating 
the hydrological cycle at global scales (e.g., Hourdin et al. 
2006; Dufresne et al. 2013; Brands et al. 2013).

2.2  The sensitivity experiment

In the control simulation (REF), ORCHIDEE is run with a 
2-m soil, discretized along 22 calculation nodes, with free 
gravitational drainage at the soil bottom. The sensitivity 
tests are designed by forcing a globally uniform water table 
at different depths, 1 and 2  m, corresponding to the sim-
ulations WTD1 and WTD2, respectively (Fig.  2). To this 
end, all of the calculation nodes at or below the prescribed 
WTD are forced to remain saturated, which corresponds to 
replacing the gravitational drainage with an upward water 
flux, offsetting the soil moisture depletion by ET (Campoy 
et al. 2013). In practice, this upward forcing flux (qforce in 
Fig. 2) is defined at each time step as the amount of water 
required to bring the required nodes to saturation after a 
normal integration of the Richards equation. The latter 
integration, however, uses an impermeable bottom to pre-
vent massive leaching of the saturated layers by continuity 
if gravitational drainage was maintained.

Figure  3a–c shows that very high qforce is needed in 
sandy soils, which combine high saturated hydraulic con-
ductivity and low matric potential, and therefore easily 
release water for transpiration. In contrast, the lowest qforce 
are found in clay soils, with low saturated hydraulic con-
ductivity and high matric potential. This qforce corresponds 
to an addition of water to the climate system, which modi-
fies the global water balance. This protocol is very similar 
to the ones where soil moisture or the related water stress 
on ET is forced, as pioneered by Shukla and Mintz (1982) 
to assess the influence of the land evaporation rate on the 
simulated water cycle, and further developed to decipher 
how the land surface state contributes to the climate vari-
ability (GLACE project, Koster et  al. 2006) and climate 
change trajectories (GLACE-CMIP, Seneviratne et  al. 
2013). In comparison to these pieces of work, qforce allows 
us to quantify how we violate the water balance (Fig. 3a), 
and to better analyze the consequences. We find that qforce 
mostly transfers to surface runoff, which increases a lot in 
simulation WTD1 to evacuate the forced water input that 
does not lead to increased soil moisture or ET (Fig.  3b). 
This surface runoff increase has no impact on the simu-
lated climate, since the ocean’s water budget is overlooked 
in AMIP simulations. Note the water budget is perfectly 
closed when qforce is included in the calculation.

Another issue with the proposed experiment design 
is that we force a uniform water table depth regardless 
of rooting depth variations, so the direct tapping from 
the roots below the water table might strongly shape our 
results. This assumption can be rejected at first order for the 
LMDZOR model since most regions have a small percent-
age of deep roots (<10% below 1 m, Fig. 1b). Logically, the 
smallest values correspond to arid areas with sparse veg-
etation, and the highest ones are found in densely forested 

Fig. 2  Schematic of the main soil water fluxes in the control simu-
lation (REF) and in the forced water depth simulations (WTD2 and 
WTD1). The unsaturated and saturated zones are depicted in brown 
and green, respectively, and the represented water fluxes are the sur-
face runoff (qs), drainage (qg), and upward forcing flux (qforce)



areas (Amazon, Indonesia, Eastern Russia), but they remain 
under 30%, and the cumulated root density is much smaller 
below than above 1 m (>70%).

For initialization, we start with equilibrium soil moisture 
maps obtained from preliminary warm-up simulations with 
the above versions of ORCHIDEE in off-line mode (using 
meteorological forcing from Sheffield et  al. 2006). The 
LMDZOR model is then spun up for 10 years with a clima-
tological SST. The historical simulations follow with inter-
annually varying SSTs from 1979 to 2005. We checked 
that the total soil moisture shows a negligible trend over 
the last 8 years of the spin-up in at least 98% of the land 
points according to at least one of two trend criteria: (C1) 
the linear trend of the total soil moisture content over the 
evaluation period is less than 1% of the initial moisture; or 
(C2) the Mann–Kendall trend test (with Sen’s method fol-
lowing Burkey 2006) is not significant (p value <0.01 with 
null hypothesis of no trend).

