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Abstract

In global sensitivity analysis, the well known Sobol’ sensitivity indices aim to quantify
how the variance in the output of a mathematical model can be apportioned to the different
variances of its input random variables. These indices are based on the functional variance
decomposition and their interpretation become difficult in the presence of statistical depen-
dence between the inputs. However, as there is dependence in many application studies,
that enhances the development of interpretable sensitivity indices. Recently, the Shapley
values developed in the field of cooperative games theory have been connected to global sen-
sitivity analysis and present good properties in the presence of dependencies. Nevertheless,
the available estimation methods don’t always provide confidence intervals and require a
large number of model evaluation. In this paper, we implement a bootstrap sampling in the
existing algorithms to estimate confidence intervals of the indice estimations. We also pro-
posed to consider a metamodel in substitution of a costly numerical model. The estimation
error from the Monte-Carlo sampling is combined with the metamodel error in order to have
confidence intervals on the Shapley effects. Besides, we compare for different examples with
dependent random variables the results of the Shapley effects with existing extensions of the
Sobol’ indices.

1 Introduction

In the last decades, computational models have been increasingly used to approximate physical
phenomenons. The steady improvement of computational means, lead to the use of very complex
numerical codes involving an increasing number of parameters. In many situations, the model
inputs are uncertain resulting in uncertain outputs. In this case it is necessary to understand
the global impact of inputs uncertainties on the output to validate the computer code and use
it properly. Sensitivity Analysis methods aim at solving this range of issues by characterizing
input-output relationships of computer codes.

Within Sensitivity Analysis, three kinds of methods can be distinguished. First, Screening
methods aim to discriminate influential inputs from non influential ones, especially when the
inputs are numerous and the problem should be simplified. Secondly, local methods, based on
partial derivatives, are used to assess the influence of input variables for small perturbations.
Finally, Global Sensitivity Analysis (GSA) methods aim at ranking input random variables
according to their importance in the output uncertainty, or even quantify the global influence of
a particular input on the output. In this paper we are specifically interested in global sensitivity
analysis. One can refer to Iooss and Lemaître (2015) for a comprehensive review of sensitivity
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analysis methods.

Among GSA methods, variance-based approaches are a class of probabilistic ones that mea-
sure the part of variance of the model output which is due to the variance of a particular input.
Theses methods were popularized by Sobol (1993) who introduced the well known first order
Sobol’ indices. Shortly after, the total Sobol’ indices have been introduced by Homma and
Saltelli (1996) also taking advantage of Jansen et al. (1994). These sensitivity indices are based
on the functional ANalyse Of VAriance (ANOVA) which is unique only making the assumption
of independence between the input random variables. However, this hypothesis is sometimes not
verified in practice making their interpretation much harder. Several works have been carried to
deal with this difficulty and extend Sobol’ indices to the case of a stochastic dependence between
the input variables, as Chastaing et al. (2012); Mara and Tarantola (2012); Mara et al. (2015);
Kucherenko et al. (2012). But the practical estimation of these sensitivity measures and their
interpretation remain difficult.

Recently, Owen (2014) established a relation between the Shapley values (Shapley and Shu-
bik, 1954) coming from the field of game theory and Sobol’ indices. Song et al. (2016) proposed
an algorithm to estimate these indices. Some studies also highlighted the potential of this kind
of index in the case of correlated input, as Owen and Prieur (2017); Iooss and Prieur (2017).
In this last case the Shapley effects can be a good alternative to the existing extensions of
Sobol’ indices mentioned above. Indeed, Shapley effects allows an apportionment of the inter-
action and dependences contributions between the input involved, making them condensed and
easy-to-interpret indices.

Most estimation procedures of the Sobol’ indices and Shapley effects are based on Monte-
Carlo sampling. These methods require large sample sizes in order to have a sufficiently low
estimation error. When dealing with costly computational models, a precise estimation of these
indices can be difficult to achieve or even unfeasible. Therefore, the use of a surrogate model (or
metamodel) instead of the actual one can be a good alternative and dramatically decrease the
computational cost of the estimation. Various kinds of surrogate model exists in the literature,
such as Fang et al. (2005). In this paper we get interested in the use of kriging as metamodels (see
for example Martin and Simpson (2004)). The approach developed here is based on Le Gratiet
et al. (2014) who provides an estimation algorithm of Sobol’ indices using kriging models which
allows computing the meta-model and Monte-Carlo errors.

In this paper, we draw a comparison between the Shapley effects and the independent and
full Sobol’ indices defined in Mara et al. (2015). We also establish an extension of the Shapley
estimation algorithm proposed in Song et al. (2016) by implementing a bootstrap sampling
to catch the Monte-Carlo error. Inspired by the work of Le Gratiet et al. (2014), we used a
kriging model in substitution of the true model for the estimation of these indices. Thus, the
kriging model error is associated to the Monte-Carlo error in order to correctly catch the overall
estimation error.

The paper’s outline is as follow: Section 2 recalls the basic concept of Sobol’ indices in the
independent and dependent configuration; Section 3 introduces the Shapley values and their links
with sensitivity analysis; Section 4 theoretically compares the Sobol’ indices and the Shapley
effects for two toy examples; Section 5 studies the quality of the estimated Shapley effects and
their confidence intervals; Section 6 introduces the kriging model and how the kriging and Monte-
Carlo errors can be separated from the overall error; Section 7 compares the indice performances
using a kriging model on two toy examples; finally, Section 8 synthesizes this work and suggests
some perspectives.
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2 Sobol’ sensitivity indices

2.1 Sobol’ indices with independent inputs

Consider a model Y = η(X) with d random inputs denoted by XD = {X1, X2, . . . , Xd}, where
D = {1, 2, . . . , d}, and XJ indicates the vector of inputs corresponding to the index set J ⊆ D.
η : Rd → R is a deterministic squared integrable function and Y ∈ R the model output random
variable. The random vector X follows a distribution pX and we suppose, in this section, that pX
follows a d-dimensional uniform distribution U([0, 1]d). However, these results can be extended
to any marginal distributions. In particular, all inputs are independent and the distribution of
X is only defined by its margins.

The Hoeffding decomposition introduced in Hoeffding (1948), also known as high dimensional
model representation (HDMR) (Li et al., 2001), allows writing η(X) in the following way:

η(X) = η∅ +
d∑
i=1

ηi(Xi) +
∑

16i<j6d
ηi,j(Xi, Xj) + · · ·+ η1,...,d(X), (1)

for some η∅, ηi, . . . , η1,...,d set of functions. In this formula, η is decomposed into 2d terms such
as η∅ is a constant and the other terms are square integrable functions.

The decomposition (1) is not unique due to the infinite possible choice for these terms. The
unicity condition is granted by the following orthogonality constraint:∫ 1

0
ηi1,i2,...,is(xi1 , xi2 , . . . , xis)dxiw = 0, (2)

where 1 ≤ i1 < i2 < · · · < is ≤ d and iw ∈ {i1, i2, . . . , is}. The consequence of this condition
is that the terms of (1) are orthogonal to one another. This property implies the independence
of the random variables Xi in the stochastic configuration and allow to obtain the following
expressions for the functions ηi1,i2,...,is of (1) :

η∅ = E(Y ), (3)
ηi(Xi) = EX∼i(Y |Xi)− E(Y ), (4)

ηi,j(Xi, Xj) = EX∼ij (Y |Xi, Xj)− ηi − ηj − E(Y ) (5)

where X∼i = XD\{i} and similarly for higher orders. Thus, the functions {ηi}di=1 are the main
effects, the ηi,j for i < j = 1, . . . , d are the second-order interaction effects, and so on.

The representation (1) leads to the functional ANAlyse Of VAriance (ANOVA) which de-
compose the global variance into a sum of partial variances such as

Var(Y ) =
d∑
i=1

Var[ηi(Xi)] +
d∑
i=1

d∑
i<j

Var[ηi,j(Xi, Xj)] + · · ·+ Var[η1,...,d(X)]. (6)

The so-called Sobol’ indices (Sobol, 1993) can be derived from (6) by dividing both sides with
Var(Y ). This operation results in the following property:

d∑
i=1

Si +
d∑
i=1

d∑
i<j

Sij + · · ·+ S1,...,d = 1, (7)
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where Si is a first-order sensitivity index, Sij is a second-order sensitivity index and so on. Thus,
sensitivity indices are defined as

Si = Var[ηi(Xi)]
Var(Y ) , Sij = Var[ηi,j(Xi, Xj)]

Var(Y ) , . . . (8)

The first-order index Si measures the part of variance of the model output that is due to the
variable Xi, the second-order Sij measure the part of variance of the model output that is due
to the interaction of Xi and Xj and so on for higher interaction orders.

