E. J. Berg, C. Villevieille, D. Streich, S. Trabesinger, and P. Novák, Rechargeable Batteries: Grasping for the Limits of Chemistry, Journal of The Electrochemical Society, vol.162, issue.14, pp.2468-2475, 2015.
DOI : 10.1149/2.0081514jes

K. G. Gallagher, Quantifying the promise of lithium???air batteries for electric vehicles, Energy & Environmental Science, vol.148, issue.5, pp.1555-1563, 2014.
DOI : 10.1016/S0167-2738(02)00080-2

P. Rozier and J. M. Tarascon, Review???Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, Journal of The Electrochemical Society, vol.162, issue.14, pp.2490-2499, 2015.
DOI : 10.1149/2.0111514jes

K. Luo, Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen, Nature Chemistry, vol.40, issue.98, pp.684-691, 2016.
DOI : 10.1103/PhysRevB.40.5715

D. Seo, The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials, Nature Chemistry, vol.6, issue.7, pp.692-697, 2016.
DOI : 10.1016/0927-0256(96)00008-0

A. Grimaud, W. T. Hong, Y. Shao-horn, and J. Tarascon, Anionic redox processes for electrochemical devices, Nature Materials, vol.420, issue.2, pp.121-126, 2016.
DOI : 10.1039/c3sc50301a

B. Li and D. Xia, Anionic Redox in Rechargeable Lithium Batteries, Advanced Materials, vol.1, issue.88, p.201701054, 2017.
DOI : 10.1038/nenergy.2016.111

E. M. Erickson, Review???Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes, Journal of The Electrochemical Society, vol.164, issue.1, pp.6341-6348, 2017.
DOI : 10.1149/2.1071605jes

URL : http://jes.ecsdl.org/content/164/1/A6341.full.pdf

J. Zheng, Li- and Mn-Rich Cathode Materials: Challenges to Commercialization, Advanced Energy Materials, vol.8, issue.121, p.1601284, 2016.
DOI : 10.1021/acsami.5b08349

G. Assat, C. Delacourt, D. A. Corte, and J. Tarascon, Editors' Choice???Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries, Journal of The Electrochemical Society, vol.163, issue.14, pp.2965-2976, 2016.
DOI : 10.1073/pnas.1504901112

Z. Lu and J. Dahn, Understanding the Anomalous Capacity of Li/Li[Ni[sub x]Li[sub (1/3???2x/3)]Mn[sub (2/3???x/3)]]O[sub 2] Cells Using In Situ X-Ray Diffraction and Electrochemical Studies, Journal of The Electrochemical Society, vol.289, issue.7, p.815, 2002.
DOI : 10.1016/S0925-8388(99)00165-6

N. Tran, Mechanisms associated with the 'plateau' observed at high voltage for the overlithiated Li 1, Chem. Mater, vol.12, issue.20, pp.4815-4825, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00319854

B. Strehle, The Role of Oxygen Release from Li- and Mn-Rich Layered Oxides during the First Cycles Investigated by On-Line Electrochemical Mass Spectrometry, Journal of The Electrochemical Society, vol.164, issue.2, pp.400-406, 2017.
DOI : 10.1149/2.0981606jes

D. Streich, Online Electrochemical Mass Spectrometry of High Energy Lithium Nickel Cobalt Manganese Oxide/Graphite Half- and Full-Cells with Ethylene Carbonate and Fluoroethylene Carbonate Based Electrolytes, Journal of The Electrochemical Society, vol.163, issue.6, pp.964-970, 2016.
DOI : 10.1149/2.0801606jes

H. Koga, Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2, Journal of Power Sources, vol.236, pp.250-258, 2013.
DOI : 10.1016/j.jpowsour.2013.02.075

URL : https://hal.archives-ouvertes.fr/hal-00805010

H. Koga, Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2, Journal of the Electrochemical Society, vol.160, issue.6, pp.786-792, 2013.
DOI : 10.1149/2.038306jes

URL : https://hal.archives-ouvertes.fr/hal-00807341

M. Oishi, Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2, Journal of Power Sources, vol.276, pp.89-94, 2015.
DOI : 10.1016/j.jpowsour.2014.11.104

D. Foix, M. Sathiya, E. Mccalla, J. Tarascon, and D. Gonbeau, X-ray Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes, The Journal of Physical Chemistry C, vol.120, issue.2, pp.862-874, 2016.
DOI : 10.1021/acs.jpcc.5b10475

URL : https://hal.archives-ouvertes.fr/hal-01500056

K. Shimoda, Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy, Journal of Materials Chemistry A, vol.15, issue.16, pp.5909-5916, 2016.
DOI : 10.1021/nl5038598

H. Koga, in Li Ion Batteries, The Journal of Physical Chemistry C, vol.118, issue.11, pp.5700-5709, 2014.
DOI : 10.1021/jp412197z

URL : https://hal.archives-ouvertes.fr/hal-01011842

A. Ito, In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2, Journal of Power Sources, vol.196, issue.16, pp.6828-6834, 2011.
DOI : 10.1016/j.jpowsour.2010.09.105