We carried out each simulations of the paired experi-
ment (REF vs WTD1 or WTD2) over 27  years after 
spin-up, which is considered to be enough to statistically 
detect mean changes in front of the inter-annual variabil-
ity. To this end, we used the Student test to assess if the 

simulations have different 27-year means at the significance 
level of 5%. We also used the Wilcoxon signed-ranked test, 
which is non-parametric test, to confirm the results (not 
shown). Many recent studies still use this approach (e.g., 
Forster 2016; Lin 2016) despite the development of ensem-
ble methods.

3  Results and discussions

3.1  Inter‑comparison of globally averaged near‑surface 
variables

The evaporation (E), precipitation (P), near surface air 
temperature and humidity (T2M and Q2M) are compared 
in Table 1 for all simulations (REF, WTD1, WTD2) along 
with the reference observations/reanalysis data (Rodell 
et al. 2015; Kalnay et al. 1996) as the averages over land, 
ocean and globally. For both WTDs, the impacts on the 
near-surface meteorology are larger over land than over 
the oceans. This is reasonable because WTs are only pre-
scribed over land, and sea surface temperatures are forced 
in all simulations, as discussed by Krakauer et  al. (2016) 

Fig. 3  The annual mean forcing flux (qforce, times by −1 to get posi-
tive values, in mm/d) in WTD1 (a), the annual mean difference of 
surface runoff (in mm/d) between WTD1 and REF (b), and the soil 
texture map of the two simulations, clustered in four categories (c): 
category 1 (magenta) corresponds to Silt Loam, Clay Loam, Sandy 

Clay, Silty Clay, and Clay of USDA soil textures; category 2 (green) 
corresponds to Silt, Loam, Silty Clay Loam of USDA soil textures; 
category 3 (yellow) corresponds to Sandy Clay Loam of USDA soil 
texture; category 4 (red) corresponds to Sand, Loamy Sand, and 
Sandy Loam of USDA soil textures



regarding the effect of irrigation on the climate. The pre-
scribed saturation at the soil bottom leads to wetter soil 
in WTD1 and WTD2 than in REF, which induces an 
increase of E by 10–40%. As a result, the land surface is 
cooled by about −0.2 to −1.1 K, and precipitation increases 
by 5–20% in the two simulations with forced WTD. The 
changes of E, P, Q2M and T2M are monotonous with the 
decrease of WTD, and the differences between WTD1 and 
REF are much larger than those between WTD2 and REF. 
Therefore, we focus hereafter on the comparison between 
REF and WTD1 to better detect the impact of the WT on 
the near-surface climate.

3.2  Spatial distributions of near‑surface variable 
variations over the globe

The following analysis is supported by seasonal maps of 
the differences in the near-surface variables between REF 
and WTD1 (Figs.  4, 5, 6), complemented by equivalent 
maps for REF (Fig. S1) and WTD1 (Fig. S2). Note that 
the difference maps only show colors in grid points where 
WTD1-REF is statistically significant (with a Student test 
at the 5% significance level).

The total soil moisture (TSM, over the 2 metres of soil) 
displays a very widespread increase in WTD1 (Fig.  4a, 
b). The first order effect comes from imposing saturation 
across the lowest metre of soil, so the increase is larger in 
dry areas, where the forced saturation has a larger relative 
impact. We preferred to focus on the surface soil moisture 
(SSM, over the top 10  cm), which interacts more directly 
with the rest of the water cycle. The SSM increases signifi-
cantly over most regions between REF and WTD1, in both 
June–July–August (JJA) and December–January–February 
(DJF), owing to the capillary rise from the 1 m deep WT 
(Fig. 4c, d).