Another popular variance based coefficient, called total Sobol’ index by Homma and Saltelli
(1996), gathers the first-order effect of a variable with all its interactions. This index is defined
by

STi = Si +
∑
i 6=j

Sij + · · ·+ S1,...,d = 1−
VarX\i[EXi(Y |X∼i)]

Var(Y ) = EX∼i [VarXi(Y |X∼i)]
Var(Y ) . (9)

The property (7) does not always hold for the total indices as summing total indices for all
variables introduces redundant interactions terms appearing only once in (7). Thus, in most
cases

∑d
i STi ≥ 1. Note that both the first order and total Sobol’ indices are normalized

measures.

As mentioned in the introduction (6) holds only if the random variables are independent.
Different approaches exist to treat the case of dependent input and one of them is explained in
Section 2.2.

2.2 Sobol’ indices with dependent inputs

In this section, we suppose that X ∼ pX with correlations between the components. Thanks to
the Rosenblatt Transformation (RT) (Rosenblatt, 1952), it is possible to transform X ∼ pX into
an uniform and independent random vector U ∼ Ud(0, 1). However, due to the possible permuta-
tions of elements of X, this transformation is not unique and has d! possibilities. Note that in this
procedure, only the d RT obtained after left circularly reordering the elements (X1, . . . , Xd) are
considered. We denote as Ui = (U i1, . . . , U id) the RT of the set (Xi, Xi+1, . . . , Xd, X1, . . . , Xi−1)
such as

(Xi, Xi+1, . . . , Xd, X1, . . . , Xi−1) ∼ pX
RT−−→ (U i1, . . . , U id) ∼ Ud(0, 1). (10)

It is important to note that this RT corresponds to a particular ordering i. Changing the ordering
results in another RT. Such a mapping is bijective and we can consider a function gi such as
Y = η(X) = gi(Ui). Because the elements of Ui are independent, the ANOVA decomposition
is unique and can be established to compute sensitivity indices. Thus, we can write

gi(Ui) = g∅ +
d∑

j1=1
gj1(U ij1) +

d∑
j1=1

d∑
j1<j2

gj1j2(U ij1 , U
i
j2) + · · ·+ g1···d(U i1, . . . , U id) (11)

where g∅ = E[gi(Ui)]. Because the summands in (11) are orthogonal, the variance based de-
composition can be derived, such that

Var(Y ) =
d∑

j1=1
Vj1 +

d∑
j1=1

d∑
j1<j2

Vj1,j2 + · · ·+ V1···d (12)
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where Vj1 = Var[E(Y |U ij1)], Vj1,j2 = Var[E(Y |Uj1 , Uj2)] − Vj1 − Vj2 and so on for higher orders.
The so-called Sobol’ indices are defined by dividing (12) with the total variance Var(Y ) such
that,

Siuk
= Var[E[gi(Ui)|U ik]]

Var[gi(Ui)] = Vk
Var(Y ) . (13)

We also consider the total sensitivity indice introduced by Saltelli (2002) which is the overall
contribution of U ik on the model output including the marginal and interaction effects. They
can be written as

ST iuk
= E[Var[gi(Ui)|U i∼k]]

Var[gi(Ui)] =
∑d
s=1

∑
{j1,...,js}3k Vj1···js

Var(Y ) , (14)

where U i∼k is the vector Ui not containing U ik. We refer to Iooss and Lemaître (2015) for a
review on the sensitivity indices and their properties.

Mara et al. (2015) derived equations (13) and (14), to introduce two types of indices which
deal with correlated variables:

• the full Sobol’ indices which describe the influence of a variable including its dependencies
with other variables,

• the independent Sobol’ indices which describe the influence of variables without its depen-
dencies with other variables.

For a given ordering (Xi, Xi+1, . . . , Xd, X1, . . . , Xi−1), the joint density of X can be written as

p(x) = pi(xi)pi+1(xi+1|xi) . . . pd(xd|xi, xi+1, . . . , xd−1)p1(x1|xi, . . . , xd), . . . , pi−1(xi−1|x∼(i−1)).
(15)

From this ordering and a given RT, the full and independent Sobol’ indices can be described by

Si = Var[E[gi(Ui)|U i1]]
Var[gi(Ui)] (16)

STi = E[Var[gi(Ui)|U i∼1]]
Var[gi(Ui)] (17)

Sindi = Var[E[gi+1(Ui+1)|U i+1
d ]]

Var[gi+1(Ui+1)] (18)

ST indi = E[Var[gi+1(Ui+1)|U i+1
∼d ]]

Var[gi+1(Ui+1)] (19)

with the convention that Ud+1 = U1.

Thanks to RT, we can also define the sensitivity indices of (Xi|Xu), i = 1, . . . , d and u ⊂
D\{i}, u 6= ∅ via U iu which represent the effect of Xi without its mutual dependent contribution
with Xu. These indices can be estimated with a Monte Carlo algorithm and the procedure is
describe in the next section.

2.3 Estimation

The estimation of (Si, STi, Sindi−1, ST indi−1) can be done with four samples using the "pick and
freeze" strategy (see Saltelli et al. (2010)). The procedure is divided in two steps:

• – Two independent sampling matrices A and B of size N × d are created from U(0, 1)d
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– B(1)
A

(
B(d)

A

)
: all columns from B except the 1-th (d-th) column which is from A

• Compute the indices with a given estimator:

Ŝi =
1
N

∑N
j=1 gi(A)jgi(B(1)

A )j − g2
i0

V̂
(20)

ŜT i = 1−
1
N

∑N
j=1 gi(B)jgi(B(1)

A )j − g2
i0

V̂
(21)

Ŝindi−1 =
1
N

∑N
j=1 gi(A)jgi(B(d)

A )j − g2
i0

V̂
(22)

ŜT
ind

i−1 = 1−
1
N

∑N
j=1 gi(B)jgi(B(d)

A )j − g2
i0

V̂
(23)

where gi0 is the estimate of the mean and V̂ = 1
N

∑N
j=1(gi(A)j)2 − g2

i0

This procedure considers the estimator from Janon et al. (2014) and the overall cost is 4dN with
N the number of samples. However, another estimator can be used to estimate the indices. See
Saltelli et al. (2010) for a review of various estimators of sensitivity indices.

3 Shapley effects

The purpose of the Sobol’ indices is to decompose Var(Y ) and allocate it to each subset J
whereas the Shapley effects decompose Var(Y ) and allocate it to each input Xi. This difference
allows to consider any variables regardless of their dependence with other inputs.

3.1 Definition

One of the main issues in cooperative games theory is to define a relevant way to allocate the
earnings between players. A fair share of earnings of a d players coalition has been proposed
in Shapley (1953). Formally, in Song et al. (2016) a d-player game with the set of players
D = {1, 2, . . . , d} is defined as a real-valued function that maps a subset of D to its corresponding
cost, i.e., c : 2D 7→ R with c(∅) = 0. Hence, c(J ) represents the cost that arises when the players
in the subset J of D participate in the game. The Shapley value of player i with respect to c(·)
is defined as

vi =
∑

J⊆D\{i}

(k − |J | − 1)!|J |!
d! (c (J ∪ {i})− c (J )) (24)

where |J | indicates the size of J . In other words, vi is the incremental cost of including player
i in set J averaged over all sets J ⊆ D {i}.

This formula can be transposed to the field of global sensitivity analysis (Owen, 2014) if we
consider the set of inputs of η(·) as the set of players D. We then need to define a c(·) function
such that for J ⊆ D, c(J ) measures the part of variance of Y caused by the uncertainty of the
inputs in J . To this aim, we want a cost function that verifies c(∅) = 0 and c(D) = Var(Y ).

