. Walp, ] as revealed by RAPD markers, Genet. Resour. Crop Evol, vol.51, pp.539-550

B. E. Barrera-figueroa, L. Gao, N. N. Diop, Z. Wu, J. D. Ehlers et al., Identification and comparative analysis of droughtassociated microRNAs in two cowpea genotypes, BMC Plant Biol, vol.11, issue.127, pp.10-1186, 2011.

C. G. Bartoli, F. Gomez, G. Gergoff, J. J. Guiamét, and S. Puntarulo, Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions, Journal of Experimental Botany, vol.56, issue.415, pp.1269-1276, 2005.
DOI : 10.1093/jxb/eri111

L. S. Bates, R. P. Waldren, and I. D. Teare, Rapid determination of free proline for water-stress studies, Plant and Soil, vol.94, issue.1, pp.205-207, 1973.
DOI : 10.1007/BF00018060

N. Belko, M. Zaman-allah, N. N. Diop, N. Cisse, G. Zombre et al., Restriction of transpiration rate under high vapour pressure deficit and nonlimiting water conditions is important for terminal drought tolerance in cowpea, 2013.

E. A. Bray, Genes commonly regulated by water-deficit stress in Arabidopsis thaliana, Journal of Experimental Botany, vol.55, issue.407, 2004.
DOI : 10.1093/jxb/erh270

P. Carol and M. Kuntz, A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration, Trends in Plant Science, vol.6, issue.1, pp.31-36, 2001.
DOI : 10.1016/S1360-1385(00)01811-2

P. Carol, D. Stevenson, C. Bisanz, J. Breitenbach, G. Sandmann et al., Mutations in the Arabidopsis Gene IMMUTANS Cause a Variegated Phenotype by Inactivating a Chloroplast Terminal Oxidase Associated with Phytoene Desaturation, THE PLANT CELL ONLINE, vol.11, issue.1, pp.57-68, 1999.
DOI : 10.1105/tpc.11.1.57

R. C. Costa, . Da, A. K. Lobato, S. Da, J. A. Silveira et al., ABAmediated proline synthesis in cowpea leaves exposed to water defi ciency and rehydration, Turk J Agric, vol.35, pp.309-317, 2011.

X. Chen, T. W. Laudeman, P. J. Rushton, T. A. Spraggins, and M. P. Timko, CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences, BMC Bioinformatics, vol.8, issue.1, pp.12910-1186, 2007.
DOI : 10.1186/1471-2105-8-129

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-8-129?site=bmcbioinformatics.biomedcentral.com

J. H. Costa, Y. Jolivet, M. Hasenfratz-sauder, E. G. Orellano, M. Da-guia-silva-lima et al., Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance, Journal of Plant Physiology, vol.164, issue.6, pp.718-727, 2007.
DOI : 10.1016/j.jplph.2006.04.001

J. H. Costa, E. F. Mota, M. V. Cambursano, M. A. Lauxmann, L. M. De-oliveira et al., Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata, Journal of Plant Physiology, vol.167, issue.7, pp.561-570, 2010.
DOI : 10.1016/j.jplph.2009.11.001

M. H. Cruz-de-carvalho, D. Laffray, and P. Louguet, Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars when submitted to drought conditions, Environmental and Experimental Botany, vol.40, issue.3, pp.197-207, 1998.
DOI : 10.1016/S0098-8472(98)00037-9

R. Djebbar, T. Rzigui, P. Pétriacq, C. Mauve, P. Priault et al., Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances, Planta, vol.25, issue.3, pp.603-614, 2012.
DOI : 10.1046/j.0016-8025.2001.00824.x

K. F. Egbadzor, K. Ofori, M. Yeboah, L. M. Aboagye, M. O. Opoku-agyeman et al., Diversity in 113 cowpea [Vigna unguiculata (L) Walp] accessions assessed with 458 SNP markers, SpringerPlus, vol.3, issue.1, 2014.
DOI : 10.1016/j.plantsci.2007.08.010

L. Emberger, Une classification biogéographique des climats, pp.3-43, 1955.

Y. Fukutoku and Y. Yamada, Sources of proline-nitrogen in water-stressed soybean (Glycine max). II. Fate of 15N-labelled protein, Physiologia Plantarum, vol.40, issue.4, pp.622-628, 1984.
DOI : 10.1016/0031-9422(81)85265-X