Evapotranspiration (ET) is key to the soil moisture—
climate interactions and we expect most of the inferred 
impacts of soil moisture on the climate to be caused by 
its control on the ET in soil-moisture-limited regimes 
(Seneviratne et  al. 2010). The variability of E over land 
is controlled by the availability of surface energy (total 
downwelling solar and thermal radiation fluxes) and the 
availability of surface soil moisture (e.g., Boé and Ter-
ray 2008). Indeed, the soil moisture increase in WTD1 
induces a higher E in WTD1, mainly over arid and semi-
arid regions, because of reduced water stress (Fig. 4g, h). 
In contrast, E decreases over tropical regions, owing to the 
decrease of downwelling radiation at the surface (Fig. 4e, 
f), which is related with an increase in cloud cover (not 
shown), as previously shown by Schär et al. (1999). Quan-
titatively, most ET changes can be attributed to the tran-
spiration (Fig. 5a, b), which increases where both the TSM 
increase and the total root density is large (Fig. 1). However, 
most areas with high root density, corresponding to dense 
deep roots, show weak or negative transpiration change, for 
two reasons: they are already very wet in the REF simu-
lation, and they undergo a decrease of downwelling radia-
tion. Eventually, the areas with the largest proportion of 
deep roots are not the ones with the largest changes of ET 
or transpiration, which confirms that the direct tapping of 
the water table by deep roots does not strongly shape the 
simulation results. The patterns of LAI changes (Fig. 5c, d) 
closely match those of the transpiration changes, owing to 
the coupling between the transpiration and photosynthesis. 
The bare soil evaporation changes (Fig. 5e, f) closely fol-
low the SSM variations: bare soil evaporation increases in 
arid areas, owing to enhanced capillary rise from the 1 m 
WT, while it decreases where the transpiration increases a 
lot. The main reason is the increase of LAI, which together 
increases the potential transpiration and related root water 

Table 1  The precipitation (P), evaporation (E), T2m, Q2m and total soil moisture (TSM) in REF, WTD1 and WTD2

The observed latent heat flux and precipitation are from Rodell et al. (2015). The T2m and Q2m are from NCEP reanalysis (1981–2010) (Kalnay 
et al. 1996). The italic values correspond to observations or reanalyses. The values indicated with * for WTD1 and WTD2 mean the difference 
from REF is statistically NOT significant (t test, p < 0.05)

Land Ocean Global

Obs REF WTD2 WTD1 Obs REF WTD2 WTD1 Obs REF WTD2 WTD1

P (mm/day)
Difference

2.18 2.40 2.52
5.26%

2.93
22.36%

3.03 3.18 3.19
0.28%

3.22
1.32%

2.79 2.89 2.93
1.28%

3.06
5.74%

E (mm/day)
Difference

1.32 1.62 1.78
9.70%

2.31
42.68%

3.37 3.59 3.58
−0.11%

3.6
−0.33%

2.79 2.89 2.93
1.31%

3.06
5.74%

T2m (K)
Difference

286.46 286.60 286.40
−0.20

285.50
−1.10

290.90 290.40 290.40*
0*

290.50
0.10

287.22 287.10 287.10*
0*

286.80
−0.30

Q2m (g/kg)
Difference

9.50 7.27 7.44
2.37%

8.17
12.39%

11.51 11.74 11.74*
0*

11.73
−0.09%

10.41 10.14 10.18
0.39%

10.36
2.17%

TSM (mm)
Difference

– 395.20 461.60
16.80%

696.00
76.10%

– – – – – – – –



uptake, but also reduces the bare soil fraction from which 
bare soil evaporation originates.

Because of the cooling effect of E, the 2-m air temper-
ature (TAS) and sensible heat flux (not shown) decrease 
over most regions, but there is a small increase of TAS 
over the ITCZ in Africa in DJF (Fig. 6a, b). The forcing 

of the WT also affects the near-surface specific humid-
ity (HUSS, Fig. 5g, h). The variation patterns for HUSS 
and E are the same in most regions, except in very arid 
zones (Sahara Desert, Saudi Arabia, Iran), which exhibit 
the largest HUSS increases while the increase of E is 
weak. This weak increase comes from the fact that, in 

Fig. 4  The difference between REF and WTD1 on average over JJA 
(left) and DJF (right) for the total soil moisture (TSM), top 10 cm soil 
moisture (SSM), downward total radiation at surface (LWSWdnSFC), 
and evaporation (E). All averages are performed over 27 years (1979–

2005), and the statistical significance of the mean differences is tested 
at each point with a Student test (p = 0.05). The areas with insignifi-
cant changes are left blank



these areas of sparse vegetation, the total ET is largely 
dominated by bare soil evaporation (Fig.  5a, b, e, f), 
which benefits from the 1  m WT through capillary rise 
only, while transpiration can extract water from the entire 
soil depth through the root profile. The small evapora-
tion increase may lead to a strong increase of specific 

humidity because the very dry atmosphere in REF over 
deserts is not prone to convection because of the high 
surface pressure and remains far from condensation 
conditions (Fig. S2g, h). This seems consistent with the 
increase of E being larger than that of P (shown by the 
reduced P–E).