Functions c̃(J ) = Var [E [Y |XJ ]] /Var(Y ) and c(J ) = E [Var [Y |X−J ]] /Var(Y ) satisfy the
two conditions above. Besides, Song et al. (2016) showed the Shapley values defined using cost
functions c̃(J ) and c(J ) are equivalent.
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However, for some reasons described at the end of the section 3.1 of the article Song et al.
(2016), about the estimation of these two cost functions, it is better to define the Shapley effect
of the i-th input, Shi, as the Shapley value obtained by applying the cost function c instead
of c̃. We denote in the sequel the Shapley effect by Shi and a generic Shapley value by vi. A
valuable property of the Shapley effects defined in this way is that they are non-negative and
they sum to one. Each one can therefore be interpreted as a measure of the part of the variance
of Y related to the i-th input of η.

3.2 Estimation of the Shapley effects

An issue with the Shapley value is its computational complexity as all possible subsets of the
players need to be considered. Castro et al. (2009) proposed an estimation method based on an
alternative definition of the Shapley value.

Indeed, the Shapley value can also be expressed in terms of all possible permutations of the
players. Let us denote by Π(D) the set of all possible permutations with player set D. Given a
permutation π ∈ Π(D), define the set Pi(π) as the players that precede player i in π. Thus, the
Shapley value can be rewritten in the following way :

vi = 1
d!

∑
π∈Π(D)

[c (Pi(π) ∪ {i})− c (Pi(π))] (25)

From this formula, Castro et al. (2009) proposed to estimate vi with v̂i by drawing randomly m
permutations in Π(D) and thus we have :

v̂i = 1
m

m∑
l=1

∆ic(πl) (26)

with ∆ic(πl) = c (Pi(π) ∪ {i})− c (Pi(π)) and c(·) the cost function.

Section 4 of Song et al. (2016) proposed some improvements on the Castro’s algorithm by
including the Monte-Carlo estimation ĉ of the cost function c(J ) = E [Var [Y |X−J ]] /Var(Y ) to
estimate the Shapley effects. The estimator writes:

Ŝh
i

= 1
m

m∑
l=1

[ĉ (Pi(πl) ∪ {i})− ĉ (Pi(πl))] (27)

where m refers to the number of permutations. Song et al. (2016) proposed the following two
algorithms whose we just give the main features:

• The exact permutation method if d is small, one does all possible permutations between
the inputs (i.e. m = d!);

• The random permutation method which consists in randomly sampling m permutations of
the inputs in Π(D).

For each iteration of this loop on the inputs’ permutations, a conditional variance expectation
must be computed. The cost C of these algorithms is the following C = Nv+m(d−1)NoNi with
Nv the sample size for the variance computation, No the outer loop size for the expectation, Ni

the inner loop size for the conditional variance and m the number of permutations according to
the selected method.
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Note that the full first-order Sobol’ indices and the independent total Sobol’ indices can be
also estimated by applying these algorithms, each one during only one loop iteration.

Based on theoretical results, Song et al. (2016) recommends to fix parameters at the following
values to obtain an accurate approximation of Shapley effects computationally affordable:

• The exact permutation method: No as large as possible and Ni = 3;

• The random permutation method: No = 1, Ni = 3 and m as large as possible.

The choice of Nv is independent from these values and Iooss and Prieur (2017) have also illus-
trated the convergence of two numerical algorithms for estimating Shapley effects.

3.3 Confidence interval for the Shapley effects

In this part, we propose a methodology to compute confidence interval for the Shapley effects,
which will allow us to quantify the Monte-Carlo error (sampling error).

Exact permutation method: bootstrap

Concerning this algorithm, we’ll use the bias-corrected percentile method of the Bootstrap
(Efron, 1981).

Let be θ̂(X1, . . . , Xn) an estimator of a unknown parameter θ, function of n independent and
identically distributed observations of law F . In non-parametric Bootstrap, from a n-sample
(x1, . . . , xn), we compute θ̂(x1, . . . , xn). After, we draw with replacement a bootstrap sample
(x∗1, . . . , x∗n) from the original sample (x1, . . . , xn) and compute θ∗ = θ̂(x∗1, . . . , x∗n). We repeat
this procedure B times and obtain B bootstrap replications θ∗1, . . . , θ∗B which allows the estimate
of the following confidence interval of level 1− α for θ:[

Ĝ−1 ◦ Φ(2ẑ0 + zα/2) ; Ĝ−1 ◦ Φ(2ẑ0 − zα/2)
]

(28)

where

• Φ is the cdf of a standard normal distribution;

• zα/2 percentile of level α/2 of N (0, 1);

• Ĝ is the cdf of the bootstrap distribution for the estimator θ̂;

• and ẑ0 = Φ−1 ◦ Ĝ(θ̂) is a bias correction constant.

This confidence interval has been justified in Efron (1981) when there exists an increasing trans-
formation g(.) such that g(θ̂) − g(θ) ∼ N (−z0σ, σ

2) and g(θ̂∗) − g(θ̂) ∼ N (−z0σ, σ
2) for some

constants z0 ∈ R and σ > 0. In the sequel, we’ll see in our examples that g(.) can be considered
as identity.

Thus, we need independent observations to obtain this interval but in our case as there is
conditioning in the Shapley effects (more exactly in the cost function), it’s not possible. To
overcome this problem and estimate correctly the cdf Ĝ(.), we make a bootstrap by bloc (on
the No blocs) in order to use independent observations and preserve the correlation within each
one. This strategy allowed to develop the algorithm (1) in order to obtain the distribution of
Ŝh

i
to calcule the confidence interval for Shi.
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Algorithm 1: Compute confidence intervals for Shi

1 Generate a sample x(1) of size Nv from the random vector X ;
2 Compute y(1) from x(1) to estimate Var(Y ) ;
3 Generate a sample x(2) of size m(d− 1)NoNi from the different conditional laws necessary

to estimate E [Var [Y |X−J ]] ;
4 Compute y(2) from x(2) ;
5 Compute Ŝh

i
thanks to the equation (27) ;

6 for b = 1, . . . , B do
7 Sample with replacement a realization ỹ(1) of y(1) to compute Var(Y ) ;
8 Sample by bloc with replacement a realization ỹ(2) of y(2) ;
9 Compute Ŝh

i

b thanks to the equation (27). ;
10 end
11 Compute confidence intervals for Shi with 28.

It’s suitable to remark that confidence intervals for the Shapley effects can also be calculated
from the Central Limit Theorem (CLT) on the outer loop (Monte Carlo sample of size No)
as Iooss and Prieur (2017) did it. But, it was necessary to establish a method based on the
Bootstrap in order to be able to design in the sequel an algorithm allowing to distinguish correctly
the metamodel and Monte-Carlo errors.

Random permutation method: CLT

For the random permutation method, we have two options to calculate confidence intervals.

• The first one is to use the CLT like Iooss and Prieur (2017). Indeed, in Castro et al. (2009)
the CLT gives us:

Ŝh
i L−−−−→
m→∞

N
(
Shi,

σ2

m

)
(29)

with σ2 = Var (∆ic(πl))
Var(Y )2 .

Thus, by estimating σ by σ̂ we have the following 1 − α asymptotic confidence interval for
the Shapley effects :

Shi ∈
[
Ŝh

i
+ zα/2

σ̂√
m

; Ŝh
i
− zα/2

σ̂√
m

]
with zα/2 percentile of level α/2 of N (0,1).

• The second one is we can estimate the confidence interval doing a bootstrap on the per-
mutations. We describe in the algorithm (2) the procedure allowing to do that.

4 Examples in Gaussian framework: analytical results and re-
lations between indices

In this section, we compare and interpret the analytic results of the studied indices for two
different Gaussian models: an interactive and a linear model. We study the variation of the
indices by varying the correlation between the input random variables.
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Algorithm 2: Compute confidence intervals for Shi

1 Generate a sample x(1) of size Nv from the random vector X ;
2 Compute y(1) from x(1) to estimate Var(Y ) ;
3 Draw randomly m permutations in Π(D) ;
4 Generate a sample x(2) of size m(d− 1)NoNi from the different conditional laws necessary

to estimate E [Var [Y |X−J ]] ;
5 Compute y(2) from x(2) ;
6 Compute Ŝh

i
thanks to the equation (27) ;

7 for b = 1, . . . , B do
8 Sample with replacement a realization ỹ(1) of y(1) to compute Var(Y ) ;
9 Sample with replacement m permutations from the original sample and retrieve in y(2)

those corresponding to drawn bootstrap permutations ;
10 Compute Ŝh

i

b thanks to the equation (27). ;
11 end
12 Compute confidence intervals for Shi with 28.

