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Two basic trade-offs interact while our brain decides how tomove our body. First, with the

cost-benefit trade-off, the brain trades between the importance of moving faster toward

a target that is more rewarding and the increased muscular cost resulting from a faster

movement. Second, with the speed-accuracy trade-off, the brain trades between how

accurate the movement needs to be and the time it takes to achieve such accuracy.

So far, these two trade-offs have been well studied in isolation, despite their obvious

interdependence. To overcome this limitation, we propose a new model that is able to

simultaneously account for both trade-offs. The model assumes that the central nervous

system maximizes the expected utility resulting from the potential reward and the cost

over the repetition of many movements, taking into account the probability to miss the

target. The resulting model is able to account for both the speed-accuracy and the

cost-benefit trade-offs. To validate the proposed hypothesis, we confront the properties

of the computational model to data from an experimental study where subjects have

to reach for targets by performing arm movements in a horizontal plane. The results

qualitatively show that the proposed model successfully accounts for both cost-benefit

and speed-accuracy trade-offs.

Keywords: expected utility, hit dispersion, cost-benefit, speed-accuracy, arm reaching

1. INTRODUCTION

There has been a recent progress in motor control research on understanding how the time of a
movement is chosen. In particular, two models proposed an optimization criterion that involves
a trade-off between the muscular effort and the subjective value of getting the reward, hence a
cost-benefit trade-off (CBT) (Shadmehr et al., 2010; Rigoux and Guigon, 2012). On one hand,
getting a reward faster requires a larger muscular effort (Young and Bilby, 1993). On the other
hand, the subjective value of getting a reward decreases as the time needed to do so is increased
(Green and Myerson, 2004). As a result, the net utility consisting of the subjective value minus
the muscular effort is optimal for a certain time, as illustrated in Figure 1A. However, these
models do not account directly for basic facts about the relation between movement difficulty
and movement duration as captured more than 50 years ago by Fitts’ law (Fitts, 1954). According
to this law, the smaller a target, the slower the reaching movement. This is well explained
by the so-called speed-accuracy trade-off (SAT) stating that, the faster a movement, the less
accurate it is, hence the higher the probability to miss the target. So a subject reaching too
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A B

FIGURE 1 | Sketch of models: (A) cost-benefit trade-off models (Shadmehr et al., 2010; Rigoux and Guigon, 2012); (B) including the probability to miss (proposed

model). Red area: unfeasible short times. Green: subjective reward of movement; red: muscular energy cost. Blue and black lines: expected rewards and utilities

respectively (dashed for a large target, dotted for a small target). In the standard and proposed models, the subjective utility of getting the reward decreases over time,

while slow hitting movements require less muscular effort. As a result, the sum of the reward and the (negative) effort cost reaches a maximum for a certain time

(optimum time). The expected reward is the probability-weighted average of the subjective reward over infinitely many repetitions. It converges to the blue line as the

number of repetitions increase. The same for the global expected utility. In the proposed model, the probability to hit is null for fast movements and converges to 1 as

movements slow down. Furthermore, as movement time increases, the probability to hit increases faster for a large target than for a small one. Therefore, the

expected reward matches the subjective reward faster for large targets than for small targets and the optimum time (time at the maximum of global expected utility) is

shifted toward longer time for smaller targets, as a result of the speed-accuracy trade-off. Besides, at the optimum time, the probability to miss the target is larger for

small targets than for large targets. Note that if the target becomes considerably large compared to the length of the movement, it could affect the cost

characteristics. Having a larger target width might decrease the expected effort, because of the biomechanics and anisotropy of inertia of the arm. However, in this

study we considered relatively small targets compared to the movement length.

fast may not get the subjective value associated to reaching

and should slow down. Several studies in the past developed
various theories on SAT (Keele, 1968; Schmidt et al., 1979;
Crossman and Goodeve, 1983; Meyer et al., 1988; Elliott et al.,
2001). Later on, some of the missing aspects were covered by

the model of Dean et al. (2007). The key difference to CBT
models (Shadmehr et al., 2010; Rigoux and Guigon, 2012) is

that, instead of maximizing a reward, this model maximizes a
reward expectation, i.e., the reward times the probability to get

it. However, this model is abstract and it looks for an optimal
trade-off between an externally decayed reward and a parametric
SAT diagram that relates the probability of missing to movement

time. As such, it accounts neither for movement execution, nor
for the choice of a motor trajectory and its impact on the cost of
movement.

To overcome the limitations of the previously proposed

models, we present a new motor control model that is able to
account for both CBT and SAT bymaximizing the expected utility

of reaching movements. Unifying both trade-offs allows our

model to be the first to account simultaneously for several motor
control phenomena related to movement trajectory, velocity

profiles and hit dispersion, highlighting the crucial importance of

stochastic optimization in the presence of motor noise. Though
the model is general, we illustrate its properties in the context of

reaching with the arm.

The faster movements tend to be less accurate due to the
presence of single-dependant noise in the human motor control
system (Schmidt et al., 1979; Meyer et al., 1988; Harris and
Wolpert, 1998; Todorov and Jordan, 2002). Our model builds
on the stochastic optimal control view of motor control (Meyer
et al., 1988; Harris andWolpert, 1998; Todorov and Jordan, 2002;
Todorov, 2004, 2005; Li, 2006), which considers variability as
a key ingredient of human movements. In addition, the model
adopts an infinite-horizon formulation, like several other models
from the literature (Rigoux and Guigon, 2012; Qian et al., 2013).