Fig. 5  Same as Fig. 4 but for transpiration, mean LAI (weighted mean over the vegetation PFTs, excluding the bare soil PFT), bare soil evapora-
tion and specific humidity at surface (HUSS)



The change of P from REF to WTD1 occurs mostly 
over land and mostly in the summer hemisphere (Fig. 6c, 
d). The most significant variations are found over the Inter-
Tropical Convergence Zone (ITCZ), the United States (in 
JJA), Spain (JJA), and northern Australia (in DJF). Unlike 
the variations of E (increases over arid regions, decreases 
over humid regions, Fig. 4g, h), P increases over both arid 

and humid regions. Over dry regions (e.g., the western 
US in JJA, Spain in JJA, northern China in JJA, northern 
Australian in DJF, etc.), P is quite small in the REF sim-
ulation, and it is greatly increased in WTD1 (Figs.  6c, d, 
S1k, l, S2k,l). The moisture convergence P–E significantly 
increases over the ITCZ in WTD1 (Fig. 6e, f). In contrast, 
over the mid-latitudes, the increase in P is often smaller 

Fig. 6  Same as Fig. 4 but for 2-m air temperature (TAS), precipitation (P), the moisture flux convergence (P–E), and the convective precipitation 
(PRC)



than that of E, corresponding to a decrease of P–E, which 
extends over the coastal oceans. Over the ocean, the P and 
P–E anomalies are mainly significant over the tropics (e.g., 
a significant decrease in P over the Indian Ocean in DJF 
and over the Pacific in both seasons, Fig. 6c, d) and can be 
explained by changes of atmospheric circulation rather than 
by local E changes.

We performed the same analysis for the differences 
between WTD2 and REF (Figs. S3–S5). The change pat-
terns are very similar to the ones described above between 
REF and WTD1, but areas with statistically significant dif-
ferences are much smaller, as the magnitude of the corre-
sponding differences, in agreement with Sect.  3.1. These 
weak significant differences in the average maps between 
WTD2 and REF support that the larger significant differ-
ences found between WTD1 and REF are not a statistical 
accident.

3.3  Impact of WTD on tropical precipitation

To understand the physical mechanisms of the P variations 
over the tropics, the Hadley and Ferrel circulations are 

studied. The zonal mean meridional stream function (ΨM) 
is widely used to describe the mean meridional circulation 
of the atmosphere (e.g., Gastineau et al. 2008; Levine and 
Schneider 2011). It is given by,

where v is the meridional wind (m/s), a is the radius of the 
earth (m), p is the air pressure (Pa) and g is the acceleration 
of gravity (m/s2).

In Fig. 7, the stream-function (global zonal mean) cor-
responding to a clockwise circulation is positive (North-
ern Hemisphere, DJF), whereas the stream-function cor-
responding to a counter-clockwise circulation is negative 
(Southern Hemisphere, JJA). From REF to WTD1, we find 
a negative change of the mean meridional stream-function 
in JJA (over 0–10°N, ascending branch, Fig. 7) and a posi-
tive change in DJF (over 5°S–10°N, ascending branch), 
meaning a strengthened Hadley circulation that has been 
shifted poleward (northward in JJA and southward in DJF) 

(2)ΨM =
2�a cos�

g

p

∫
0

vdp,

Fig. 7  a, b The mean meridi-
onal (both land and ocean) 
stream-function  (1010 kg/s) for 
JJA and DJF over 1979–2005. 
The difference between REF 
and WTD1 is displayed in 
colour for the statistically 
significant values with p = 0.05, 
while the values for REF appear 
as contours (with solid/dashed 
lines for positive/negative 
values). c The zonal mean of 
the air temperature integrated 
from the surface to 800 hPa for 
WTD1-REF over land + ocean 
(thick line) and over land (thin 
line) in JJA (red) and DJF (blue) 
averaged across 1979–2005 
[statistically significant (at 
p = 0.05) values in solid line and 
insignificant values in dashed 
line]



in WTD1. The more intense Hadley circulation corre-
sponds to a positive precipitation change in the ascending 
branch (0–15°N in JJA, and 0–15°S in DJF). More specifi-
cally, we get a higher moisture convergence over the ITCZ 
(excluding the Pacific, possibly because this ocean is too 
large to be significantly affected by changes in ET over 
land). This is fed by a large zone of decreased convergence 
(Fig.  6e, f), mostly where there was divergence in REF, 
which is consistent with the moisture fluxes associated with 
the meridional Hadley circulation.