4.1 Interactive model with two inputs

Let us consider a purely interactive model

Y = (β1X1)× (β2X2) (30)

with X ∼ N (0,Σ). We consider two cases: a model with independent variables and another
with dependent variables. So we have the two following covariance matrices:

Σ =
(
σ2

1 0
0 σ2

2

)
Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
with −1 ≤ ρ ≤ 1, σ1 > 0, σ2 > 0.

From the definition of sensitivity indices, for j = 1, 2, we get for these models the results
presented in Table 1.

In the independent model, the independent and full first-order Sobol indices are null because
there is no dependence and the inputs have not marginal contribution. Thus, the independent
and full total Sobol indices represent the variability in the model which is due to interactions
only. These ones are each equal to the variance model, i.e. each input is fully responsible of
the model uncertainty, due to its interaction with the other variable. In contrast, the Shapley
effects award fairly the interaction effect to each input, which is more logical.

About the dependent model, Sindj = 0, j = 1, 2 are still null because the inputs have not
uncorrolated marginal contribution. But now, Sfullj 6= 0, j = 1, 2 and represent marginal contri-
bution due to the dependence. We see in these terms that the dependence effect (ρ2β2

1β
2
2σ

2
1σ

2
2)

is counted two times in comparison with the total variance. Concerning the independent and
full total Sobol indices, the interaction effect (β2

1β
2
2σ

2
1σ

2
2) of these indices is still allocated half

in Shapley effects. Besides, for the full total Sobol indices, each term is equal to the variance
model whereas the interaction and dependence effects are fairly distributed for the Shapley
effects which sum to the total variance.
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Independent model Dependent model
Model variance

σ2 = Var(Y) = β2
1β

2
2σ

2
1σ

2
2 σ2 = Var(Y) = (1 + ρ2)β2

1β
2
2σ

2
1σ

2
2

Independent first-order Sobol’indices
Sind

1 = 0
Sind

2 = 0
Sind

1 = 0
Sind

2 = 0
Independent total Sobol’indices

σ2ST ind
1 = β2

1β
2
2σ

2
1σ

2
2

σ2ST ind
2 = β2

1β
2
2σ

2
1σ

2
2

σ2ST ind
1 = (1− ρ2)β2

1β
2
2σ

2
1σ

2
2

σ2ST ind
2 = (1− ρ2)β2

1β
2
2σ

2
1σ

2
2

Full first-order Sobol’indices
Sfull

1 = 0

Sfull
2 = 0

σ2Sfull
1 = 2ρ2β2

1β
2
2σ

2
1σ

2
2

σ2Sfull
2 = 2ρ2β2

1β
2
2σ

2
1σ

2
2

Full total Sobol’indices
σ2ST full

1 = β2
1β

2
2σ

2
1σ

2
2

σ2ST full
2 = β2

1β
2
2σ

2
1σ

2
2

σ2ST full
1 = (1 + ρ2)β2

1β
2
2σ

2
1σ

2
2

σ2ST full
1 = (1 + ρ2)β2

1β
2
2σ

2
1σ

2
2

Shapley effects
σ2Sh1 = 1

2β
2
1β

2
2σ

2
1σ

2
2

σ2Sh2 = 1
2β

2
1β

2
2σ

2
1σ

2
2

σ2Sh1 = 1
2(1 + ρ2)β2

1β
2
2σ

2
1σ

2
2

σ2Sh2 = 1
2(1 + ρ2)β2

1β
2
2σ

2
1σ

2
2

Table 1: Sensitivity indices of independent and dependent Gaussian models

This example supports the idea mentioned in Iooss and Prieur (2017) whereby a full Sobol
index of an input comprises the effect of another input on which it is dependent. We can add
that the model is independent or not, the phenomenon is similar for the interaction effect about
the independent and full total Sobol indices of an input, i.e. these indices comprise the effect of
another input on which the input is interacting.

In their article, Iooss and Prieur (2017) tell which goals of the SA settings defined in Saltelli
and Tarantola (2002) and Saltelli et al. (2004) the four Sobol indices as well as the Shapley
effects apply.
According to them, a combined interpretation of the four Sobol indices would just allow to do
the FP (Factor prioritization) setting. But we can add that these indices allow also to do the
FF (Factor Fixing) setting only if a factor has both indices ST indi and ST fulli which are null.
Indeed, if ST indi = E[Var(Y |X∼i)]

Var(Y ) = 0 and ST fulli = E[Var(Y |(X∼i|Xi))]
Var(Y ) = 0 and as the variance

is always a positive function, that implies Var(Y |X∼i) = 0 and Var (Y | (X∼i|Xi)) = 0. Thus,
Y can be expressed only as a function of X∼i or X∼i|Xi,i.e. Xi has not impact on Y taking
account the dependence or not.

About the Shapley effects, they would allow to do the VC (Variance Cutting) setting as the
sum is equal to Var(Y ) and the FF setting. Sure enough, if Shi = 0, then we have ∀J ⊆
D\{i},Var

[
Y |X−(J∪{i})

]
= Var [Y |X−J ] and so express Y as a function of X−(J∪{i}) equates

to express Y as a function of X−J . Hence, Xi is not an influential input in the model and can
be fixed. The FP setting is not achieved according to them because of the fair distribution of
the interaction and dependence effects in the indice. However, this share allocation makes the
Shapley effects easier to interpret than the Sobol’ indices and might be a great alternative to
the four Sobol’ indices. Thus, in the sequel, we’ll compare the Sobol indices’ and the Shapley
effects on an basic examples to see if they make correctly the factor prioritization.
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4.2 Linear model with three inputs

Let us consider
Y = β0 + βᵀX (31)

with the constants β0 ∈ R, β ∈ R3 and X ∼ N (0,Σ) with the following covariance matrix :

Σ =

 σ2
1 ασ1σ2 ρσ1σ3

ασ1σ2 σ2
2 γσ2σ3

ρσ1σ3 γσ2σ3 σ2
3

 ,−1 ≤ α, ρ, γ ≤ 1, σ1 > 0, σ2 > 0, σ3 > 0.

We obtained the following analytical results.

σ2 = V ar(Y ) = β2
1σ

2
1 + β2

2σ
2
2 + β2

3σ
2
3 + 2γβ2β3σ2σ3 + 2β1σ1(αβ2σ2 + ρβ3σ3)

• For j = 1, 2, 3, from the definition of independent Sobol indices, we have:

σ2Sind1 = σ2ST ind1 = β2
1σ

2
1
(
−1 + α2 + γ2 + ρ2 − 2αγρ

)
γ2 − 1

σ2Sind2 = σ2ST ind2 = β2
2σ

2
2
(
−1 + α2 + γ2 + ρ2 − 2αγρ

)
ρ2 − 1

σ2Sind3 = σ2ST ind3 = β2
3σ

2
3
(
−1 + α2 + γ2 + ρ2 − 2αγρ

)
α2 − 1

• For j = 1, 2, 3, from the definition of full Sobol indices, we have:

σ2Sfull1 = σ2ST full1 = (β1σ1 + αβ2σ2 + ρβ3σ3)2

σ2Sfull2 = σ2ST full2 = (αβ1σ1 + β2σ2 + γβ3σ3)2

σ2Sfull3 = σ2ST full3 = (ρβ1σ1 + γβ2σ2 + β3σ3)2

In both cases, full and independent Sobol indices, the first order index is equal to the total
order index because the model is linear, i.e., there is no interaction between the inputs.

• For j = 1, 2, 3, in this example we obtain the following decomposition for the Shapley
effects :

Sh1 = 1
3

(
Sfull1 + 1

2ST1|2 + 1
2ST1|3 + ST ind1

)
Sh2 = 1

3

(
Sfull2 + 1

2ST2|1 + 1
2ST2|3 + ST ind2

)
Sh3 = 1

3

(
Sfull3 + 1

2ST3|1 + 1
2ST3|2 + ST ind3

)

So, for the linear Gaussian model we found a relation between the Shapley effects and
the sensitivity indices obtained with the RT method. For more details about the calculation of
Shapley effects, we refer the readers to the Appendix A.1.
About the results, as the formula is similar regardless the input, we analyse it with the first input.
We observe that the Shapley effect Sh1 is in some way the average of all possible contributions of
the input X1 in the model. Indeed, Sfull1 represents the full marginal contribution of X1. Then,
we have the total contributions of X1 without its correlative contribution with each element of
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the set D = {1, 2, 3}\{1} = {2, 3}. Sure enough, ST1|2 is the total contribution of X1 without
its correlative contribution with X2, i.e. ones just look at the total effect with its dependence
with X3 ; ST1|3 is the total contribution of X1 without its correlative contribution with X3, i.e.
ones just look at the total effect with its dependence with X2 and finally the uncorrelated total
contribution of X1 via ST ind1 = ST1|2,3. As in {2, 3}, there are two elements of size one, we find
the coefficients 1/2 before ST1|2 and ST1|3 and 1 for ST ind1 . We then find the fair allocation of
the Shapley effects.

