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1 | INTRODUCTION

This paper concerns the asymptotic behavior of an elastic multistructure composed by a family of elastic beams having
the same length of order 6 and as cross-section a disk of radius r. The beams are e-periodically distributed between two
plates of different thicknesses of order 5. We assume r < ¢/2 and r < 6§ so as to deal with a family of distinct beams.
The lateral boundary of the lower plate is clamped, and the other parts of the boundary are free of forces. The mechanical
model is the linear isotropic elasticity. In this paper, the main novelty is to propose a way to obtain sharp estimates.

The aim of this paper was to introduce a simplified model of the skin. So the top layer stands for the epidermis, while
the lower one is the hypoderm. The beams periodically distributed between these two layers stand for the collagen fibers
in the dermis (for more details, see Blasselle and Griso!).

When we want to study an elastic multistructure the first difficulty is as follows: how can we obtain sharp estimates
of the displacements? The Korn inequalities for a plate, a beam, or a bounded 3D regular domain are unfortunately not
sufficient. To overcome this difficulty, here we use the decomposition of plates and beams displacements introduced by
Griso*? for straight and curved rods, shells, or plates. These decompositions have been extended to the structures made
of beams or plates by Griso.** A beam displacement is written as the sum of an elementary displacement and a warping.
The elementary displacement is affine in the cross-sections; it depends on two vector fields define on the centerline of
the beam (see (3.2). The warping stands for the deformation of the cross-sections. Similarly, a plate displacement is also
written as the sum of an elementary displacement and a warping. Here, the elementary displacement is affine in the
fibers (see (3.13). In Sections 3.1 and 3.2, for both decompositions, we recall the full estimates of the warpings and the
estimates of the strain tensors of the elementary displacements with respect to the strain tensors of the displacements.
We use these decompositions for the set of beams and for the two plates. Then it remains to obtain the full estimates of
the elementary displacements. To do that we compare the terms of the elementary displacements in the small portions of
beams included in the plates. In particular, we prove that the estimates of the displacements in both plates differ by the

58 | Copyright © 2017 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/mma Math Meth Appl Sci. 2018;41:58-79.


https://doi.org/10.1002/mma.4594
http://orcid.org/0000-0001-6819-353X

GRISO AND MERZOUGUI Wl LEY 59

factor 1 + & + —1 /In <§ > Hence, if we want to deal with displacements of the same order in both plates, we assume

that the above factor is uniformly bounded. We link the small parameters 6, €, and r:
e=k96”, r=x16", >0, p>0.

Under the previous assumptions on these small parameters, we show that the couple (p, ) must belong to a convex
polygon. We introduce two unfolding operators I1; and II,; they make possible both reductions of dimension § — 0
andr — 0.

For the mathematical modeling of beams and plates, we refer to previous studies.®® Concerning the multistructures in
linear elasticity and the junctions between beams and 3D domains or beams and plates, we refer to previous studies.>>*8
The junction between a beam and a plate in nonlinear elasticity is treated by Blanchard and Griso.”* Concerning the
periodic homogenization, we refer to Blanchard and Griso.** The following two recent papers** concern problems in
domains with rough boundaries.

The paper is organized as follows: In Section 2 we describe the structure, and we introduce some notations; we also
present the elasticity problem. Section 3 concerns the estimates of the admissible displacements of the structure. In Section
4 we link the small parameters 6, €, and r. We opt to devote the next sections to the general case that corresponds to the
interior of a polygon. Section 5 is dedicated to the applied forces. For the sake of simplicity we do not choose surface forces.
In Section 6 we introduce the unfolding operators I1; and I, and we give their first properties. In Section 7, Theorem 1
gives the weak limits of the different terms involved in the decompositions. We show that the limit displacements are of
Kichhoff-Love type in both plates and also in the set of beams. In Sections 8.1 to 8.3 we obtain the limits of the strain and
stress tensors. Section 8.4 is concerned by the limit problem, which links the bending and the membrane displacements
of the plates. The convergence of the total elastic energy is given in Section 9. Finally, Section 10 is dedicated to the proof
of a Poincaré-Wirtinger type inequality.

Throughout this paper

« the Greek indexes a and f belong to {1, 2}, while the Latin indexes i, j, k,  belong to {1, 2,3},
« the constants, which are denoted by C, do not depend on 6, ¢, and r, and
« we use the Einstein convention of summation over repeated indices.

2 | THE GEOMETRY OF THE STRUCTURE AND THE ELASTICITY PROBLEM

The structure is composed of two plates Qf and Qf; whose thicknesses are 2«,8, 2k8; they are connected by a family of
beams (see Figure 1), regularly spaced, whose thicknesses are of order r and lengths 26 — 5(x, + k), which also represents
the distance between the two plates, where x, + k, < 1.

Set

o w = (=L/2,L/2)? the reference midsurface of the plates,

e P=1-kg14+k0),I° = (=1 —kp, =1+ Kp),

o I =61= (61 — Ka). 6(1 + Kq)), 12 = 61" = (= 6(1 + k), —6(1 — K3)),
o I=(=1=kp.14kg),I5 =61 = (=6(1 + k), 6(1 + K4)),

o IP° = (=14 kb, 1 — ko), [0° = 61" = (8(=1 + Ks), 6(1 — Ka)),

« QFf = w X I the upper plate Q=X

+ Q) = wx I? the lower plate, Q° = o x I,

2 2
(11 _E €
-Y_< 22), NeN*andY—sY ( 2),

£

2’

« . ={12, ... ,N} ,0nehasco=1nt< (e€+7Y. >
gez,

e D,={(a.x) €R? | ¥ +xZ<r*},r>0,
« P; = D, X Is the beam whose cross-section is the disc D, and length 26 + 6(x4 + xp),
+ the family of beams Bs. , = Ugez, (€& + D) X I%°,

. —a —b —
+ the whole structure Q; ., = int(Q; U Qs UBs.),
« B =D xI, B*® = Dy x I' the reference beams.
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FIGURE1 Thebeam P;

Throughout this paper, we denote (e, e, €3) the standard basis of R3.
Let u be a displacement belonging to H'(O; R™), m € {2,3}, where O is an open subset of R™. The linearized strain
tensor field or the symmetric gradient field of u is defined by

(Vu)g = %(Vu +(Vw'),

or equivalently by its components

1% o

[—— 2
raw = 5 (5 axk)’ &.De (1, ....m}

The plates and the beams are made of homogeneous and isotropic elastic materials; for the sake of simplicity, one
chooses the same Lamé constants for the plates. Set

Ax) = AP, ux) = P! a.e.inQiuQl,

2.1
M) =A% px)=pu"  aeinBs,.

where AP, yP!, 2%, and u®¢ are the Lamé's constants of the materials. They are strictly positive constants.
Let {us}s be a sequence of displacements belonging to H'(Q; . ; R?).* The Cauchy stress tensor ¢ in Qs , is linked to
the symmetric gradient (Vus)s through the standard Hooke's law:

oijs = Arkk(Us)) 8 + 2uy;i(Us), a.e. in Qs r, (2.2)

where 6; =0ifi #jand 6; = 1ifi=}.
In the domain ;. ,, consider the standard problem of elasticity, and the equations of equilibrium in Q; , are
aO'ij.(s

- =fisin Qs p, 2.3
axj ﬁ,5 6,€,1 ( )

where f? € L?(Qs..,; R?) denotes the applied forces.