Many GCM studies indicate that the Hadley circulation 
strength is closely related to the meridional temperature 
gradients (ΔH) between the tropics and mid-latitudes (e.g., 
Levine and Schneider 2011; Seo et  al. 2014). The zonal 
means in Fig.  7c show that the changes in the boundary 
layer air temperatures (integrated from surface to 800 hPa) 
from REF to WTD1 are different over the tropics and mid-
latitudes. Around the equator, where the temperature is at 
a maximum in REF, the T decreases by −0.5  K over the 
globe (−1.0 K over land) in both JJA and DJF. The decrease 
of T in the boundary layer is larger in the subtropics and 
mid-latitudes (around −1 K over the globe and −2.5 K over 
land) than over equator for both JJA and DJF, which leads 
to a stronger temperature gradient between the equator and 
mid-latitudes (up to 40°N). This gradient increase is statis-
tically significant over both the land and oceans, although 
less so over the oceans because of the forced SST.

3.4  Impact of WTD on the West African 
and Australian Monsoons

Monsoon systems are linked to the meridional Hadley 
circulation, although they are strongly altered by smaller 
scale land/sea contrasts. Over the West African Monsoon 
(WAM) region, the monsoon flux is below 800 hPa, and it 
ends between 15°N and 20°N. The location of the maxi-
mum precipitation moves from approximately 8°N (REF) 
to 10°N (WTD1, Fig. 8a).

In July, the monsoon flux is well established and quasi-
steady. Hence, the air humidity can be assumed to be 
constant:

where q is the monthly mean water content of the monsoon 
flux at a given latitude integrated between the surface and 
800  hPa and between 10°W and 10°E; and the indices 
‘DYN’, ‘CON’, ‘VDF’, and ‘LSC’ represent the air humid-
ity tendencies due to large-scale circulation, convection, 
boundary layer processes (vertical diffusion of moisture) 
and large scale condensation, respectively. The moisture 
flux decomposition in REF and WTD1 for WAM is plotted 
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in Fig. 8c in order to understand the variations of the mois-
ture sources/sinks due to the groundwater table. The 
increased �q

�t

|
|
|DYN

 (mostly related to changes of the Hadley 

circulation) is mainly responsible for the intensified precip-
itation between 7°N and 20°N. Between 10°N and 20°N, 
the increased �q

�t

|
|
|VDF

 (higher ET from the land surface to the 

atmosphere) induces a stronger convection (represented by 
�q

�t

|
|
|CON

) in WTD1, leading to a higher precipitation.

The monsoonal precipitation is also closely linked with 
the moist static energy (MSE) because the transformation 
of enthalpy and latent energy available in the lower tropo-
sphere into geopotential energy in the upper levels is the 
main signal of convection (Gaetani et al. 2017). The MSE 
is defined as,

where gz is the geopotential energy (J/kg), g is the gravi-
tational acceleration (m/s2), z is the geopotential height 
(m), CpT is the enthalpy (J/kg), Cp is the specific heat of 
dry air at constant pressure (J/kg·K), T is the temperature 
(K), Lvq is the latent energy associated with evaporation 
and condensation of water (J/kg), Lv is the latent heat of 
evaporation (J/kg), and q is the specific humidity (kg/kg). 
Figure  8e shows that the MSE is reinforced over West 
Africa (10°N–30°N). Among the three components, the 
latent energy is the main contributor to the MTE difference 
between REF and WTD1 because of the increased humid-
ity in WTD1. The enthalpy becomes lower in WTD1 com-
pared to REF because of the decreased temperature. The 
change in geopotential is small. At local scales, the larger 
MSE leads to increased convection, favouring larger rain-
fall (Zheng and Eltahir 1998; Steiner et  al. 2009). This is 
consistent with the results of Gaetani et  al. (2017), who 
compared the response of the WAM to global warming in 
several CMIP5 models. They found that the response of 
IPSL-CM5A, with the same LMDZ5A physics as used in 
the current study, is dominated by its sensitivity to radia-
tive forcing (stronger  CO2), leading to an enhanced P over 
Sahel because of the instability caused by enhanced ET.