Particular cases

Now, we’ll consider several particular cases of correlation in order to compare the prioritization
obtained with the Sobol’ indices and the Shapley effects. We’ll take in the following examples
β0 = 0 ; β1 = β2 = β3 = 1 and σ1 = 0.2, σ2 = 0.6, σ3 = 1. By making this choice, we define
implicitly the most influential variables and we want to observe how the correlation affects
the indices. Besides, for each considered case, we verify that the covariance matrix is positive
definite.

α = ρ = γ = 0 α = ρ = γ = 0.5 α = ρ = 0.75, γ = 0.15
X1 X2 X3 X1 X2 X3 X1 X2 X3

Sind
i 0.0286 0.2571 0.7143 0.0115 0.1034 0.2874 0.0004 0.0085 0.0236

ST ind
i 0.0286 0.2571 0.7143 0.0115 0.1034 0.2874 0.0004 0.0085 0.0236

Sfull
i 0.0286 0.2571 0.7143 0.4310 0.6207 0.8448 0.9515 0.3932 0.7464

ST full
i 0.0286 0.2571 0.7143 0.4310 0.6207 0.8448 0.9515 0.3932 0.7464
Shi 0.0286 0.2571 0.7143 0.1715 0.3123 0.5163 0.4553 0.1803 0.3644

Table 2: Sensitivity indices of linear model with different configurations of correlation

As part of the independent linear model, the Shapley effects are equal to the Sobol’ indices as
proved in Iooss and Prieur (2017) and thus, all the indices carry out to the same ranking of the
inputs.

In the second configuration with the symmetric case, we remark a decrease of the independent
Sobol indices and an increase of the full Sobol indices with respect to the independent model
(α = ρ = γ = 0). As regards of the Shapley effects, it reduces for the third input, raises slightly
for the second input and significantly for the first input. All these changes are due to the
mutualization of uncertainties within the inputs because of the correlation but the individual
contributions of the inputs are still well captured for all the indices. Indeed, in spite of the
correlation, all the indices indicate the same ranking for the inputs.

In this last configuration, we have strongly correlated a non-influential variable (X1 has a
low variance) in the model with two very influential variables. The independent Sobol’ indices
give us as ranking: X3, X2, X1. However, as the values of these indices are close to zero, we can
suppose they are not significant and implicitly the ranking too. We obtain with the full indices
the following rankingX1, X3, X2. X1 is supposed to be a non-influential variable and turns out to
explain 95% of the model variance. Which is logical because being highly correlated with X2 and
X3, X1 has a strong impact on these variables. Then, X2 and X3 are correlated in the same way
with X1 and weakly between them. Regardless of the correlations, X3 is more influential than
X2 in the model, hence this second position taking account the correlation. Lastly, we obtain
the same ranking as the full Sobol’ indices with the Shapley effects. FP (Factors Prioritization)
setting aims to find which factors would allow to have the largest expected reduction in the
variance of the model output. Thus, if we follow the previous ranking, we should reduce the
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uncertainty on the first input. But we’ll make several tests by reducing the uncertainty of 20%
one by one on each input and we get:

Setting
α = ρ = 0.75, γ = 0.15 Model variance

σ1 = 0.2, σ2 = 0.6, σ3 = 1 2.06
σ1 = 0.16, σ2 = 0.6, σ3 = 1 1.95
σ1 = 0.2, σ2 = 0.48, σ3 = 1 1.86
σ1 = 0.2, σ2 = 0.6, σ3 = 0.8 1.60

Table 3: Model variance by reducing the uncertainty on each input one by one

It is clearly observed that the largest expected reduction in the variance is obtained with the
third input. These results conflict the obtained ranking with the full Sobol indices and the Shap-
ley effects. Indeed, X1 is an influential input only because of the strong correlation with X2 and
X3, and these indices capture this trend. However, without this correlation X1 is non-influential
input and the independent Sobol indices are supposed to highlight meaningfully that these are
the inputs X2 and X3 which are the most influential without take account the correlation. Nev-
ertheless, these indices struggle to emphasize the uncorrelated marginal contributions of these
inputs due to the small values we obtain.

Thus, on this basic example we can see that the combined interpretation of the four Sobol
indices as well as the Shapley effects doesn’t allow to answer correctly to the purpose of the
Factor Prioritization (FP) setting, i.e. on which inputs the reduction of uncertainty leads to
the largest reduction of the output uncertainty. We can make a factor prioritization with these
indices but not for the goal defined at the outset.

5 Numerical studies

Optimal values for the parameters of the exact and random permutation methods were given
by Song et al. (2016). Using a toy example, we empirically study how the algorithm settings
can influence the estimation of the indices. We compare the accuracy of the estimations of the
Sobol’ indices from the Shapley algorithm and the RT method.

5.1 Parametrization of the Shapley algorithms

As defined in Section 3.2, three parameters of the Shapley algorithm govern the estimation
accuracy: Nv, No and Ni. The first one, is the sample-size for the output variance estimation
of Y . The second, is the number of outer loop for the sample-size of the expectation and the
third one is the number of inner loop which controls the sample-size for the variance estimation
of each conditioned distribution.

Theses variances are estimated through Monte-Carlo procedures. The output variance Var[Y ]
is computed from a sample {Yj = η(X(j))}j=1...,Nv . Because Nv is a small proportion of the
overall cost C = Nv +m(d− 1)NoNi, especially when the d is large, we can select Nv as large as
possible in order to reach the smallest possible estimation error of Var[Y ]. However, it is more
difficult to chose No and Ni to estimate the conditioned variances. These choices also depend
on the used algorithm: exact or random permutations.

Therefore, we empirically show the influence of No and Ni on the estimation error and the
coverage probability. The Probability Of Coverage (POC) is defined as the probability to have
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the true indice value inside the confidence intervals of the estimation. We consider the three
dimensional linear Gaussian model of Section 4.2 as a toy example with independent inputs,
β1 = β2 = β3 = 1, σ1 = σ2 = 1 and σ3 = 2. The POC is estimated with 100 independent
algorithm runs and for a 90 % confidence interval. When the bootstrap procedure is considered,
the confidence intervals are estimated with 500 bootstrap sampling. We also set a large value
of Nv = 10000 for all the experiments.

First experiments aim to show the influence of No on the estimation accuracy and the POC
for the exact permutation algorithm. The Figure 1 shows the variation of the POC (solid lines)
and the absolute error (dashed lines), averaged over the three indices, in function of the product
NoNim, where only No is varying and for three values of Ni at 3, 9 and 18. Because the errors
are computed for 100 independent runs, we show in color areas the 95% quantiles.
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Figure 1: Variation of the absolute error and the POC with No for three values of Ni = 3, 9, 18
for the exact permutation algorithm (m = d! = 6).

We observe that the estimation error is similar for the three different values ofNi and decrease
to 0 at the same rate. The true difference is for the POC which tends, at different rates, to
the true probability: 90 %. For a same computation budget NoNim, the smaller the value of
Ni and the larger the value of No. Thus, these results show that, in order to have a correct
confidence interval it is more important to have a large value of No instead of Ni. Indeed,
exploring multiple conditioned variances with a lower precision (large No and low Ni) is more
important than having less conditioned variances with a good precision (low No and large Ni).

The Figure 2 is similar to Figure 1 but for the random permutation algorithm and by fixing
No = 1 and by varying the number of permutations.
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Figure 2: Variation of the absolute error and the POC with m for three values of Ni = 3, 9, 18
and No = 1 for the random permutation algorithm.
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As for the exact permutation algorithm, we can see that the estimation errors are similar
for the three values of Ni and the difference is shown for the POC. We observe that the lower
Ni and the faster the POC converges to the true probability. Indeed, for a same computational
cost, the lower Ni and the larger the number of permutations m can be.