*For the sake of clarity, in this section, we decide to omit the dependence of the fields with respect to the parameters ¢ and r. In Section 7, we will link
the parameters 6, €, and r, and then we will only use the parameter § for any fields.
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To specify the boundary conditions on 0Q; . ,, one assumes that the 3d plate Qg is clamped on its lateral boundary
dw X I =T":
us=0onI? (2.4)
and that the boundary 0Q; ., \ Fg is free of forces:
o5v=00n0Q;,, \T?, (2.5)

where v denotes the exterior unit normal vector to Qs .

Remark 1. The boundary condition (2.5) means that the applied surface forces on the boundary 0Q; ., \ Flg are null.
This assumption is not necessary to carry on the analysis, but it is natural as far as the family of beams is concerned.

The variational formulation of (2.3) to (2.5) is standard. If V. , denotes the space of admissible displacements
Vser = {v € H'(Qs.,;R* |v=00n I“g },
the variational formulation is
Find u; € Vs, such that,
/Q cysridx = [ fimidx, W e Vi, (2.6)

Q&.s,r

'b,E,1
We equip H'(Qs.c.; R?) with the seminorm:
Vil = I(Vv)sllizae,, e
and throughout the paper and for every v € V; ., we denote by

e0)= [ [4u)" + 200 |ax
Q

b.€,5

the total elastic energy of the displacement v. Indeed, choosing v = u; in (2.6) leads to the usual energy relation:

E(us) = fisuisdx. 2.7)

Qé.e.r

For a.e. z € R?, we denote [z] € Z? the integer part of z and {z} € Y'its fractional part, hence

z=[z] + {z}.

3 | ESTIMATES FOR THE STRUCTURE DISPLACEMENTS

To obtain a priori estimates on the displacements of the whole structure, one needs a Korn's inequality for this kind of
domain. Here, we are concerned with a multistructure, and it is not convenient to estimate the constant in Korn's type
inequality with respect to ¢, §, and r. To overcome this difficulty, we use decompositions of the beams displacements and
of the plates displacements.

3.1 | Estimates for the set of beams
In this paper, one considers the following assumptions:
r<e/2, r <o. (3.1

With the first assumption, one claims that the structure is made of distinct beams, with the second one, one only wants
to deal with a set of beams between the two plates.”
The space H'(Ps; R?) is equipped with the seminorm:

v € H'(P5; R?), [vlle, = I(VV)sllzae,e-

Let u be an element belonging to H(Q; . ; R?), theorem 3.1 in Griso® gives a decomposition of the restrictions ug of u
to the beam £ + Ps, &£ € E,.

If we assume that 6 /r — 0, then between the two plates we get small plates. In this case, to obtain the full estimates, the strategy must be different.
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For a.e. x = x1€; + x2€, + X383 € €& + Ps, we write (X' = x1€; + x2€5):

Us(x) = u(eé€ +x) = Us(3) + Re(x3) A X + Gig(X)

3.2
= Ug(x) + Tig (), (3-2)

where U; € H'(I5; R?), R: € H'(I;; R®) and ii; € H'(P;; R?). The residual displacement ii; (named the warping) satisfies
fora.e.x; € Is,

/ lie (X1, X2, X3)dx1dx; = 0,
D

r

/xla3,§(x1’x2ax3)dxldx2 = /xziig(xl,xz,x3)dx1dx2 =0, (3.3)
D

. D,
/ (x1u2,.§(x17x2,x3) —xziil,g(xhxz,xs))dhdxz =0
D,

The following estimates of the terms of the decomposition (3.2) are proven in theorem 3.1 in Griso®:

e Nl 22,y < CTII“&HP&, I Viiglliz2e,e < Clluelle,,
dR; ave .C 34
e s < 72 el e~ ReAves| g < Tl
The strain tensor field of u; is
.. . du,
r(lie)  ri2(ie) %[( < Rz,g) xz—] + r13(lie)
. dU
(V”:S)S = * Y22(iig) %[( 2 +R1§> +x % i, ] + y23(iie) |- (3.5)
dR,; dR,
* * dx i, xl;g‘ + r33(le)
Set
0 —R3g Rog
nge = R3’§ 0 —Rl,é
From the expression (3.2) of us and after a straightforward calculation one derives
Ve = R e < € Wty +1| o = Renes] |+ Pl G|
¢~ Reolliee,r < ellizee, PR RARC] | FE e wapr )
The estimates (3.4) and the above one lead to
|| Vug - R?e| |[L2(P,,~)J9 < Cllugllp,- (3.6)
Denote
_J +lifd=aq,
~ Y -1lifd=b.
For every ¢ € L'(I9), d € {a, b}, set
1
M = — X3)dxs.
1(®) 2Kd5/1g¢( 3)dx;
Recall the following consequences of the Poincaré-Wirtinger inequality (d € {a, b}):
. lp = My(P)liq,) < Célld o)
V¢ € HY(I), - (3.7)
[Mi(@) = Mp ()| < C677 1@ ll2a)-
Lemma 1. Onehas(d € {a,b})
2 Cs?
2 |1Vutee +9 = My (RE) [igp,p < =5 llully (3.8)

2=
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and
2015112
Z ||u3(£§ + ) - MIS(U&f) +X1M1g (Rz’gj) XzMId (R1 5)||L2(P ) S <Cé ”M”V,
éeE,
) cst (3.9)
D lueg + ) = My (Us) = Mya (Re) A (x = 88€9)| [0, < =5 Il
[{=Ch
The constants do not depend on 6, €, and r.
Proof. From (3.4); and (3.7); one obtains d € {a,b}:
VeEex IRE — My (RE) | <Cs < Sl (3.10)
e & 1 [L2(I;)P° LB ~ r2 ¢lIPs- ’
Then (3.8) follows. Now, (3.4)4 and (3.10) give
dUs
1T g, < e,
V§ h'E’
||dUlf_M Mo #1152 4 My (Res)| < Sl
gi 25 24;) dX3 I 1,6 2, ) EllPs-
Hence
Co
|1Use — M[g(U&f)”Lz(I&) < 7||M§||P5,
Cé?
[Ure — Mfg(Ul,.f) - (X3 - S5)MIg (Rz,g) lz2r,) < 7”“5”1)5,
Cé?
1Uz¢ = My (Ung) + (3 = 88)Ma (Rug) llzeqry) < —2 lluelle;.-
The above estimates together with (3.4); and (3.10) yield (3.9). O

Let O be an open subset of R/, | € N*. For every measurable function ¢ on eZ, x O, denote $ the piecewise constant
function defined on w X © by

(Z(zl,z2,x) = ¢e(x) forall (z1,22) € e€+¢eY, £ €E, andforae. x e 0. (3.11)
The fields associated to the decomposition (3.2) of u; are denoted:
U, ReLXw;H'I5R%), R* € LAw;H'I;;R%) and i € L¥(w; H'(Ps; R?)).