The above mechanisms work for the Australian mon-
soon (AM) as well. Over the AM region (Fig. 8, right), the 
maximum precipitation moves further south (from approxi-
mately 13°S in REF to 16°S in WTD1). Over 12°S–16°S, 
the large-scale dynamics (�q

�t

||
|DYN

 increases in WTD1) play 

a key role in the precipitation change. Over 18°S–30°S 
(central Australia), the increase in the precipitation in 
WTD1 is mainly related to the increase in the evaporation 
(higher �q

�t

||
|VDF

 for WTD1), which leads to higher MSE and 

stronger convection (Fig. 8, right). This positive evapotran-
spiration-precipitation feedback corresponds to the same 

(4)MSE = gz + CpT + Lvq,



mechanism of local moisture recycling involved in the mid-
latitudes ‘hot spots’ (as analysed below). The Indian Mon-
soon also displays a poleward shift of the monsoonal rain 
belt in Fig. 6c but is not discussed here because the Indian 
Monsoon is not well represented in REF.

3.5  Impact of WTD on land–atmosphere coupling

There are various land–atmosphere feedbacks, and we focus 
on the soil moisture-ET and ET-precipitation couplings. 
The soil moisture-ET coupling strength is quantified here 
by the terrestrial coupling index (TCI) of Dirmeyer (2011). 

It is based on the correlation of the latent heat flux (LE) and 
SSM, multiplied by the variance of LE to indicate where 
the variations of SSM may induce non negligible variations 
of LE: a positive TCI indicates that the soil moisture sup-
ply is the principal control on latent heat flux and a nega-
tive TCI indicates that the energy is the limiting factor. The 
calculation is adapted to monthly data following Dirmeyer 
et  al. (2013) and Cheruy et  al. (2014), using 27 monthly 
mean values for the period 1979–2005. The seasonal val-
ues over JJA and DJF are the averages of the corresponding 
monthly values. In REF, the TCI is strongly positive over 
areas of transitional soil moisture, including most semi-arid 
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Fig. 8  Comparison of REF (solid line) and WTD1 (dashed line) over 
the WAM and AM regions: a, b the precipitation (P, black) and evap-
oration (E, red); c, d the four tendencies of the monsoon flux water 
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energy (MSE) for REF (solid blue, axis on right) and WTD1 (dashed 
blue, axis on right), the change of MSE (dMSE, black), enthalpy 
 (dCpT, green), latent energy (dLvq, yellow), and geopotential energy 
(dgz, red) integrated from the surface to 800 hPa. All values are aver-
aged over 1979–2005 and over 10°W–10°E in WAM in July and over 
125°E–145°E in DJF for the AM. The corresponding boxes are plot-
ted on Figs. 4, 5, 6



regions, meaning that the soil moisture is the dominant fac-
tor that controls the variations of E (Fig. 9a, b). In contrast, 
E is mainly limited by the available energy at the surface 
over the regions where TCI is negative (humid regions). 
The patterns of positive TCIs in REF are strikingly simi-
lar to the differences in the ET between WTD1 and REF 
(Fig. 4g, h), which means that the WTD has an impact on 
E where there is a strong SSM-E coupling. The coverage 
of the positive TCI decreases and the coverage of negative 

TCI increases in WTD1 (Fig. 9c, d), showing a weakening 
of the soil moisture-ET coupling strength (Fig. 10a, b). The 
reason for this is that SSM does not vary much in WTD1, 
so its covariance with E is smaller than in REF and is not 
offset by the small variance of the denominator.

Over the mid-latitudes, the most significant impacts of 
the WT (or soil moisture) on precipitation are positive (P 
increases) and found over the transition zones where the 
land–atmosphere coupling is strong (Koster et  al. 2004), 

Fig. 9  The terrestrial coupling index (TCI, W/m2, a–d) of Dirmeyer et al. (2013), and the atmosphere coupling index (ACI, mm/d, e–h) for REF 
(first and third row) and WTD1 (second and fourth row) over JJA (left) and DJF (right)



including the central US, Spain, and northern China 
(Fig. 6c, d). The precipitation variations over the mid-lat-
itudes mainly come from increases of convective precipi-
tation (Fig. 6g, h). The patterns of increased precipitation 

in WTD1 are very consistent with the ones of increased 
E, which reveals a strong positive ET-precipitation feed-
back, despite the decrease in TCI from REF to WTD1 
(Figs.  9a–d, 10a, b). Several recent studies also indicate 