To show the influence of No with the random permutation algorithm, the Figure 3 is the
same as Figure 2 but with No = 3. We observe that the convergence rates of the POC are
slower than the ones for No = 1. Thus, it shows that having a lower value of No and a large
value of m is more important to have consistent confidence intervals.
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Figure 3: Variation of the absolute error and the POC with m for three values of Ni = 3, 9, 18
and No = 3 for the random permutation algorithm.

From these experiments, we can conclude that the parametrization does not significantly in-
fluence the estimation error but has a strong influence on the POC. Moreover, these experiments
were established on different toy examples (Ishigami model defined in Section 7.2 and interac-
tive model) and the same conclusion arises. Therefore, in order to have consistent confidence
intervals, we can suggest:

• for the exact algorithm to consider Ni = 3 and to take No as large as possible,

• for the random permutation algorithm to consider Ni = 3, No = 1 and take m as large as
possible.

This conclusion confirms the proposed parametrization of Song et al. (2016) explained in 3.2
and the suggestion analyzed in Iooss and Prieur (2017).

5.2 Minor bias observed

At the start of this section, we chose to establish these experiments for independent random
variables. This choice was justified by unexpected results obtained for correlated variables. The
Figure 4 illustrates the same experiment as Figure 1 but with a correlation of γ = 0.9 between
X2 and X3. We observed that the POC of the total Sobol’ indice starts to tend to the true
probability (at 90%) before slowly decreasing. Thus, it seems that the confidence intervals are
underestimated or the indice estimation is biased.

To verify this observation, Figure 5 shows the estimation of the total Sobol’ indice for Nv =
20000, No = 10000, Ni = 3 with the histogram from the bootstrap sampling in blue, the
estimated indice STi in red line and the true indice in green line. It is clear that the true value
for X2 and X3 is outside of estimated distribution. This explains why the coverage probability
is decreasing in 4. Moreover, this phenomenon only happens to the indices of X2 and X3, which
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Figure 4: Variation of the absolute error and the POC with No for three values of Ni = 3, 9, 18
for the exact permutation algorithm and a correlation γ = 0.9 between X2 and X3.

are correlated and it seems that this bias increases with the correlation strength for this example.
Therefore, the reasons of this slight bias should be investigated in future works
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Figure 5: Estimated bootstrap estimations of the total Sobol’ indices from the exact Shapley
algorithm with a correlation of 0.99 between X2 and X3.

5.3 Comparing Sobol’ index estimation using Shapley algorithm and RT
method

An interesting result of the Shapley algorithm, is that it gives the full first-order Sobol’ indices
and the independent total Sobol’ indices in addition to the Shapley effects. We compare the
estimation accuracy of the Sobol’ indices obtained from the Shapley algorithm and the ones
from the RT method. We consider the same example as Section 5.1 but with dependent random
variables. In this section, only the pair X2-X3 is correlated with parameter γ.

A first experiment aims to validate the confidence intervals estimated from the bootstrap
sampling of the RT method by doing the same experiments as in Section 5.1 by increasing the
sample-size N . The Figure 6 shows the absolute error and the POC with the computational
budget (4×N ×d) for the full first-order Sobol’ indices and the independent total Sobol’ indices
for γ = 0.5. As we can see the error tends to zero and the POC converges quickly to the true
probability. Thus, we can see that the confidence intervals correctly catch the Monte-Carlo
error.

We recall from Section 3 that the full first-order Sobol’ indices are equivalent to the classical
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Figure 6: Variation of the absolute error and the POC with the computational budget for the
RT method.

first-order Sobol’ indices and the independent total indices are the classical total indices. The
Figure 7 shows the estimated indices with γ = 0.5 from the Shapley algorithm and the RT
method for similar computational costs. We observe that both algorithms seem to correctly es-
timate the Sobol’ indices for a low computational cost. However, in this example, the estimation
errors from the RT method is much larger than the ones from the Shapley algorithm.

0.0

0.2

0.4

0.6

0.8

1.0

In
di

ce
 v

al
ue

s

Sobol' indices from Shapley algorithm - Nv = 1000, No = 1, Ni = 3
Indices
First
Total
True first
True total

X1 X2 X3
Variables

0.0

0.2

0.4

0.6

0.8

1.0

In
di

ce
 v

al
ue

s

Sobol' indices from RT method - N = 383
Indices
First
Total
True first
True total

Figure 7: Sobol’ indices estimation from the exact permutation method of the Shapley algorithm
(top) and the RT method (bottom) using the Janon estimator for similar number of evaluation:
Nv +NoNim(d− 1) = 4Nd = 4600.

We recall in Section 2.3 that RT method used the Janon estimator from Janon et al. (2014).
The accuracy of the Sobol’ estimator depends on the values of the target indices and the Janon
estimator is less accurate for low value indices. Changing with another estimator, such as the
one from Mara et al. (2015), can lead to another estimation variance as shown in Figure 8. We
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observed that the estimation errors from the RT method depends of the used estimator and this
error is lower using estimator from Figure 8 than the one from Figure 7.
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Figure 8: Sobol’ indices estimation from the exact permutation method of the Shapley algorithm
(top) and the RT method (bottom) using the estimator from Mara et al. (2015) for similar
number of evaluation: Nv +NoNim(d− 1) = 4Nd = 4600.

The Figure 9 shows the Sobol’ indices for the exact Shapley algorithm and the RT method in
function of the correlation γ between X2 and X3. The lines shows the true values of the indices
and the areas are the 95% confidence intervals of the indices.

This experiment shows that the estimation of the Sobol’ indices from the Shapley algorithm
gives satisfying estimations of the first full and total ind Sobol’ indices. Note that the error
of estimation is similar for both the exact or random permutation algorithm if we consider the
same computational budget.

6 Kriging metamodel with inclusion of errors

Shapley effects are a suitable tool for performing global sensitivity analysis. However, their
estimates require an important number of simulations of the costly function η(x) and often
cannot be processed under reasonable time constraint. To handle this problem, we use η̃(x) an
approximating function of the numerical model under study η(x) (Fang et al., 2005). Its main
advantage is obvioulsy to be much faster-to-calculate than the original one. In addition, if one
uses a kriging method (Sacks et al., 1989) to build this η̃(x) surrogate model, a quantification
of the approximation uncertainty can be easily produced. The Shapley effects can then be
calculated using the metamodel η̃(x) instead of η(x) with a control on the estimation error.
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Figure 9: Sobol’ indices estimations from the exact permutation method of the Shapley algorithm
(top) and the RT method (bottom) in fonction of γ.

We present in this section a methodology for estimating the Shapley effects through a kriging
surrogate model taking into account both the Monte Carlo error and the surrogate model error.

6.1 Introduction to the kriging model

Kriging, also called metamodeling by Gaussian process, is a method consisting in the use of an
emulator of a costly computer code for which the interpolated values are modeled by a Gaussian
process. More precisely, it is based on the assumption that the η(x) function is the realization of a
Gaussian random process. The data is then used to infer characteristics of this process, allowing
a joint modelization of the code itself and the uncertainty about the interpolation on the domain.
In general, one assumes a particular parametric model for the mean function of the process and
for its covariance. The parameters of these two functions are called "hyperparameters" and are
estimated using the data. The Gaussian hypothesis then provides an explicit formula for the
law of the process conditionaly to the value taken by η on a design of experiments D.

Thus, we consider that our expensive function η(x) can be modeled by a Gaussian process
H(x) which’s mean and variance are such that E[H(x)] = f ′(x)β and Cov(H(x), H(x̃)) =
σ2r(x, x̃), where r(x, x̃) is the covariance kernel (or the correlation function) of the process.

20



Then, η(x) can be easily approximated by the conditional Gaussian process Hn(x) having the
predictive distribution [H(x)|H(D) = ηn, σ2] where ηn are the known values of η(x) at points
in the experimental design set D = {x1, . . . , xn} and σ2 is the variance parameter. Therefore,
we have

Hn(x) ∼ GP
(
mn(x), s2

n(x, x̃)
)
, (32)

where the mean mn(x) is given by

mn(x) = f ′(x)β̂ + r′(x)R−1
(
ηn − Fβ̂

)
,

where R = [r(xi, xj)]i,j=1,...,n, r′(x) = [r(x, xi)]i=1,...,n, F = [f ′(xi)]i=1,...,n, and

β̂ =
(
F′R−1F

)−1
F′R−1ηn.