As a consequence of (3.4), one has

||ii”[L2(w><P5)]3 < Crellully, I Vaiillz2xpyr < Cellully,
€ af] - € (3.12)
[l <CSlully,  ||5- —Rae| < CEjully.
a3 2 xi)p r 0x; (L2 (wXI,)T? r

3.2 | Decomposition of the plate displacements

Let u be in HY(Qs,; R®). In the plates Qf and Qg, the displacement u is decomposed as (see the decomposition of the
plate displacements introduced in Griso**)

ux) = U90) + (0 — sO)RIN) + w(x), fora.e. x = (x1,%2,X3) € Q! (3.13)

where X' = xje; +x2€;, U4 = Ule, + Udez +Uldes € H(w; R?), RY = Rie; + Rie, € H' (w; R?), and e HY Q4 R3),
d € {a, b}. The residual displacement u 7' —named the warping—satisfies

/jﬂa(x’,x3)dx3 =0, /d(x3 —86)U,(x',x3)dx; =0 forae. X €w. (3.14)
I I

Moreover, the following estimates hold, d € {a, b}, (see thoerem 4.1 of Griso®):
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2 d d
. av.
Z <5||7aﬂ(Rd)||L2(w) + ||7aﬂ(1frg)”L2(a))> + 2 4 RY , = d
a, f=1 H axl L*(w) H 0x2 L (w) (315)
—d —d
51/2 llullv, llu ||[L2(Qg)]3 < Collully, [IVu ||[L2(Q§)]9 < Cllullv,
where U',,‘i = l/'ldel + U'zdez.
The strain tensor field of the displacement u is given by (d € {a, b}):
e, T LRI+ —) + 113
— < od
(Vu),=| « re, <Rd )+V23(u ) a.e. in Qf (3.16)

* * }’33(“ )

where
I, = 7ap(UD) + (65 = 8)7ap (R + rap @),

From now on, one assumes that the displacements belong to Vi ,.

3.2.1 | Estimates for the plate Q°

Observe that if u € V; . ., then all the terms of the decomposition of u vanish on Fg. In particular, one has

RP e Hi(@;R?),  U?® e Hi(w;R).

Hence, because of the 2D-Korn inequality and (3.15), one obtains

C
IR gz oy < 7z Iullv- IVl @ < 51/2 =7 lullv.
Again, (3.15) together with (3.17); leads to
C C
VU2 s < IR iz + s lully < === lully.
Apply the Poincaré inequality that gives
b
12 liyer < 55l

(3.17)

(3.18)

(3.19)

Hence, from (3.15), (3.17), (3.18), and (3.19) one derives the classical estimates for a plate clamped on its lateral boundary:

C
”ua”LZ(Q’;) < Cllullv, ”Vu”[LZ(QZ)P + ||u3”L2(Q§) < E”u”V

3.2.2 | Estimates for the plate Q}

(3.20)

Consider the membrane displacement U}; = UY'e; + U}'e,. We know that there exists a rigid displacement r¢ such that

r{(xX') = af — b$x, r5(x') = a§ + bsx, X €w,
c C
Vi =l <€ X Wap@Widlliz < <75 lllv.
a,p=1
There also exists a second rigid displacement R® such that
R{(xX') = b{ — cx, R§(x) = b5 + cxy, X € w,
c C
IR = RNl < C X apROllizy < =7 llullv-
a,p=1
Then (3.15) and the above estimate (3.22) yield
|| || : 5 llulv.
dx1 LX(w) 0x; L) ~ 53/2

(3.21)

(3.22)

(3.23)
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One has

0 ()‘lf; 0 ()Ua )
—(—+R‘1’>——< Ra> -2 in H ).
ox; \ 0x; 0x1 \ 0x

This equality and (3.23) lead to |c| < 53% [lullv, which, in turn, with (3.22) give

C
=7 lullv. (3.24)

IVRl2@r < =7 572

3.2.3 | Comparison of the terms of the plate decompositions
Set
0 -b: RY 0 0 R
R&:( bs 0 R;), R)=| 0 0 R
-Rf -R; O -Rb -Rb 0
Lemma 2. One has

b
[IVu - R;l”[LZ(Qg)]‘? < Cllully, (IVu - Rpl”[Lz(Qg)]" < Cllully. (3.25)

The constants do not depend on 6, €, and r.

Proof. From the expression (3.13) of u in the plate Q%, one expresses Vu — Rgl. Then the estimates (3.15), (3.21), and
(3.24) give

a
Hlr2 @)

—a 32 1/2
Vi = R llz2ayp < C<||VM lizz@eyp + 8 IVR 2@ + 6"/

a

51/2
* 22 ()

== + IV - l‘a)||[L2(w)]ZXZ> < Cllully.
a)C2
In the same way one shows (3.25),. O

For ¢ € L!(w), define the piecewise constant function M, (¢) belonging to L*(w) by

M(P)(X) = Mi($)(ed) =

|D|/¢(£§+z)dz, forae. X €eef+Y,, E€E,.

Recall that for every ¢ € H'(w)*

I b(ec +2) = Mo@)eB)liacy, < Ceq/In (£ )IVlluscr,p. V& € Ee,

(3.26)
lp — Mp( D)2y < Ce ( )”V‘i’”[m(a))p
Lemma 3. One has (d € {a,b})
< 2 22025 .

IR 2@y < C —1 + £r_522 + = £ In (%)] ”;%’

(3.27)
IR, = R[] 120t < C 5_52 & fn( ] lully.
||§be||[Lz(wX1§)]9 <C _1 + Er_‘sz + 72 In <;) ] |Iu5|Iv_

The constants do not depend on 6, €, and r.