Fig. 10  The difference between REF and WTD1 for terrestrial cou-
pling index (TCI a, b), atmosphere coupling index (ACI c, d), lift-
ing condensation level height (e, f), as well as the correlation between 

latent heat flux (LE) and surface specific humidity (HUSS g, h) over 
JJA (left) and DJF (right)



that this positive land–atmosphere feedback (correspond-
ing to a local recycling of E into precipitation) is the 
main mechanism responsible for the summer precipitation 
changes over the central US due to groundwater influence 
(Lo and Famiglietti 2011; Anyah et al. 2008) and soil mois-
ture change (Koster et al. 2004; Ducharne and Laval 2000; 
Milly and Dunne 1994).

This analysis is confirmed by the atmosphere coupling 
index (ACI, Fig. 9e–h), which is constructed as the TCI, but 
between E and P, their correlation coefficient being multi-
plied by the variance of P. Thus, high ACI are found where 
both the variations of P and the correlation between P and 
ET are high. Like the TCI, the ACI does not reveal causal 
relationship between the two correlated variables, and only 
quantifies their coupling. The comparison of Fig.  6c, d 
with Fig. 9e, f shows that precipitation increases where the 
ACI is strongly positive in REF, which also corresponds 
to the areas of high TCI. The ACI also tends to decreases 
in these areas in WTD1 (Fig.  10c, d). To investigate this 
further, we compare the ACI with other metrics proposed 
by Dirmeyer et  al. (2013) to investigate land–atmosphere 
interactions. The height of the lifting condensation level 
(LCL) decreases in WTD1 (Fig. 10e, f), which corresponds 
to a cooling and moistening of the boundary layer (higher 
saturation mixing ratio at cloud base) and a larger precipi-
tation likelihood (Betts 2007; Dirmeyer et  al. 2013). This 
is consistent with a weaker ACI since the land component 
becomes relatively less effective to trigger precipitation 
when the internal potential of the atmosphere to conden-
sate (measured by the LCL) is enhanced. The correlation 
between the latent heat flux and atmospheric humidity is 
also shown to decrease with WTD1 over most of the land 
surface (Fig. 10g, h), which results from weaker humidity 
variations when the air gets moister and approaches satura-
tion. Eventually, the TCI, ACI and correlation of latent heat 
flux-humidity (Fig.  10a–d, g, h) reveal consistent change 
patterns, which support the ability of ACI in measuring 
the land–atmosphere coupling strength. Over the Sahara 
(and other arid regions in REF), the three indices increase 
because these arid areas get closer to transition zones in 
WTD1.

4  Conclusion

There has been a growing number of studies on groundwa-
ter and climate interactions (Taylor et al. 2013). However, 
the physical processes responsible of the groundwater table 
influence on the global water cycle remain overlooked. This 
was the main focus of this work, using the LMDZ-ORCHI-
DEE model (the land–atmosphere component of IPSL-CM 
model). The WTD was set at 1 and 2 m below surface in 

the sensitivity experiments compared with the control sim-
ulation (free drainage at the bottom of a 2 m soil).

The overall sensitivity is not very strong, and requires 
a shallow WT (at 1  m) to emerge, consistently with the 
results of Kollet and Maxwell (2008) at the mesoscale. In 
this case, the largest impacts on the near surface climate are 
mostly restricted to the continental domain, over the non-
arid regions of the tropics and mid-latitudes. The interac-
tion between the WT and precipitation can be explained by 
three processes. First, imposing a saturated moisture condi-
tion in the soil (at 1 m) induces a quasi-systematic increase 
of the soil moisture with the greatest variation occurring 
in arid and semi-arid regions. Second, over water-limited 
regions, the ET increases in WTD1 (by 1–2  mm/day, 
except for the Sahara region) due to higher soil moisture. 
As a consequence, the soil moisture-ET coupling strength 
(Dirmeyer 2011) is weakened and the spatial coverage of 
the regions where E is controlled by soil moisture decrease 
in WTD1. Over the energy-limited regions, the ET 
decreases in WTD1 due to the increase of cloud cover and 
the decrease of downwelling radiation.