X. Yu, Cathode Materials, Advanced Energy Materials, vol.12, issue.5, p.1300950, 2014.
DOI : 10.1107/S0909049505012719

URL : https://hal.archives-ouvertes.fr/hal-00977897

H. Konishi, Potential hysteresis between charge and discharge reactions in Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 for lithium ion batteries. Solid State Ion, pp.120-127, 2017.
DOI : 10.1016/j.ssi.2016.11.016

S. Muhammad, Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries, Nano Energy, vol.21, pp.172-184, 2016.
DOI : 10.1016/j.nanoen.2015.12.027

J. R. Croy, Cathode Structures, The Journal of Physical Chemistry C, vol.117, issue.13, pp.6525-6536, 2013.
DOI : 10.1021/jp312658q

M. Oishi, Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure, Journal of Power Sources, vol.222, pp.45-51, 2013.
DOI : 10.1016/j.jpowsour.2012.08.023

S. Hy, ??? 0.5), Chemistry of Materials, vol.26, issue.24, pp.6919-6927, 2014.
DOI : 10.1021/cm501664y

J. R. Croy, M. Balasubramanian, K. G. Gallagher, and A. K. Burrell, Review of the U.S. Department of Energy???s ???Deep Dive??? Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes, Accounts of Chemical Research, vol.48, issue.11, pp.2813-2821, 2015.
DOI : 10.1021/acs.accounts.5b00277

W. Mao, Nature of the Impedance at Low States of Charge for High-Capacity, Lithium and Manganese-Rich Cathode Materials, Journal of The Electrochemical Society, vol.163, issue.14, pp.3091-3098, 2016.
DOI : 10.1149/1.2048589

S. R. Gowda, D. W. Dees, A. N. Jansen, and K. G. Gallagher, Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes, Journal of the Electrochemical Society, vol.162, issue.7, pp.1374-1381, 2015.
DOI : 10.1149/2.0931507jes

J. Zheng, Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2, Journal of the Electrochemical Society, vol.160, issue.11, pp.2212-2219, 2013.
DOI : 10.1149/2.090311jes

B. Philippe, Photoelectron Spectroscopy for Lithium Battery Interface Studies, Journal of the Electrochemical Society, vol.163, issue.2, pp.178-191, 2016.
DOI : 10.1149/2.0051602jes

URL : http://jes.ecsdl.org/content/163/2/A178.full.pdf

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range, Surface and Interface Analysis, vol.47, issue.116, pp.689-713, 2011.
DOI : 10.1016/S0167-5729(02)00031-6

R. Dedryvère, XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode, Journal of The Electrochemical Society, vol.22, issue.4, p.689, 2005.
DOI : 10.1039/ft9969203963

K. Edström, T. Gustafsson, and J. Thomas, The cathode???electrolyte interface in the Li-ion battery, Electrochimica Acta, vol.50, issue.2-3, pp.397-403, 2004.
DOI : 10.1016/j.electacta.2004.03.049

L. E. Ouatani, The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, vol.8, issue.121, pp.103-113, 2009.
DOI : 10.1016/S0079-6700(00)00006-X

URL : https://hal.archives-ouvertes.fr/hal-01560427

J. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Physical Chemistry Chemical Physics, vol.2, issue.6, pp.1319-1324, 2000.
DOI : 10.1039/a908800h

URL : https://hal.archives-ouvertes.fr/hal-01636425

B. Silvi, N. Fourati, R. Nada, and C. R. Catlow, Pseudopotential periodic hartree-fock study of rutile TiO2, Journal of Physics and Chemistry of Solids, vol.52, issue.8, pp.1005-1009, 1991.
DOI : 10.1016/0022-3697(91)90029-Y

F. Corà, A. Patel, N. M. Harrison, R. Dovesi, and C. R. Catlow, Hartree???Fock Study of the Cubic and Tetragonal Phases of Bulk Tungsten Trioxide, Journal of the American Chemical Society, vol.118, issue.48, pp.12174-12182, 1996.
DOI : 10.1021/ja961514u

L. Dahéron, Investigated by XPS, Chemistry of Materials, vol.20, issue.2, pp.583-590, 2008.
DOI : 10.1021/cm702546s

M. Sathiya, Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries, Nature Communications, vol.86, issue.88, p.6276, 2015.
DOI : 10.1016/0167-2738(96)00330-X

URL : https://hal.archives-ouvertes.fr/hal-01135363

G. Assat, A. Iadecola, C. Delacourt, R. Dedryvère, and J. Tarascon, X-ray Absorption Spectroscopy, Chemistry of Materials, vol.29, issue.22, pp.9714-9724, 2017.
DOI : 10.1021/acs.chemmater.7b03434

V. Veenendaal, M. A. Sawatzky, and G. A. , x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Physical Review Letters, vol.45, issue.16, p.2459, 1993.
DOI : 10.1103/PhysRevB.45.10032

W. Yoon, Investigated by O K-Edge and Co L-Edge X-ray Absorption Spectroscopy, The Journal of Physical Chemistry B, vol.106, issue.10, pp.2526-2532, 2002.
DOI : 10.1021/jp013735e