N. Ghalmi, M. Malice, J. Jacquemin, S. Ounane, L. Mekliche et al., Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces, Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces, pp.371-386, 2009.
DOI : 10.1007/978-94-009-2786-5_12

URL : http://orbi.ulg.ac.be/bitstream/2268/34245/1/article_cowpea_final.pdf

M. A. Ghars, L. Richard, D. Lefebvre-de-vos, A. Leprince, E. Parre et al., Phospholipases C and D Modulate Proline Accumulation in Thellungiella halophila/salsuginea Differently According to the Severity of Salt or Hyperosmotic Stress, Plant and Cell Physiology, vol.53, issue.1, pp.183-192, 2012.
DOI : 10.1093/pcp/pcr164

C. Girousse, R. Bournoville, and J. L. Bonnemain, Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa, Plant Physiology, vol.111, issue.1, pp.109-113, 1996.
DOI : 10.1104/pp.111.1.109

A. E. Hall, Phenotyping Cowpeas for Adaptation to Drought, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00155

URL : http://journal.frontiersin.org/article/10.3389/fphys.2012.00155/pdf

A. Hall and E. Schulze, Drought Effects on Transpiration and Leaf Water Status of Cowpea in Controlled Environments, Australian Journal of Plant Physiology, vol.7, issue.2, p.9800141, 1980.
DOI : 10.1071/PP9800141

M. Hayatu, S. Y. Muhammad, and U. A. Habibu, Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna unguiculata (L) Walp.) genotype. I, J. S. T. R, vol.3, pp.148-152, 2014.

D. Hodges, J. M. Mark, C. F. Delong, R. K. Forney, and . Prange, Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds, Planta, vol.207, issue.4, pp.604-611, 1999.
DOI : 10.1007/s004250050524

B. Huynh, W. C. Matthews, J. D. Ehlers, M. R. Lucas, J. R. Santos et al., A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.), Theoretical and Applied Genetics, vol.30, issue.1, pp.87-95, 2016.
DOI : 10.1007/s11105-012-0435-5

S. Iuchi, M. Kobayashi, K. Yamaguchi-shinozaki, and K. Shinozaki, A Stress-Inducible Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Abscisic Acid Biosynthesis under Water Stress in Drought-Tolerant Cowpea, Plant Physiology, vol.123, issue.2, pp.553-562, 2000.
DOI : 10.1104/pp.123.2.553

S. Iuchi, K. Yamaguchi-shinozaki, T. Urao, T. Terao, and K. Shinozaki, Novel Drought-Inducible Genes in the Highly Drought-Tolerant Cowpea: Cloning of cDNAs and Analysis of the Expression of the Corresponding Genes, Plant and Cell Physiology, vol.37, issue.8, pp.1073-1082, 1996.
DOI : 10.1093/oxfordjournals.pcp.a029056

G. N. Johnson and P. Stepien, Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns, Plant and Cell Physiology, p.42, 2016.
DOI : 10.1093/pcp/pcw042

URL : https://academic.oup.com/pcp/article-pdf/57/7/1387/13550205/pcw042.pdf

E. M. Josse, A. J. Simkin, J. Gaffé, A. M. Labouré, M. Kuntz et al., A Plastid Terminal Oxidase Associated with Carotenoid Desaturation during Chromoplast Differentiation, Plant Physiology, vol.123, issue.4, pp.1427-1436, 2000.
DOI : 10.1104/pp.123.4.1427

P. B. Kishor, Z. Hong, G. H. Miao, C. A. Hu, and D. P. Verma, Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physio, pp.1387-1394, 1995.

T. Kim, M. Böhmer, H. Hu, N. Nishimura, and J. I. Schroeder, Signaling, Annual Review of Plant Biology, vol.61, issue.1, pp.561-591, 2010.
DOI : 10.1146/annurev-arplant-042809-112226

URL : https://hal.archives-ouvertes.fr/hal-01226385

A. Kumar, K. D. Sharma, and D. Kumar, Traits for screening and selection of cowpea genotypes for drought tolerance at early stages of breeding, J. A. R. T. S, vol.109, pp.191-199, 2008.

A. Krieger-liszkay and K. Feilke, The Dual Role of the Plastid Terminal Oxidase PTOX: Between a Protective and a Pro-oxidant Function, Frontiers in Plant Science, vol.1837, 2015.
DOI : 10.1016/j.bbabio.2014.04.007

URL : https://hal.archives-ouvertes.fr/hal-01457916

C. Laureau, R. De-paepe, G. Latouche, M. Moreno-chacón, G. Finazzi et al., ???L., Plant, Cell & Environment, vol.103, issue.7, pp.1296-1310, 2013.
DOI : 10.1073/pnas.0504909102

Y. Maia, Caractérisation de la réponse de deux cultivars de Vigna unguiculata à une contrainte ozone combinée ou non à la sécheresse : Régulation de protéines membranaires (AOX, PTOX et pUCP) Thèse de l, 2012.