*In Appendix we give a short proof of these classical results.
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Proof. Using (3.17), (3.25); (resp. (3.24), (3.25),), and (3.26), one deduces (d € {a, b}):

/In IIMIIV
||R -M (Rdl)”[Lz(o))]g < Ce 53/2 ’

(3.28)
£ &
|[Vie = M (RE) || 2oy < C <1 +24/In (—)> llully.
s o r
The above estimate (3.28), and (3.8) allow to obtain
5 € €
Y 67| M (R ) (£8) — My (R) [ < C(ﬁ +5In (;)>||u||2v, (3.29)
==
which, in turn, with (3.28); lead to
2¢2 4
d Sbhey (12 £°0 £ 3 5
[1REy = Mg (B [ < O + s () )l (3.30)
Besides, from (3.7), and (3.12); we get
=~ 5%€?
||Rbe ( )||[L2(w><l )JQ — C ”u||2,
5 (3.31)
b b
”MIS (R e) MIb(R e)”[LZ(w)]Q < 7““”%/
Hence, (3.30) and (3.31); yield (3.27);, while (3.30) and (3.31), give
52 5 €2 €
IRG — REIIZ, 0 < O (55 + S 10 (5) ) ul.
Thus, (3.27), is proven. The above estimate together with (3.17); leads to (3.27),. Finally, (3.31); and (3.17); yield
(3.27)s. O
As a consequence of (3.15) and (3.27),, one gets
55 52 e\ | Nullv
In the following lemma, one estimates the L? norm of the midsurface displacement 1%
Lemma 4. There exists a constant C (independent of 8, €, and r), such that
I3 6> g2 £ ||uellv
IV = VPl < Ceq/In (;) ll +55+54/ln <;>] S
Ve < C |1+ £ 4+ £ fin (5) “lully
, £90 & £
3 I%@) = r2 r r 53/2°
(3.33)
~ 2 2
”’lf3d—U3||L2(w><I”)SC6 ln(§> 1+i+8— 11’1<£> w,
s r r2 r r 6
6t e [en]| lully
||U3||L2(w><1)<C 1+—+ ln(—> _,
r r 1)
and
2 g "l
@ 9 2y < 2 <£> v
Vs = Vol + IV e < C [1 t In | s
5 & e\ | llullv
2@y < O LEe (—) 3.34
”VUa ”[L ()] _C l + 2 + - In ; 51/2 . ( )

~ 2 e
1 Uellr2@xry) < C [ +—+ - In <;> [lze]]v.
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Proof.

Step 1. One proves (3.33). Because of (3.15) and (3.28); one first obtains

€ € [[ully
< = =
L2(w) C<1+ 5 1n<r>) s1/2°

d+M( RY)

d
+M(RS) L2<w>+|| 0x;

H 0x;

Using (3.26); and the above inequality yield

> / [U(eg +X') = M (V) (€0) + 31 M, (RY) (€8) + 2 M, (RE) (€8) | dxrdxy

EE_.
<cem(£)(1+ S (€)1

This estimate together with (3.15); and (3.28); leads to

2 ustes +9) = Mr (U3 (€8) + 1My (RY) (€8) + x2M: (RE) (€0 [y,

£€EE,

<cfpem(£) - (on (£)

This with (3.9), gives

Z r8| M (U (e&) - My (Use) | <C[5+—ln( >]z”u”2‘/’

(3.35)
~ C. 2 2 2
= [|MAVF) = My (B) [ < =[5+ S 10 (5) ]t
Besides, from (3.7), and (3.12), we get
~ 6 5 2
”U3 Mld (U3) ||[L2(a)><I )]9 S C ”u'” >
e (3.36)
”MIZ(Ufi) M[b(U3)||[L2(w)]9 = _leu”%/

then with (3.35),

1M (V) = MoV 1y < C5x[5+ S n ()]
which, in turn, with (3.26),, (3.18), and (3.32) give (3.33); and (3.33), (observe that due to assumption (3.1) one has
£ /In () > 1), while (3.35),, (3.36)y, and again (3.26),, (3.18), (3.32) lead to (3.33); and (3.33)s.
Step 2. One proves (3.34). Consider (3.17), (3.21), and (3.26);. One gets

2
llully,

5 s

2 lviee +9 = M (VD) €0 [y, < C2In (£)

£E._‘

D Iviee +9 = MAVT) €[y, < CE M0 (£ )IVUT I

€€EE,

2
= 2 ||U1“(6§+-)—Mr(Uf‘)(er:)llizm)sczzzln(%)(“ A +IB1).

€EE, 6
Because of (3.15), (3.28);, and the previous estimates

D [latee + 9 = Mo(UP)€8) + (x5 + M (RE) €D [y ey < C[0+ £ In (2|l

€€EE,

2 [laCee +9 = Mo (V) (€6) + 05 = HMARE) D) oy sy < |82+ €2n (£) [l +Cen (£ ) sl

EE:F
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The above estimates together with (3.9), leads to

~ 2 C 2 54
[ 0) = (B, < 5 3 0 )t
3.37
1M (05) = M (80 [y < S [ 5 4 2 (£) s + S5 1 () 1w >
"1 5 L) = 25 | y2 r 14 72 r 3l
Besides, from (3.7), (3.12),4, and (3.27),, one derives
o 77 2 2 g 2 nbe||2
U - MI;’(UI)”U(waé) <Cs (ﬁ”ullv + ||R ||[L2(a>><1,5)]9)
2
6% €2 € 2
5cl1+r—2+7 ln(;)] lull?, (3.38)
Z02
I (T0) = M (1) [y < €14 554 2 fin (£) | 220
s o Plo) = 2 or r 5

Hence with (3.37)

! luly, g
||M,(1f1a)_Mr(vlb)||i2(w)gc[1+%+£_ 1n(£>] v +ci—1n(§)|bg|2.
The above estimate and (3.26), yield

[L3(w)]2 [L2(w)]2

2
2 2 ull? 4
+C 1+i+8—\/1n<§> I ”V+C8_1n<f>|bg|2
r2 r r ) r2 r

2
2 2 ul|? 4
<clhi+8 48 m(f) I ”V+C£—1n<£>|b‘31|2.
r2 r r ) r2 r

||y - Ulb”iz(w) < Ce’ln (%)(”VU{IHZ +IVUYII )

An upper bound of | |U'2a - U'zb | |i2(w) is obtained in the same way, the estimate is the same. As a consequence, using

(3.17),, the following estimate holds (a € {1,2}):

2
2 £6% g2 € llulls, et £ 2
Vo < cl1+ S+E ln<;>] L+ 5 ()81 (3.39)

Now, observe that

/ (1 VS (X)) —x, U (X))dx' = / (VP = 13()) = (U ) — r{(x)))dx’ + 2b¢ / O +x2)dx’.