Q. Li, Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy, Journal of Physics D: Applied Physics, vol.49, issue.41, p.413003, 2016.
DOI : 10.1088/0022-3727/49/41/413003

J. M. Tarascon, In Situ Structural and Electrochemical Study of Ni1???xCoxO2 Metastable Oxides Prepared by Soft Chemistry, Journal of Solid State Chemistry, vol.147, issue.1, pp.410-420, 1999.
DOI : 10.1006/jssc.1999.8465

M. Kasai, Electrochemical study on x Li 2 MnO 3 -(1- x )LiNi 1/3 Co 1/3 Mn 1/3 O 2 ( x =0.5) layered complex cathode showing voltage hysteresis, Electrochimica Acta, vol.146, pp.79-88, 2014.
DOI : 10.1016/j.electacta.2014.08.073

J. R. Croy, K. G. Gallagher, M. Balasubramanian, B. R. Long, and M. M. Thackeray, Quantifying Hysteresis and Voltage Fade in xLi2MnO3bullet(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content, Journal of the Electrochemical Society, vol.161, issue.3, pp.318-325, 2014.
DOI : 10.1149/2.049403jes

D. W. Dees, Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode, Journal of the Electrochemical Society, vol.162, issue.4, pp.559-572, 2015.
DOI : 10.1149/2.0231504jes

M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, and J. Jamnik, The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc, Electrochemical and Solid-State Letters, vol.174, issue.10, p.170, 2008.
DOI : 10.1016/S0167-2738(02)00183-2

J. Atebamba, J. Moskon, S. Pejovnik, and M. Gaberscek, On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.34, issue.11, p.1218, 2010.
DOI : 10.1039/b618822b

M. D. Levi and D. Aurbach, Simultaneous Measurements and Modeling of the Electrochemical Impedance and the Cyclic Voltammetric Characteristics of Graphite Electrodes Doped with Lithium, The Journal of Physical Chemistry B, vol.101, issue.23, pp.4630-4640, 1997.
DOI : 10.1021/jp9701909

C. Ho, I. D. Raistrick, and R. A. Huggins, Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films, Journal of The Electrochemical Society, vol.127, issue.2, pp.343-350, 1980.
DOI : 10.1149/1.2129668

M. Doyle, J. P. Meyers, and J. Newman, Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries, Journal of The Electrochemical Society, vol.147, issue.1, pp.99-110, 2000.
DOI : 10.1149/1.1393162

Y. Wu, Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale, Journal of Materials Chemistry A, vol.116, issue.0, pp.5385-5391, 2015.
DOI : 10.1016/j.ultramic.2012.03.002

T. Ohzuku, M. Nagayama, K. Tsuji, and K. Ariyoshi, High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g???1, Journal of Materials Chemistry, vol.68, issue.121, p.10179, 2011.
DOI : 10.1016/S0378-7753(96)02573-6

L. Riekehr, Fatigue in 0.5Li2MnO3:0.5Li(Ni1/3Co1/3Mn1/3)O2 positive electrodes for lithium ion batteries, Journal of Power Sources, vol.325, pp.391-403, 2016.
DOI : 10.1016/j.jpowsour.2016.06.014

D. Peralta, Role of the composition of lithium-rich layered oxide materials on the voltage decay, Journal of Power Sources, vol.280, pp.687-694, 2015.
DOI : 10.1016/j.jpowsour.2015.01.146

W. Li, B. Song, and A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chemical Society Reviews, vol.25, issue.121, pp.3006-3059, 2017.
DOI : 10.1039/b711552k

H. Konishi, A. Gunji, X. Feng, and S. Furutsuki, Effect of transition metal composition on electrochemical performance of nickel-manganese-based lithium-rich layer-structured cathode materials in lithium-ion batteries, Journal of Solid State Chemistry, vol.249, pp.80-86, 2017.
DOI : 10.1016/j.jssc.2017.02.022

M. Farkhondeh, M. Pritzker, M. Fowler, M. Safari, and C. Delacourt, Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate, Phys. Chem. Chem. Phys., vol.135, issue.98, pp.22555-22565, 2014.
DOI : 10.1021/ja312527x

L. Li, Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes, Journal of the American Chemical Society, vol.138, issue.8, pp.2838-2848, 2016.
DOI : 10.1021/jacs.6b00061

F. Dogan, Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes, Journal of the American Chemical Society, vol.137, issue.6, pp.2328-2335, 2015.
DOI : 10.1021/ja511299y

S. G. Rinaldo, Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides, Journal of the Electrochemical Society, vol.162, issue.6, pp.897-904, 2015.
DOI : 10.1149/2.0181506jes

H. Yu, Electrochemical kinetics of the 0.5Li2MnO3??0.5LiMn0.42Ni0.42Co0.16O2 ???composite??? layered cathode material for lithium-ion batteries, RSC Advances, vol.180, issue.23, p.8797, 2012.
DOI : 10.1016/j.jpowsour.2008.02.049

M. Bettge, Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density, Journal of the Electrochemical Society, vol.160, issue.11, pp.2046-2055, 2013.
DOI : 10.1149/2.034311jes