J. K. Mckay, J. H. Richards, and T. Mitchell-olds, Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits, Molecular Ecology, vol.162, issue.5, 2003.
DOI : 10.1105/tpc.12.12.2473

R. Mittler, Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, vol.7, issue.9, pp.405-410, 2002.
DOI : 10.1016/S1360-1385(02)02312-9

W. Muchero, J. D. Ehlers, T. J. Close, and P. A. Roberts, Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.], Theoretical and Applied Genetics, vol.40, issue.3, pp.849-863, 2009.
DOI : 10.1007/s00122-002-1021-2

W. Muchero, J. D. Ehlers, and P. A. Roberts, Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.], Theoretical and Applied Genetics, vol.53, issue.3, pp.509-518, 2010.
DOI : 10.1111/j.1469-1809.1943.tb02321.x

W. J. Nawrocki, N. J. Tourasse, A. Taly, F. Rappaport, and F. Wollman, The Plastid Terminal Oxidase: Its Elusive Function Points to Multiple Contributions to Plastid Physiology, Annual Review of Plant Biology, vol.66, issue.1, pp.49-74, 2015.
DOI : 10.1146/annurev-arplant-043014-114744

URL : https://hal.archives-ouvertes.fr/hal-01498013

O. Osonubi, Responses of cowpeas (Vigna unguiculata (L.) Walp.) to progressive soil drought, Oecologia, vol.72, issue.4, pp.554-557, 1985.
DOI : 10.1007/BF00379349

R. S. Pasquet, Genetic relationships among subspecies of Vigna unguiculata, 1999.

. Walp, based on allozyme variation, Theor. Appl. Genet, vol.98, pp.1104-1119

R. S. Pasquet, Variation at isozyme loci in wild Vigna Unguiculata (Fabaceae, Phaseoleae), Pl Syst Evol, pp.157-173, 1993.

M. C. Peel, B. L. Finlayson, and T. A. Mcmahon, Updated world map of the K??ppen-Geiger climate classification, Hydrology and Earth System Sciences, vol.11, issue.5, pp.1633-1644, 2007.
DOI : 10.5194/hess-11-1633-2007-supplement

Z. Peng, Q. Lu, and D. P. Verma, Reciprocal regulation of delta 1-pyrroline-5- carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants, Mol. Gen. Genet. MGG, vol.253, pp.334-341, 1996.

I. Pérez-arellano, F. Carmona-Álvarez, A. I. Martínez, J. Rodríguez-díaz, and J. Cervera, Pyrroline-5-carboxylate synthase and proline biosynthesis: From osmotolerance to rare metabolic disease, Protein Science, vol.84, pp.372-382, 2010.
DOI : 10.1099/00221287-138-4-693

M. A. Rosales, S. M. Cuellar-ortiz, M. P. Arrieta-montiel, J. Acosta-gallegos, and A. A. Covarrubias, L.), Journal of the Science of Food and Agriculture, vol.25, issue.2, pp.324-331, 2011.
DOI : 10.1046/j.1365-3040.2002.00754.x

URL : https://hal.archives-ouvertes.fr/halshs-01246608

A. Sadhukhan, Y. Kobayashi, Y. Kobayashi, M. Tokizawa, Y. Y. Yamamoto et al., VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis, Planta, vol.286, issue.761, pp.645-664, 2014.
DOI : 10.1007/s00438-011-0647-7

A. Sadhukhan, S. K. Panda, and L. Sahoo, The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses, Plant Physiology and Biochemistry, vol.83, pp.51-56, 2014.
DOI : 10.1016/j.plaphy.2014.07.007

A. Savouré, X. J. Hua, N. Bertauche, M. Van-montagu, and N. Verbruggen, Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana, Molecular and General Genetics MGG, vol.254, issue.1, pp.104-109, 1997.
DOI : 10.1007/s004380050397

S. Sharma, W. Lin, J. G. Villamor, and P. E. Verslues, and Shahdara, Plant, Cell & Environment, vol.20, issue.5, pp.994-1008, 2013.
DOI : 10.1105/tpc.107.054296