(0]

Then (3.21) and (3.39) give

2
2
) 6> €2 € llully, et € )
|b§| SC[1+VT+— hl(;)] 5 +Cﬁln<;)|bg| .

If i—z In (f) is small enough, that gives an estimate of b3. Then summarizing the estimates of this step and using
(3.21) lead to (3.34), and (3.34),, then (3.37)1, (3.38)1, (3.34),, and (3.17) give (3.34)s. O
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As a consequence of the above two lemmas, one obtains the estimates of the restriction of u to the plate Q‘;:

IVullira@eyp < C ll + i +&4/In <§>] ”””V,

r o

2
52
lluallrzoe) < Cl + 6— +54/n <§>] llullv, (3.40)

2
2 u
||u3||L2(ga)<Cl1+i+_ 1n<§>] ” 5”V

Furthermore, from (3.6) to (3.27)4, (3.4), (3.33)4, and (3.34);, one derives the following estimates of the restriction of u to
the set of beams B; .

€62
Vu <cL 1+—+— ln( ) ully.
IVulliz,, e 5 l 2 , ] lullv

r 52
lugllzes,,,) < C- ll + 6— + = ln( )] [ullv, (3.41)
o E V r

2
r 6% €2 €

lusllros,, ) < C— ll +—+—/In (—)] ]l
e eoé r r r

4 | MAIN CASES

In view of (3.33), (3.34), and in order that both midsurface displacements ¢ and U°® match, one assumes that

6% . . et €\ .
— s uniformly bounded from above and = In (;) is small. 4.1)
,
Now, the 3 small parameters 6, r, and ¢ are linked. Set
e=kob’, r=x18", >0, p>0. 4.2)

Conditions (4.1) and assumptions (3.1) lead to
K1 <1, ifn =1,
1<np<2p and 2n<p+2, .
K1 <ko/2, ifp=n.
The couple (1, p) must belong to the convex polygon (without the edge n = 2p) whose vertexes are
(1, 1), (1,1/2), (4/3,2/3), (2,2).
Thus, there are 6 cases to analyze. They correspond to 2 vertexes, 3 edges, and the interior of the polygon. The interior of
this convex polygon corresponds to the most general situation. We will analyze this case in the next sections.
From now on, one assumes (3.1) and (4.1).
Now, we rewrite the estimates (3.40) and (3.41) obtained in the previous section:

(o
luallrz@ey < Cliully, IVullizz@oye + llusllzes < < llully, s
r r :
e llz2s,, ) < C;”””V, IVullizaa,, yp + llusllze,, ) < Cg”“”v-
5 | ASSUMPTIONS ONTHE APPLIED FORCES
In view of the energy relation (2.7) and the estimates (3.20) and (4.3), one can scale the applied forces:
« in the plate Qg and QF, the applied forces are given by (d € {a, b}):
fus(x) = 62 (xl,xz, ) for a.e. x in QJ,
(5.1)

fr5(x) = 8%f7 (xl,xz, > 3) for a.e. x in QF,

where f? belongs to L2(Q¢; R3),
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where [ € C(w; L*>(B*; R?)).

GRISO AND MERZOUGUI
« in the set of beams B; . ,, the applied forces are given by
€26 e X1 —€& X3 —€& X3
a,6X) = — s 5 s = )
Jus @) = —fa (e = — )
€262 pe X1 — €& xa— €& X3 (5.2)
X) = — 5 5 s o )
Fas00 = —=f3" (66, = — )
fora.e.xin (e£ + D;) xIEe, Eer,
As a consequence of (3.20) to (4.3), one obtains the following bound of the total elastic energy:
E(ug) = / ﬁ’gui,gdx S C63/2”u§|lv, (53)
Qb‘,s.r

where C is a constant independent of 6, ¢, and r. Taking into account to (2.1) and (2.2), there exists a constant ¢ > 0

independent of §, €, and r such that
cllusll? < Eus) < €572 ||usly.

Hence
lluslly < C63% and E(us) < C8°.

6 | THE RESCALING OPERATORS

6.1 | First rescaling operator

Let ¢ be a measurable function on Q¢, d € {a, b}. Define the measurable function I1;(¢) by

Ms(p)X', X3) = p(x, 6X3) fora.e. (X, X3) € Q4.

(5.4

The linear operator I1; also satisfies for every (¢, ) € [L*(Q2)]?: I5(¢)I15(y) = (). Moreover, for every ¢ € L*(QJ)

one has
1

1
/le'l,g(¢>)dx’dX3 = 5/9(;75 dx'dxs s (D) |22y = 512

91l 2 )-

For every ¢ € L*(w; H'(I%))
olls(¢) d¢
P = om;(£2).

aX_:, 0x3
As a consequence of the above equality one gets
HaH,s(qb) _ 51/2”%‘
0X; |z oxz 2@’

6.2 | Second rescaling operator
For y measurable on o X P, define the measurable function I1,(y) by
L), X1, X2, X3) = w', rX1,rX5,6X;)  forae. (X,X) € w X B.

For every ® € L?(w X P;), one has
r26/ I1,(P)dx' dX =/ D, x) dx'dx.
wXB wXP;

Hence,

1
ITL(D) || 22wxB) = &Tr”‘bﬂm(mxmy

For every ¢ € L*(w; H'(P;5))

(6.1)

(6.2)

(6.3)
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AL 1 ( aq’) in L*(wxB), a=1,2,

0X, 0X,
oIl (®
(P _ 5nr(@) in L*(w X B).
an aX3
From these equalities one derives
oIl (®
e Al ey =12
L2(wXB) 51/2 00X, L2 (0xP;) (6.4)
H an,@) 82 ” '
0X; rewxp) — 0x;3 HL2(@xpy)’
From now on, the couple(p, n)belongs to the interior of the polygon. In this case observe that
2 4
imf=timf=0  and 1imi=1im£—1n(f)=o. (6.5)
6-0g 606 6-0 r2 550 p2 r
7 | THE LIMIT FIELDS
Let {us}s be a sequence of displacements, us € V., satisfying
luslly < C8*2. (7.1)
Using (6.3) and (6.4), now the estimates (3.12) become
(ua)
T (35) 2 oxye + || | LB Ces,
oll, (i 2 oI, (R 2
|| r( 5)| < Ci, || r( 5)) < Ci, (7.2)
0X;3 [L2(xB)]} r 0X;3 [L2(@xD)]? r?
0H,(1~J5) ~ £62
— — oIl (R —.
H o, O (Rs) /\e3‘ [LxDP —
and estimates (3.27)s, (3.27)4, (3.33)4, (3.34)3, and (7.2); (d € {a,b})
~, 6> €2 €
[ITI, ( )”[Lz(wa)P <C, ||Rp15 H"(Rée)H[Lz(a}xI)]g <C l7 + 7 ln<;>] ’
~ (7.3)
oIl (Us ) ~ ~
HO—X3 v T 1L (Uds) ll2xny < C8, ML (Us ) 2y < C-
Estimates (3.15), (3.17) to (3.19), (3.27)1, (3.27),, (3.33)1, (3.33),, and (3.34); become
d
V2 + || =22 i i x < C5, NV e + IR @ < C
S I H () a a,d L) = B 3,6 1 H (@) sIHY(w)]> = &>
a 55 62 € a b €
IR%, = R Ml < € |22+ £ /In <;) . IV = U2l < Cey/In (;> (7.4)
ol (5 ol (15 ) i
— — < Cs%.
H 0X, | (L2@Hp ~ 5, H 0X; H[B(szd)P 11003 ()2 < €

As a consequence of the above estimates one obtains the following theorem.