The variance s2
n(x, x̃) is given by

s2
n(x, x̃) = σ2

1−
(
f ′(x) r′(x)

)( 0 F′
F R

)−1(
f(x̃)
r(x̃)

)
The variance parameter σ2 can be estimated with a restricted maximum likelihood method.

6.2 Kriging based Shapley effects and estimation

Inspired by the idea used in Le Gratiet et al. (2014) for the Sobol indices, we substitute the true
function η(x) with Hn(x) in (25) which leads to

Shin = 1
d!

∑
π∈Π(D)

[cn (Pi(π) ∪ {i})− cn (Pi(π))] (33)

where the exact function Y = η(X) is replaced by the Gaussian process Hn(X) in the cost
function such as cn(J ) = E [Var [Hn(X)|X−J ]].

Therefore, if we denote by (ΩH ,FH ,PH) the probability space where the Gaussian process
H(x) lies, then the index Shin lies in (ΩH ,H,PH) (it is hence random).

Then, for estimating Shin, we use the same estimator (27) developed by Song et al. (2016) in
which we remplace Y by the Gaussian process Hn(X) in the cost function to obtain :

Ŝh
i

n = 1
m

m∑
l=1

[ĉn (Pi(πl) ∪ {i})− ĉn (Pi(πl)] (34)

where ĉn is the Monte-Carlo estimator of cn.

6.3 Estimation of errors : Monte Carlo and surrogate model

The estimator (34) above integrates two sources of uncertainty : the first one is related to the
metamodel approximation, and the second one is related to the Monte Carlo integration. So, in
this part, we quantify both by decomposing the variance of Ŝh

i

n as follows :

Var(Ŝh
i

n) = VarH
(
EX

[
Ŝh

i

n|Hn(x)
])

+ VarX
(
EH

[
Ŝh

i

n| (Xκl
)l=1,...,B

])
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where VarH
(
EX

[
Ŝh

i

n|Hn(x)
])

is the contribution of the metamodel on the variability of Ŝh
i

n

and VarX
(
EH

[
Ŝh

i

n| (Xκl
)l=1,...,B

])
is that of the Monte Carlo integration.

In section 4 of the article Le Gratiet et al. (2014), they proposed the algorithm (3) we adapted
here to estimate each of these contributions.

Algorithm 3: Evaluation of the distribution of Ŝh
i

κ,n

1 Build Hn(x) from the n observations ηn of η(x) at points in D ;
2 Generate a sample x(1) of size Nv from the random vector X ;
3 Generate a sample x(2) of size m(d− 1)NoNi from the different conditional laws necessary

to estimate E [Var [Y |X−J ]] ;
4 Set NH as the number of samples for Hn(x) and B the number of bootstrap samples for

evaluating the uncertainty due to Monte Carlo integration ;
5 for k = 1, . . . , NH do
6 Sample a realization {y(1),y(2)} = ηn(x) of Hn(x) with x = {x(1),x(2)} ;
7 Compute Ŝh

i

n,k,1 thanks to (33) from ηn(x) ;
8 for l = 2, . . . , B do
9 Sample with replacement a realization ỹ(1) of y(1) to compute Var(Y ) ;

10 Sample by bloc with replacement a realization ỹ(2) of y(2);
11 Compute Ŝh

i

n,k,l thanks to the equation (33) from {ỹ(1), ỹ(2)} ;
12 end
13 end

14 return
(
Ŝh

i

n,k,l

)
k = 1, . . . , NH

l = 1, . . . , B

The output
(
Ŝh

i

n,k,l

)
k = 1, . . . , NH

l = 1, . . . , B

of the algorithm (3) is a sample of size NH ×B repre-

sentative of the distribution of Ŝh
i

n and takes into account both the uncertainty of the metamodel
and that of the Monte Carlo integration.

From this algorithm and some theoretical results, Le Gratiet et al. (2014) proposed estimators
in section 4.2 to estimate each of these contributions.

7 Numerical simulations with kriging model

This section aims at estimating the studied indices using a surrogate model in substitution of
the true and costly computational code. The previous section explained the theory behind the
Gaussian processes to emulate a function. The Section 6.3 explained that the kriging error
can be estimating through a large number of realization of the Gaussian Process in addition to
the Monte-Carlo error estimated through a bootstrap sampling. In this section, we illustrate
the decomposition of the overall error from the estimation of the indices and we consider as
examples the additive Gaussian framework and the Ishigami function. We also consider the
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industrial application of introduced in Rupin et al. (2014) and also used in Iooss and Prieur
(2017).

7.1 Gaussian framework

We use the same configuration as in the Section 5.3 with a correlation coefficient ρ = 0.7. To
illustrate the influence of the kriging model in the estimation of the indices, we show in Figure
10 the distribution of the estimators of the indices with the procedure using the true function
(top figure) and using the surrogate function (bottom figure). We took Nv = 1000, No = 100
and Ni = 3 for the two graphics.
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Figure 10: Estimation of the Shapley effects with the exact permutation algorithm. The top and
bottom figures respectively show the estimation results with the true function and the kriging
model with Q2 = 0.90.

The kriging model is built with 10 points using a LHS sampling (at independence) and a
Matern kernel with a linear basis, leading to a Q2 of 0.90 and the kriging error is estimated
with NH = 300 realizations. We intentionally took low values for the algorithm parameters in
order to have a relatively high variance. If we compare the violinplots of the two figures, we
observe that the variance of the estimation is larger for the kriging configuration. This is due to
the additional error from the kriging model. The Figure 11 allows to distinguish which part the
overall error is due to the kriging. We see immediately what the kriging error is larger than the
Monte-Carlo error and it is normal that this error feeds through to the quality of the estimations
as observed in Figure 10.
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Figure 11: Separation of the uncertainty from the Monte-Carlo estimation and the kriging model
approximation.

7.2 Ishigami Function

Introduced in Ishigami and Homma (1990), the Ishigami function is typically used as a bench-
marking function for uncertainty and sensitivity analysis. It is interesting because it exhibits a
strong non-linearity and has interactions between variables. For any variable x = (x1, x2, x3) ∈
[−π, π]3, the model function can be written as

η(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1). (35)

In this example, we consider that the random variable X follows a distribution pX with uniform
margins U [−π, π] and a multivariate Gaussian copula cρ with parameter ρ = (ρ12, ρ13, ρ23).
Thanks to the Sklar Theorem (Sklar, 1959), the multivariate cumulative distribution function
F of X can be written as

F (x1, x2, x3) = Cρ (F1(x1), F2(x2), F3(x3)) (36)

where F1, F2, F3 are the marginal cumulative distribution functions of X. In the independent
case, analytical full first order and independent total Sobol’ indices are derived as well as the
Shapley effects. Unfortunately, no analytical results are available for the other indices. Thus,
we place in the sequel in the independent framework.

Remind that the main advantage of the metamodel is to be much faster-to-calculate than
the original function. Thus, we can use this characteristic in order to decrease the Monte-Carlo
error during the estimation of the indices by increasing the calculation budget.

In this example, the kriging model is built with 200 points using an optimized LHS sampling
(at independence) and a Matern kernel with a linear basis, leading to a Q2 of 0.98 and the
kriging error will be estimated subsequently with NH = 300 realizations.
To illustrate the influence of the kriging model in the estimation of the indices, we show in
Figure 12 the distribution of the estimators of the indices obtained with the true function (top
figure) for Nv = 1000, No = 100,Ni = 3 and using the surrogate function (bottom figure) with
Nv = 5000, No = 600 and Ni = 3. We intentionally took high values for the estimation with the
metamodel in order to decrease the overall variance.

If we compare the violinplots of the two figures, we observe that the variance of the estimations
is higher with the true function. For the true function, the uncertainty is only due to the
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Monte-Carlo estimation. For the surrogate function, as observed in Figure 13, in spite of a
slight metamodel error, this same Monte-Carlo is obviously lower owing to a higher calculation
budget. Hence, if the metamodel approximates correctly the true function, it is better to use it
to estimate the sensitivity indices to gain accuracy on the distribution of the estimators.
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Figure 12: Estimation of the Shapley effects with the exact permutation algorithm. The top and
bottom figures respectively show the estimation results with the true function and the kriging
model with Q2 = 0.98.