K. Shinozaki and K. Yamaguchi-shinozaki, Gene Expression and Signal Transduction in Water-Stress Response, Plant Physiology, vol.115, issue.2, pp.327-334, 1997.
DOI : 10.1104/pp.115.2.327

X. R. Shui, Z. W. Chen, and J. X. Li, MicroRNA prediction and its function in regulating drought-related genes in cowpea, Plant Science, vol.210, pp.25-35, 2013.
DOI : 10.1016/j.plantsci.2013.05.002

S. K. Singh, R. Reddy, and K. , Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought, Journal of Photochemistry and Photobiology B: Biology, vol.105, issue.1, pp.40-50, 2011.
DOI : 10.1016/j.jphotobiol.2011.07.001

I. Slama, D. Messedi, T. Ghnaya, A. Savoure, and . Abdelly, Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum, Environmental and Experimental Botany, vol.56, issue.3, pp.231-238, 2006.
DOI : 10.1016/j.envexpbot.2005.02.007

I. Sperdouli and M. Moustakas, Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit, Journal of Plant Research, vol.18, issue.4, pp.481-489, 2014.
DOI : 10.1093/oxfordjournals.pcp.a029093

P. Stepien and G. N. Johnson, Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis and the Halophyte Thellungiella: Role of the Plastid Terminal Oxidase as an Alternative Electron Sink, PLANT PHYSIOLOGY, vol.149, issue.2, pp.1154-1165, 2009.
DOI : 10.1104/pp.108.132407

N. Strizhov, E. Abrahám, L. Okrész, S. Blickling, A. Zilberstein et al., Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis, The Plant Journal, vol.12, issue.3, pp.557-569, 1997.
DOI : 10.1111/j.0960-7412.1997.00557.x

L. Szabados and A. Savouré, Proline: a multifunctional amino acid, Trends in Plant Science, vol.15, issue.2, pp.89-97, 2010.
DOI : 10.1016/j.tplants.2009.11.009

J. J. Todd and L. O. Vodkin, Duplications That Suppress and Deletions That Restore Expression from a Chalcone Synthase Multigene Family, Plant Cell, vol.8, 1996.

M. L. Torres-franklin, D. Contour-ansel, Y. Zuily-fodil, and A. Pham-thi, Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress, Journal of Plant Physiology, vol.165, issue.5, pp.514-521, 2008.
DOI : 10.1016/j.jplph.2007.03.011

M. Torres-franklin, A. Gigon, D. F. De-melo, Y. Zuily-fodil, and A. Pham-thi, Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves, Physiologia Plantarum, vol.84, issue.0, pp.201-210, 2007.
DOI : 10.1111/j.1469-8137.1950.tb05146.x

J. H. Tuteja, G. Zabala, K. Varala, M. Hudson, and L. O. Vodkin, Endogenous, Tissue-Specific Short Interfering RNAs Silence the Chalcone Synthase Gene Family in Glycine max Seed Coats, The Plant Cell, vol.21, issue.10, pp.3063-3077, 2009.
DOI : 10.1105/tpc.109.069856

A. L. Umbach, V. S. Ng, and J. N. Siedow, Regulation of plant alternative oxidase activity: A tale of two cysteines, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.2, pp.135-142, 2006.
DOI : 10.1016/j.bbabio.2005.12.005

G. C. Vanlerberghe, G. D. Martyn, and K. Dahal, Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress, Physiologia Plantarum, vol.33, issue.3, pp.322-337, 2016.
DOI : 10.1111/j.1365-3040.2010.02211.x

P. E. Verslues and S. Sharma, Proline Metabolism and Its Implications for Plant- Environment Interaction. Arab, Book Am. Soc. Plant Biol, 2010.
DOI : 10.1199/tab.0140

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244962/pdf

J. Wang and G. C. Vanlerberghe, A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress, Physiologia Plantarum, vol.48, issue.4, 2013.
DOI : 10.1093/pcp/pcm033

P. Xu, M. Moshelion, X. Wu, O. Halperin, B. Wang et al., Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought, Frontiers in Plant Science, vol.62, 2015.
DOI : 10.1093/jxb/err139

Y. Yoshiba, T. Kiyosue, K. Nakashima, K. Yamaguchi-shinozaki, and K. Shinozaki, Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress, Plant and Cell Physiology, vol.38, issue.10, pp.1095-1102, 1997.
DOI : 10.1093/oxfordjournals.pcp.a029093