In a third step, the overall increase in the moisture 
supply to the atmosphere in WTD1 leads to significant 
increases of precipitation over land. It is found that the 
WT mostly increases the precipitation intensity and the 
extent of the rain belts, but not the main P patterns, which 
is consistent with Lo and Famiglietti (2011). In the mid-
latitudes, the main precipitation changes are found in the 
transition zones (e.g., the Mediterranean area and central 
North America), and involve a positive ET-precipitation 
feedback, through which higher E leads to strengthened 
convection and higher P in WTD1. Increases of P are also 
found throughout the tropics, although the explanatory pro-
cesses are more complex and involve an enhanced Hadley 
circulation. We find smaller changes in the air temperature 
over the tropics (−0.5  K), where the temperature is the 
maximum, than over the mid-latitudes (−1 K), leading to 
an increase of the meridional temperature gradient between 
the equator and higher latitudes. This causes a positive pre-
cipitation change in the ascending branch (0–15°N in JJA 
and 0–15°S in DJF).

The groundwater table is also shown to influence the 
monsoon systems. Over the WAM and AM regions, the 
rain belt moves poleward over land in the presence of a 
shallow WT because of modified large scale dynamics and 
enhanced convection, which can be related to the increased 
boundary layer MSE over West Africa and Australia in 
WTD1. Over the WAM area, these changes may be seen as 
an improvement in the LMDZOR model, which displays a 
systematic southward bias of the precipitation position in 
summer (this has also been reported for the CMIP5 coupled 
models by Roehrig et al. 2013). However, this adjustment 



is obtained from a very unrealistic situation, with a WT at 
1 m over large arid areas (the Sahara, central Australia).

It should be underlined that the above results are model 
dependent, with sensitivities that could change with dif-
ferent atmospheric parametrizations and dynamics (e.g., 
Cheruy et  al. 2013; Hourdin et  al. 2013; Gaetani et  al. 
2017), or with a different root distribution or water stress 
function in the land surface model. The results reported 
here with the LMDZOR model are currently being com-
pared to similar results with two other state-of-the-art 
climate models (from the CNRM, Centre National de 
Recherches Météorologiques; and CESM, Community 
Earth System Model) to assess their robustness.

In addition, the WTD1 and WTD2 simulations are not 
intended to provide a realistic water cycle. First, the water 
table depth forcing involves an addition of water to the cli-
mate system, as previously discussed. Second, the changes 
of the WT over space and time are cancelled in our sen-
sitivity experiment, and there is no feedback between the 
WT and climate. In particular, the real groundwater table 
is not expected to be shallow everywhere (Fan et al. 2013). 
Indeed, the goal was to identify a generic sensitivity of the 
climate to the WTD, in a way that could complement stud-
ies of climate sensitivity to water stress alleviation follow-
ing those of Shukla and Mintz (1982). Our main results are 
consistent with this abundant literature, especially regard-
ing the higher land surface fluxes of sensitivity in arid to 
semi-arid zones, the different land–atmosphere interactions 
in the tropical and mid-latitude areas, and the fact that the 
large-scale circulation patterns are only marginally altered 
and are thus mainly controlled by atmospheric and oce-
anic dynamics (e.g., Milly and Dunne 1994; Ducharne and 
Laval 2000; Guo et al. 2006; Seneviratne et al. 2010, 2013).

It can also be noted that the WTD1 experiment reported 
here can be seen as a generalization of numerical irrigation 
experiments based on surveyed irrigated areas and/or inten-
sities (e.g. Boucher et  al. 2004; Guimberteau et  al. 2012; 
Wey et al. 2015; Krakauer et al. 2016), in which irrigation 
would be applied over all land areas independently from 
any effective water resource limitation. Since the irrigation 
time is intermittent, the irrigation experiment might have 
lower impacts on near surface climate than that of WTD1.

The effects of the shallow WT on the global water cycle 
found in the present study call for further work to intro-
duce a realistic and dynamic groundwater description in the 
IPSL-CM, as well as in other climate models, as already 
pioneered by Lo and Famiglietti (2011) and Vergnes et al. 
(2014). It is particularly important in the framework of 
future climate projections, as groundwater, because of its 
long residence time, could help alleviate the projected arid-
ity increase over land (Berg et al. 2016) and the strength-
ened heat extremes, as reported by Keune et  al. (2016) 
based on simulations of the European heat wave in 2003. 

The potential effects of GW dynamics on other extremes 
over larger scales remain unclear.
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