8 Conclusion

Throughout this article, we studied the Shapley effects and the independent and full Sobol’
indices defined in Mara and Tarantola (2012) for the models with a dependence structure on
the input variables. The comparison between these indices revealed that

• the full Sobol’ index of an input includes the effect of another input on which it is depen-
dent,

• the independent and full total Sobol’ indices of an input includes the effect of another
input on which it is interacting,

• the Shapley effects rationally allocate these different contributions for each input.

Each of these indices allows to answer certain objectives of the SA settings defined in Saltelli and
Tarantola (2002) and Saltelli et al. (2004). But, it’s important to pay attention about the FP
setting. This one can be made with the Shapley effects but not for the goal defined at the outset,
i.e. prioritize the input variables taking account the dependence but not to find which would
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Figure 13: Separation of the uncertainty from the Monte-Carlo estimation and the kriging model
approximation.

allow to have the largest expected reduction in the variance of the model output. Always about
the FP setting, it was declared in conclusion of our example that the combined interpretation of
the four Sobol’ indices doesn’t allow to answer correctly to the purpose of the FP setting due to
the small values that have been obtained for the independent Sobol’ indices. However, although
these values were close to zero, the ranking that they had provided was correct to make FP
setting. Hence, it could be investigated whether these values are significant or not.

A relation between the Shapley effects and the Sobol’ indices obtained from the RT method
was found for the linear Gaussian model. It would be interesting to see if this relation could
be extended to a general linear model in the first instance and subsequently if a overall relation
can be established between these indices for a global model.

About the estimation procedure of the Shapley effects, a major contribution of this article is
the implementation of a bootstrap sampling to estimate the Monte-Carlo error. The CLT can
give confidence intervals but require large sample size in order to be consistent, which is rarely
possible in practice for expensive computer codes. We confirmed that the parametrization of the
Shapley algorithms proposed by Song et al. (2016) and analyzed by Iooss and Prieur (2017) is
correct and optimal in order to have consistent confidence intervals. The numerical comparison
of the Sobol’ indices estimated from the Shapley algorithm and the RT method for a toy example
showed that the estimations from the Shapley algorithm are a bit less accurate than the ones from
the RT method, but are very satisfying for an algorithm that is not design for their estimation.

A second contribution is the splitting of the metamodel and Monte-Carlo errors when using a
kriging model to substitute the true model. The numerical results showed that for a reasonable
number of evaluations of a kriging model, one can estimate the Shapley effects, as well as the
Sobol’ indices and still correctly catch estimation error due to the metamodel or the Monte-Carlo
sampling. Unfortunately, the computational cost to generate a sample from a Gaussian Process
realization increases significantly with the sample-size. Thus, because the Shapley algorithm
becomes extremely costly in high dimension, the estimation of indices using this technique can
be computationally difficult.

The Shapley algorithm from Song et al. (2016) is efficient, but is extremely costly in high
dimension. The cost is mainly due to the estimation of the conditional variances. A valuable
improvement of the algorithm would be the use of a Kernel estimation procedure in order to
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significantly reduce the number of evaluation. The Polynomial Chaos Expension are good to
compute the Sobol’ indices analytically from the polynomial coefficients (Crestaux et al., 2009).
It would be interesting to have such a decomposition for the Shapley effects.
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A Appendix

A.1 Gaussian framework, linear model

Let us consider
Y = β0 + βᵀX (37)

with the constants β0 ∈ R, β ∈ R3 and X ∼ N (0,Σ) with the following covariance matrix :

Σ =

 σ2
1 ασ1σ2 ρσ1σ3

ασ1σ2 σ2
2 γσ2σ3

ρσ1σ3 ρσ2σ3 σ2
3

 ,−1 ≤ α, ρ, γ ≤ 1, σ1 > 0, σ2 > 0, σ3 > 0.

We obtained the following analytical results.

σ2 = V ar(Y ) = β2
1σ

2
1 + β2

2σ
2
2 + β2

3σ
2
3 + 2γβ2β3σ2σ3 + 2β1σ1(αβ2σ2 + ρβ3σ3)

• For j = 1, 2, 3, from the definition of full Sobol indices, we have:

σ2Sfull1 = σ2ST full1 = (β1σ1 + αβ2σ2 + ρβ3σ3)2

σ2Sfull2 = σ2ST full2 = (αβ1σ1 + β2σ2 + γβ3σ3)2

σ2Sfull3 = σ2ST full3 = (ρβ1σ1 + γβ2σ2 + β3σ3)2

• We calculate also the full first order Sobol indices for the others subsets of D and we have
:

σ2Sfull1,2 = β2
1σ

2
1 + β2

2σ
2
2 + 2γβ2β3σ2σ3 + 2β1σ1(αβ2σ2 + ρβ3σ3)− β2

3σ
2
3
(
γ2 + ρ2 − 2αγρ

)
α2 − 1

σ2Sfull1,3 = β2
1σ

2
1 + β2

3σ
2
3 + 2γβ2β3σ2σ3 + 2β1σ1(αβ2σ2 + ρβ3σ3)− β2

2σ
2
2
(
α2 + γ2 − 2αγρ

)
ρ2 − 1

σ2Sfull2,3 = β2
2σ

2
2 + β2

3σ
2
3 + 2γβ2β3σ2σ3 + 2β1σ1 (αβ2σ2 + ρβ3σ3)− β2

1σ
2
1
(
α2 + ρ2 − 2αγρ

)
γ2 − 1

σ2SfullD = σ2
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• We calculate also the total Sobol indices for the variables (Xi|Xu), i = 1, . . . , 3 and u ⊂
D\{i}, u 6= ∅ and we have :

σ2ST1|2 = −
(
β1σ1

(
α2 − 1

)
+ β3σ3(αγ − ρ)

)2
α2 − 1 σ2ST1|3 = −

(
β1σ1

(
ρ2 − 1

)
+ β2σ2(γρ− α)

)2
ρ2 − 1

σ2ST2|1 = −
(
β2σ2

(
α2 − 1

)
+ β3σ3(αρ− γ)

)2
α2 − 1 σ2ST2|3 = −

(
β2σ2

(
γ2 − 1

)
+ β1σ1(γρ− α)

)2
γ2 − 1

σ2ST3|1 = −
(
β3σ3

(
ρ2 − 1

)
+ β2σ2(αρ− γ)

)2
ρ2 − 1 σ2ST3|2 = −

(
β3σ3

(
γ2 − 1

)
+ β1σ1(αγ − ρ)

)2
γ2 − 1

• For j = 1, 2, 3, from the definition of Shapley effects, we have:

Sh1 = 1
3

(
(c̃(1)− c̃(∅)) + 1

2 (c̃(1, 2)− c̃(2)) + 1
2 (c̃(1, 3)− c̃(3)) + (c̃(1, 2, 3)− c̃(2, 3))

)
= 1

3

(
Sfull1 + 1

2
(
Sfull1,2 − S

full
2

)
+ 1

2
(
Sfull1,3 − S

full
3

)
+
(
Sfull1,2,3 − S

full
2,3

))
= 1

3

(
Sfull1 + 1

2ST1|2 + 1
2ST1|3 + ST ind1

)

Sh2 = 1
3

(
(c̃(2)− c̃(∅)) + 1

2 (c̃(1, 2)− c̃(1)) + 1
2 (c̃(2, 3)− c̃(3)) + (c̃(1, 2, 3)− c̃(1, 3))

)
= 1

3

(
Sfull2 + 1

2
(
Sfull1,2 − S

full
1

)
+ 1

2
(
Sfull2,3 − S

full
3

)
+
(
Sfull1,2,3 − S

full
1,3

))
= 1

3

(
Sfull2 + 1

2ST2|1 + 1
2ST2|3 + ST ind2

)

Sh3 = 1
3

(
(c̃(3)− c̃(∅)) + 1

2 (c̃(1, 3)− c̃(1)) + 1
2 (c̃(2, 3)− c̃(2)) + (c̃(1, 2, 3)− c̃(1, 2))

)
= 1

3

(
Sfull3 + 1

2
(
Sfull1,3 − S

full
1

)
+ 1

2
(
Sfull2,3 − S

full
2

)
+
(
Sfull1,2,3 − S

full
1,2

))
= 1

3

(
Sfull3 + 1

2ST3|1 + 1
2ST3|2 + ST ind3

)
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