G. Adomavicius and A. Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions, Trans. on Knowledge and Data Engineering (TKDE), vol.17, pp.734-749, 2005.

. Hyung-jun-ahn, A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem, Inf. Sciences, vol.178, pp.37-51, 2008.

P. Bhattacharya, M. Bilal-zafar, N. Ganguly, S. Ghosh, and K. P. Gummadi, Inferring User Interests in the Twitter Social Network, Proc. Intl. Conf. on Recommender Systems (RECSYS), pp.357-360, 2014.

J. S. Breese, D. Heckerman, and C. Kadie, Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proc. Intl. Conf. on Uncertainty in Artificial Intelligence (UAI, pp.43-52, 1998.

E. Colleoni, A. Rozza, and A. Arvidsson, Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data, Jour. of Communication, vol.64, pp.317-332, 2014.

C. Constantin, R. Dahimene, Q. Grossetti, and C. Mouza, Finding Users of Interest in Micro-blogging Systems, Proc. Intl. Conf. on Extending Database Technology (EDBT, pp.5-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01362686

P. Covington, J. Adams, and E. Sargin, Deep Neural Networks for YouTube Recommendations, Proc. Intl. Conf. on Recommender Systems (RECSYS), pp.191-198, 2016.

P. Forbes and M. Zhu, Content-boosted Matrix Factorization for Recommender Systems: Experiments with Recipe Recommendation, Proc. Intl. Conf. on Recommender Systems (RECSYS), pp.261-264, 2011.

B. Fortuna, C. Fortuna, and D. Mladeni?, Real-time News Recommender System, Proc. Eur. Conf. on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD, pp.583-586, 2010.

F. Godin, V. Slavkovikj, W. De-neve, B. Schrauwen, and R. Van-de-walle, Using Topic Models for Twitter Hashtag Recommendation, Proc. Intl. World Wide Web Conference, pp.593-596, 2013.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using Collaborative Filtering to Weave an Information Tapestry, Commun. ACM, vol.35, pp.61-70, 1992.

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang et al., WTF: The Who to Follow Service at Twitter, Proc. Intl. World Wide Web Conference, pp.505-514, 2013.

L. Jonathan, J. A. Herlocker, A. Konstan, J. Borchers, and . Riedl, An algorithmic framework for performing collaborative filtering, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp.230-237, 1999.

Z. Huang, H. Chen, and D. Zeng, Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering, ACM Trans. Inf. Syst, vol.22, pp.116-142, 2004.

K. Jeon-hyung-kang and . Lerman, Using Lists to Measure Homophily on Twitter, AAAI work. on Intelligent Techniques for Web Personalization and Recommendation, 2012.

M. Jamali and M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, Proceedings of the fourth ACM conference on Recommender systems, pp.135-142, 2010.

M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang et al., Social Contextual Recommendation, Proc. Intl. Conf. on Information and Knowledge Management (CIKM, pp.45-54, 2012.

D. Pla and K. , Yannis Stavrakas, and Yannis Vassiliou. 2017. Tweet and Followee Personalized Recommendations Based on Knowledge Graphs. Jour. of Ambient Intelligence and Humanized Computing, pp.1-15, 2017.

Y. Koren, Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model, Proc. Intl. Conf. on Knowledge Discovery and Data Mining (KDD, pp.426-434, 2008.

Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, pp.30-37, 2009.

H. Kwak, C. Lee, H. Park, and S. Moon, What is Twitter, a Social Network or a News Media, Proc. Intl. World Wide Web Conference, pp.591-600, 2010.

K. Lerman, R. Ghosh, and T. Surachawala, Social Contagion: An Empirical Study of Information Spread on Digg and Twitter Follower Graphs, 2012.

P. Lops, G. Marco-de-gemmis, and . Semeraro, Contentbased Recommender Systems: State of the Art and Trends, Recommender Systems Handbook, pp.73-105, 2011.

H. Ma, H. Yang, I. Michael-r-lyu, and . King, Sorec: Social Recommendation Using Probabilistic Matrix Factorization, Proc. Intl. Conf. on Information and Knowledge Management (CIKM, pp.931-940, 2008.

P. Massa and P. Avesani, Trust-aware Recommender Systems, Proc. Intl. Conf. on Recommender Systems (RECSYS, pp.17-24, 2007.

A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux, Dictionary Learning for Massive Matrix Factorization, Proc. Intl. Conf. on Machine Learning (ICML) (ICML'16, pp.1737-1746, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308934

N. Bradley, I. Miller, . Albert, K. Shyong, J. A. Lam et al., MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System, Proc. Intl. Conf. on Intelligent User Interfaces (IUI), pp.263-266, 2003.

N. Koumchatzky and A. Andryeyev, Using Deep Learning at Scale in Twitter's Timelines, 2017.

A. Van-den-oord, S. Dieleman, and B. Schrauwen, Deep Content-based Music Recommendation, Proc. Intl. Conf. on Neural Information Processing Systems (NIPS), pp.2643-2651, 2013.

A. Said and A. Bellogín, Comparative Recommender System Evaluation: Benchmarking Recommendation Frameworks, Proc. Intl. Conf. on Recommender Systems (RECSYS), pp.129-136, 2014.

S. Schnettler, A Structured Overview of 50 Years of Small-World Research, Social Networks, vol.31, pp.165-178, 2009.

A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin, GraphJet: Real-time Content Recommendations at Twitter. Proc. VLDB Endow, vol.9, pp.1281-1292, 2016.

J. Tang, X. Hu, and H. Liu, Social recommendation: a review, Social Network Analysis and Mining, vol.3, pp.1113-1133, 2013.

I. Uysal and . Bruce-croft, User Oriented Tweet Ranking: a Filtering Approach to Microblogs, Proc. Intl. Conf. on Information and Knowledge Management (CIKM, pp.2261-2264, 2011.

J. Weng, E. Lim, J. Jiang, and Q. He, TwitterRank: Finding Topic-sensitive Influential Twitterers, Proc. Intl. Conf. on Web Search and Data Mining (WSDM, pp.261-270, 2010.

X. Yang, Y. Guo, and Y. Liu, Bayesian-Inference-Based Recommendation in Online Social Networks, IEEE Trans. Parallel Distrib. Syst, vol.24, pp.642-651, 2013.

W. Faiyaz-al-zamal, D. Liu, and . Ruths, Homophily and Latent Attribute Inference: Inferring Latent Attributes of Twitter Users from Neighbors, ICWSM, 2012.