Theorem 1. Let {us}s be a sequence of displacements belonging to Vs rand satisﬁzing ( 7.1). There exist a subsequence
of{(S} still denoted {5} andii € L2(w x I H(D; R3)), Ry, U, € L¥(w), (Us, R1, Ry, Rs, U3) € [L*(w; H'(I)))® satisfying
=0inwx I UIP), R,(-,0) = Us(-,0) = 0 a.e. in w and Z, € L*(w x I such that
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lHr(ﬁ(;) —~ i weaklyin L*(w x I, H(D; R%)),

eé
I—I rd

5_:;z a@r_}({?&) =0 weakly in L*(w x B;R®),
I(R;) = R weakly in L*(w; H'(I; R?)),

2 ~ ~ ~
Z T Ro ~ Roa(.0) = Ry weakly in LX(w: H' (D).
E

2

.

= I,(Rs3) = Rs  weakly in L*(w; H'(I)),
E

o N (7.5)
5T Tep) = Ue weakly in L (w; H\(D)),
I (Uss) = Us  weakly in L*(w; H'(I)),

L0, (Ts5 = Uss(,0) = U5 weakly in L?(w; H\(D)),

€62
r/0IL(Uys) ~ ~ .

= <:)T315 - 6H,(R2,5)> =7y  weaklyin L*(w X I),
r 0 (Uss) ~ ~ .

= <;T325 + SH,(R1,5)> —~Z,  weaklyin L*(w X I).

Furthermore, there exist i € L*(w; H'(I%R3)), R, € H(w), U2 € Hi(w), U3 € Hi(w) and Z¢ € L*(w), d € {a,b},
such that

éna(ﬁg’) —~ ' weakly in L*(w; H'(I%; R%)),
—d
oIl
LoLGs) 0  weaklyin L*(Q% R?),
6 0x,
RS~ R,  weaklyin H (w),
1 ’ (7.6)
gUa‘fa N s weakly in H (o),
1/'3“,1(S -~ U5 weakly in H' (),
1 0U3d§ d d
5( 0xa, + R 5) - zd weakly in L*(w).
Moreover,
?;;3 =-R,, aein o, Uy=13 aein oxI (7.7)
Set
Ve = 3 (U + 02,
The limit fields ZZ U, and U, % are linked by the following junction conditions:
3 «
o, oU: oU, U5 ~
—=——=R2, —=——=—R1’
0X3 ox; 0X3 ox; ae in wXxI. (7.8)
~ oV V-
Ual X3) = V() = Xa =), Ud = Uy —s—,
0x, 0X,

Proof. The relations (6.5) are extensively used in the proof of this theorem even if this fact is not always specified.

Step 1. As a consequence of the estimates (7.2) and (7.3) there exist a subsequence of {6}, still denoted {6} and
functions such that the convergences (7.5);, (7.5)3 to (7.5)10, (7.6)1, and (7.6)3 to (7.6)¢ hold. From estimates (7.4)
one deduces that the sequences {Rg’ 5165 {Rg’ s1a (resp. {U;s }s, {Uga}d) converge to the same limit. Moreover, the
boundary conditions on the functions U': 5 U';f 5»and RZ,& yield

vh, U3, R, € Hi(w).
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Step 2. Because of (7.2), the sequence % {Hr(ﬁ(;)} is bounded in L?(w; H*(B;R%)). Hence, up to a subsequence it
€ s
weakly convergences to a limit belonging to L*(w; H'(B; R?)). Convergence (7.5); implies

LG = r(LH,(E,;)) -0  strongly in L*(w; H'(B; R?)).
€62 6\ebd
Hence (7.5),. Similarly, one proves (7.6),.
Step 3. The first equality of (7.7) is a consequence of (7.4);; thus, U3 belongs to Hg(w). From (3.33); one deduces that

Us; = U3 ae.in w X I, which proves (7.7),.

o110y < C#, then the convergences (7.5); and (7.5)s lead to

Step 4. Recall that | | <
L2(wxI)

— 6T15(Rs) A e3|

o0y _z 90

—_— s =-R, ae.inwxl 7.9
X, 2 1 CU (7.9

0X;
Therefore, lNJ,, belongs to L?(w; H*(I)). Because of the estimates (7.2) and (7.3), the field R does not depend on the
variable X;. Then (7 3), implies R = 0 in w x (I* U I?).

Now, because Im% 7 = lim ( e f) =0, (7.3), also yields

=0 2

R, =R, R, = -R,, a.e. in w. (7.10)

Step 5. From (7.7), (7.9), and (7.10), there exists C, € L*(w) such that

U, X3) = (W3 in L2(w:; H\(I)). (7.11)
Besides, from (3.37)
d 6% g2 £
Mo (V) = Myt (T 120y < ca(r—2+7 ln(;)). (7.12)
Let ¢ be in L'(Q%). A simple change of variable gives
Mlg(dn)(x’) = Mpu(5()) (') forae x' €w (7.13)

where

Ka
VO € LY(w x I%), Mpu(®)(x) = % / d(/, X; —s)dX;, forae. x € w.
Kd J_—

Ka

Hence, from (3.26) to (7.4) and (7.12) together with the above equalities, one gets
H = (U'd ) < Ce4q/In <£>
PR o~ 5 MV 12(w) ~ r/’
1 dy_ ( 1.0 ) Y ( E )
H 5M,(1fa’5) My 5H5(Ua’5) L) ~ c r2 * r In r/ )’

Passing to the limit gives V¢ = M,d(ﬁa) and then with (7.11)

vl = Mu(U,) = LN C,.
0Xy
Then one deduces the expression of U,(-,X3) in w x I and Udin o (see (7.8). O

As a consequence of the above theorem and the decompositions (3.2) to (3.13), one has
oV;

0x,
oU;
0x,

The limit displacement is of Kirchhoff-Love type.

(i) — M,(55) = U3  weakly in L?(w; H'(B™)),

%Hg(ua’g) —_ U;, —X3 5 I"L;(u3,5) — Ug Weakly in Hl(Qd)
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8 | ASYMPTOTIC BEHAVIOR OF THE STRUCTURE
Now, let y be in D(R?) satisfying y = 1in Dy, y(x') € [0, 1] for all X’ € R2. Below, one recalls two classical approximation
results.

Lemma 5. Let ¢ be in W (w). Define ¢, , by

weo ntr= (DL ¢ 52 o

Iff goes to 0 then for every p € [1,+00)
¢er — ¢ strongly in WP (w). (8.1)
Let ® be in W>*(w). Define @, by

o o = (L2 [ole[Z]) (2} vo(ef<])] o5 oo
Iff goes to 0 then for every p € [1,+00)

., > @ stronglyin WP(w). (8.2)

8.1 | Weak convergences of the strain tensor fields

Asimmediate consequence of the convergences in Theorem 1 and the expressions (3.5) to (3.16) of the symmetric gradient
in the beams and in the plates, we obtain the following proposition.

Proposition 1. Under the hypotheses of Theorem 1, in the set of beams one has the weak convergence

L&nr( (Vis)g) =T weakly in [L*(w x B*)]*3 (8.3)
€
where the components of the symmetric matrix I are given by
1 dﬁa aaﬂ 663 ()ﬁz dlA{l
Top == + ., TDp=— X2 +X,—2,
o 2(aXﬁ aXa) BTox;  Ttoxs | Crox,
1 ~ aﬁg (ﬁg 1~ a§3 a,1;3
I's==-(Z41 - X;— + —), I'ypy==(Z+X5— + —).
13 2( 1= X5% 6X1) 23 2( 2+ X055 0Xz)
In the plates one obtains the following weak convergences (d € {a,b}):
%Hg((wg) o) =~ T4 weakly in [LX(QH]P? (8.4)
where the components of the symmetric matrix T are given by (U}, = Ve, + U3e5):
PV 1 ouy omts
T = ys(U) — X . T =—<ij+—“), d - 20 8.5
af Y ﬂ( m) Saxaa_Xﬂ a3 2 0X3 33 6X3 ( )

8.2 | Determination of the strain tensor in the set of beams

To determine the Z,'s and the warping ii one proceeds as in section 6.1 of Blanchard et al'® and section 8.1 of Blanchard
et al,™ one first derives ii, and Z,. That gives (a.e. in @ X BP®),

y = be{ - s + s U - s U }9

(G, X)=v X1 6X3( X3) 2 0X3( X3) X1X20X3( X3)
LX) = be{ - X—0,X3)+ X1 X —(, X3) — —(, X },

i, X)=v 26X3( 3) + X1 26X3( 3) 7 0X3( 3)

i3, X)=0,  Z,=0,
where v?¢ = wa—ﬁ:ﬂbe) is the Poisson coefficient of the material of the beams.
From the expression (2.2) of the stress tensor field, the convergence (8.3) and the expressions (8.6) of i and Z, one
obtains
Lan,(a;) —~ 3  weaklyin [L3(ew x B™)]>3 (8.7)
€
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where
T X) = Znn( X) = Zia(, X) = 0
213 X) =~ 2 (. Xs), S X) = i RO inwx B (8.8)
B33, X0 = (220X - Xi 2, X) + o X)),

pbe — HEGA+2u%)

e is the Young modulus of the elastic material of the beams. In Section 9, we will prove that

=0 in wXxB".

8.3 | Determination of the Zg’s and the warpings ﬂd, de {a,b}

Proceeding as in section 5.2 in Griso® one first deduces that the functions aﬁ and Z¢ are equal to zero and

aLL3 ( ) Apl < (Ud) _ (X _ S) 021/'3 )
0X; TPl et Ve T T o, ) o
z . a.e.in Q% de€ {a,b}.
AP 3
= ———— | Yaa(U) — X: >
APl 4 20! <y W) = X3 5 o

Recall that from (3.14), one has fldﬁg(x’ ,X3)dX; = 0, a.e. in w. This equality allows to derive the function ﬁg in terms of
the fields U}, and U3. But these expressions are useless; to give the limit of the stress tensors, we only need the knowledge
of the partial derivative of ﬁg with respect to X3. Again, from the expression (2.2) of the stress tensor field and now using
the convergence (8.4) one gets

%Hg(ag) — x4 weakly in [L2(Q%)]>. (8.9)

Inserting the above expression of and taking into account that Z¢ = 0 lead to

. PUs PU;

= = m[mafm) e (r2im) - %5 o ).
¢ _ B PUs P,

sl = m[mafm) = (@ -x; = . (8.10)
d _ EPl 027/'3 d _ . d

212 = m |:]/12(1fm) — X3 ax10x2:|, 21'3 =0 ae. inQ

Pl(3 4Pl 0!
#_ is the Poisson coefficient and EP! = #-GA+2u)

here vol = —
whnere v 2(/1?[_'_ Pl Apl_'_”pl

plates.

is the Young modulus of the elastic material of the

8.4 | The limit problem
Set
= / [, X3)dXs + / [ X3)dXs + / [, X)dX,
I¢
afa fb fbe

Ia 0 Bbe X

(-, X3)dX; +

([

Iu . X)dX)
+/f3"(~,X3)dX3 +/f3b(',X3)dX3 +/ 2, X)dX.
I b Bbe

One has f; € L*().
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Theorem 2. The triplet (U1, U>, U3) is the unique solution of the variational problem:

2(kq + Kb)Epl

(U1, Uz, Us) € Hy(w) X Hy(w) X Hy (), /[(1 — VY ap(Un)Vap(®) + VP (riae(Usn)) (Ykk(¢))]dxl

1—(vphy?
pl
(L , /[( YNk B S vPlAYf3A<D] dx’

1 — (vPh)? 0x0,0x,; 0x,,0x,;

2(ka — Kp)E / [ 1, 02U !
— 1= ” PN ]dx’ 811

1—ore? J, A-v )6x o, Yap(P) + v 3 (7)) (8.11)

_ 2(ka - Kkp)EP!

/ |a- vPl)yaﬂ(Um o, TV (V) Jad|av

1— (vP)2
=/fa¢adx’+/fz‘1>dx', V(¢>1,¢z,¢)EHé(w)XHé(a))XHS(w),
where

n= % [2(1(2 + Kg) + 6(xq + Kb)].

Proof. Let ¢, ¢,, and @ be in D(w). The test displacement v; is defined by

V3a0) = (¢W( ) -2,

Vs3(X) = 5D, (X)),

X € Q(syg’r.

where ¢, ,, (f)g,, are defined in Lemma 5. Because y = 1 in Dy, in every beam the displacement vs coincides with a
rigid displacement. Hence (V1°)s = 0 a.e. in Bs -
In Q¢ one has

X 62&)&
= : ) riz(vs) =0

Yaﬂ(vé) == (}’aﬁ(d)e r) — 5 6xaaxﬂ s

Applying the operator I1;, then using Lemma 5, and passing to the limit give
0*®

3 0X40Xp

west) = 35 (ner (e [£]) - 35 (CL5])
s = g0 (e[£]) + <5} ve([5])

8T, (Vas) = o — Xg%‘) strongly in L*(w x B™),
o

8 L5(vap(v5)) = Yap(dh) — strongly in L2(Q9). (8.12)

For all x in B; ., one has

Hence

8, (V35) - ®  strongly in L*(w x B™),

8 M5(Va5) = P — X3

(8.13)

trongly in L*(Q%),
o, strongly in L*(Q2%)

8Ms(vs5) — @ strongly in L2(Q9).

Choose v; as test function in (2.6), then transform with the operators I, — and II,. That yields

1
/ <T5(0y:5)6° 5 (1 (v5))dx' dX; = [ 875V 5)dx’ dX; + S 871503 5)dx’ dXs
QayQb 6 QayQb QayQb
2 —_
+ / L T1,(fo )87 T (P’ dX + / 0,(f35)8° T1(935)dx’ dX.
wabc625 wxBbe € 252
(8.14)
Because of the strong convergences (8.12) and (8.13), passing to the limit leads to
0d
/ (@) s Y= 3 ([ fi(0n- 002 Javaxe+ [ plodvax,)
detab) XaOXp defab) /O Y o (8.15)

+ / ,},’e<¢a _x, 92 )dx’dX + [ frodddx.
wxBbe Xa wxBbe
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Then one substitutes (8.10) in (8.15). Simplifying the obtained equality gives (8.11) for every (¢1, 2, P) € [D(a))]ﬁ
Because D(w) is dense in H}(w) and HZ(w), one gets (8.11) for every (¢1, ¢z, @) € Hy(w) X H)(w) X HX ().

9 | CONVERGENCE OF THE TOTAL ELASTIC ENERGY

In this section one proves that the total elastic energy 5%8(145) converges. Choose u; as test function in (2.6) and use
equality (2.7). That gives

) = X [ (3tatnatuan )+ 20 (2rtstrsusn)) (Tatrstuan ) |

{
+/wxgbe[*be<é“r(m>>)z+2ﬂbe(£r M Gy(@a) ) ( STry(ws)) ) | ' dx
and

1
~ew)= % ( /Q o875t ) X + /Q 6 (s 5)dXdX; )

de{ab)

2
+/ r(fa 6)5 I, (ug, Uy s)dx dX +/ r(fS 6)5 I, (us, Uz 5)dx'dX
wXBbe 525 wxBbe €

Convergences (7.5), (7.6), (8.7) to (8.9), equalities (7.8), and the fact that the convex functional v — &@) is
lower-semicontinuous on V., allow to pass to the limit in the above equalities. One obtains

2
Y / [Apl(rg) + 2 (1) () | ' + / [2%(T) )"+ 202 (1) (1) | ' dx
defa,b}’ @ wxBbe
R | . 1
< lugil(r)zfgé'(ua) < lln;jgtpgé'(ua)

6—0 d

slim[ Y ( / FI52 T (U 5)dX X + / f§53n5(u3,5)dx'dx3)
de{a,b} Q Qd

2 —_— 2 —~
+ / L1, () 8T, (g )’ dX + / =T ()81 ([55)dx dX |
wxBbe € 1) wxBbe € )
> [ / fd( dU3)dx’dX3 / 1 U'3dx’dX3]
defab) 7 0x

+ U, dx' dX + freUsdx'dX = / fo Vdx' + / fz Usdx'.

wxBbe wxBbe

Taking (U1, U3, U3) as a test function in (8.11) allow to replace all the above inequalities by equalities. That gives the
convergence of the total elastic energy

.1
il = pl plydrd] 4+
%1_{%538(%) deab/ [4 kk >+ 2u o ]dx dx;,

and also / [Abe(l“kk)) + 2pPTyTy|dx'dX = 0.
wXBbe

As immediate consequence of the above equality, one has X = 0Oinw x B". Moreover, the weak convergences (8.3) and
(8.4) are strong convergences.
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APPENDIX A

Lemma 6. Let Q be a bounded domain in R?> whose diameter is less than R. We assume that Q is starshaped with respect
to the ball B(O; 1). For every ¢ € H (Q) one has

|| = M(@)|}20) < CRy/In RNVl 2@

1
M) = ———
2 [B(O; DI Jp0.1

(A1)
P(x)dx

where C does not depend on R.

Proof. Let ¢ be in C'(Q). Consider the segment joining O to P on the boundary of Q. Its direction is given by the unit
vector y’ € R?. We have

t
0
B < 1601 + / Zowlar,  v.yiciop,  remp  Peoo.
1

Hence

t t
0
vl <2(000+ [ 4 [ %ay)
1 v Jy lor

t
— 16012 < 2(190))F +1n (R) / |22 [ rar).
1

2r dr),
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Multiply by ¢, then integrate between 1 and |P| (y’ being fixed), and finally integrate over the unit sphere of R?. That
gives (t < R)
2 2 2 2

|I¢”L2(Q\B(T,1)) S R (||¢”L2((3B(O;l)) + ln (R) ”V¢|I[L2(Q)]Z)’

== “qﬁ”?}(g) < 2”¢||%}(E(O,1)) + 2R2(”¢”i2(03(o;1)) + In (R) “Vd)”?LZ(Q)]Z)
By density of C 1(5) in H(Q) the above inequality holds for every ¢ in H(Q).

Now, choose ¢ in H'(Q). The Poincaré-Wirtinger inequality gives
Il — M(D)lz2Bo1) < CIVllir2moaye- (A5)
The trace theorem and the above estimate yield
2 2 2
< ClIVPlliza@oe-

Replace ¢ by ¢ — M(¢) in (A4),. Inequalities (A5) to (A6) lead to (Al). O

(A4)

(A6)

Choose Q = Y, C R? (the diameter is equal to \/55), this domain is starshaped with respect to the disc D,(r < £/2). Let
¢ be in H'(Y,), and denote M, (¢) the mean value of ¢ in D,. We apply the above lemma with the function w(x) = ¢(x/r).
That gives

¢ — Mi(D)llr2v,) < Ceq/In (%) IVollizacy,)p- (A7)

The constant does not depend on € and r.
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