The general intuition is illustrated in Figure 1B. In the
previous CBT models, the target was given as a single point and
the movement was considered as always reaching it, irrespective
of any target size constraint. In order to fully account for Fitts’
law, it is necessary to incorporate the intrinsic dispersion of
reachingmovements toward a target and the effect of sensory and
muscular noise on this dispersion (e.g., Harris andWolpert, 1998,
see Faisal et al., 2008 for a review). As a consequence of noise,
movements reaching faster should suffer from a higher dispersion
and thus get a lower probability of reaching a small target. Thus,
instead of optimizing a utility as the sum of a reward and a cost
terms as in (1) from Rigoux and Guigon (2012):

J(u) =

∫ ∞

0
e−t/γ

[

ρR(st)− υL(ut)
]

dt, (1)
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we hypothesize that human motor control optimizes an expected
utility, that is the above utility times the probability to get it, as
captured in (2):

J(u) = E(s, u)

( ∫ ∞

0

[

e−t/γ ρR(st)− υL(ut)
]

dt

)

, (2)

where E(s, u)[...] denotes the expectation over the random
variables s and u, which is the probability-weighted average of
its argument over infinitely many repetitions. In (1) and (2), t is
time, st is the current state, ut is the current muscular activation
vector, R(st) is the immediate reward function that equals 1 when
reaching the target and is null everywhere else, and L(ut) is the
movement cost. As in Rigoux and Guigon (2012) and many
other motor control models (e.g., Guigon et al., 2008b), we take
L(ut) = ‖ut‖

2. The meta-parameters of the model, γ , ρ and υ ,
are explained in section 4.2.1 and given in Table 3.

The probability to reach the target can be assumed null for
infinitely fast movements with a null duration, and goes to 1
(100%) as movements gets slower. Furthermore, it increases
faster for large targets than for small ones. A sketch of the
resulting expected reward as a function of movement time
is depicted in Figure 1B for a small and a large target. The
probability to miss can be inferred in Figure 1B as the ratio
between the subjective and the expected rewards, since the
expected reward would be equal to the subjective reward if this
probability was null.

As can be seen in Figure 1B, if the target is smaller, then
the probability to reach it is smaller for a given time, thus the
expected reward should itself be smaller. Therefore, the optimum
time resulting from the optimal combination of this expected
reward with the cost of movement should shift to longer times,
which is consistent with Fitts’ law.

Furthermore, at the optimum time, the probability to miss
the target is larger for small targets than for large targets. This
is why subjects miss significantly more often small targets than
large targets (see Figure 4). Going slower would decrease their
probability to miss, but would incur a lower global utility,
due to the loss in subjective utility. Explaining this specific
phenomenon is a distinguishing property of our model. Besides,
other empirical facts resulting from the unification of both trade-
offs are studied below.

The proposed computational model was implemented
through the simulation of a two degrees-of-freedom (DoFs)
planar arm model controlled by 6 muscles, illustrated in
Figure 7. Critically, the model incorporated delayed feedback
and signal-dependent motor noise, accounting for the fact that
the motor activation signal descending from the Central Nervous
System (CNS) to motoneurons is corrupted with some noise that
is proportional to this signal (Selen et al., 2006). An optimization
algorithm was used to obtain a controller providing musculars
activations to the model. Given stochasticity of the plant and
delayed feedback, a state estimation component was required in
the control loop (see e.g., Guigon et al., 2008b). We implemented
an ad hoc state estimator described in section 4.2.3. The goal of
the optimized controller was to maximize the cost function given
in (4) (see section 4.2.2 for details).

To validate the proposed hypothesis andmotor control model,
we designed an experimental study where ten subjects had
to reach targets displayed on a screen by performing large
horizontal arm movements. In order to study the combined
effects of the CBT and the SAT on movement trajectory, velocity
and hit dispersion, we rewarded the subjects as a function of
a number of targets they reached in a limited duration, and
we varied the starting point and target size so as to enforce
various accuracy constraints in their movements. More precisely,
the setup included 15 starting points along three circles at
15, 37.5, and 60% of arm length (see Figure 5B) from the
target and we used four different target sizes (5, 10, 20, and
40 mm), consistently with the simulation setup. We recorded
the reaching hand trajectories of subjects with a dedicated
haptic manipulator and their muscular activations through
surface electromyography (EMG). To amplify the effect of the
cost of motion, the haptic manipulator emulated a viscous
media through which the subject had to move the hand. A
monitor displayed the current motion from the starting points
and a wall where the target was located. From the recorded
movement of subjects, we extracted trajectories, movement time,
velocity profiles and dispersion of hits on the target. From
measured EMG, we obtained muscle activations and calculated
the effort related to the arm movement. More details about the
experimental study and the computational model are given in
section 4.

2. RESULTS

We analyzed three main aspects of reaching movements that
are most relevant to CBT and SAT. First, we show the velocity
profiles. Second, we show the movement reaching times with
respect to Fitts’ law. Third, we show the hit dispersion diagram
that indicates distribution of reaching movement final position
on the wall, where the target was located. Each of the three aspects
is shown for both simulation and experimental data. Additional
supplementary results are presented in Supplementary Data,
which show some other details of the reaching movement.

The subjects were given a limited amount of time per session
(100 s) in order to be forced to follow CBT. In the available
time, on average each subject performed 71.5 ± 13.7 trials and
accumulated reward 62.9 ± 13.0 for 5 mm target, 82.9 ± 13.4
trials and reward 81.9± 13.4 for 10 mm target, 116.2± 17.3 trials
and reward 115.9± 17.0 for 20 mm target, and 142.6± 10.3 trials
and reward 140.6± 10.3 for 40 mm target.

2.1. Velocity Profiles
Velocity profiles are depicted in Figure 2. One can see that, for
subjects and for the model, movement velocity increases with
the distance to the target to compensate for longer distance
by permitting higher motor cost in order to reach the target
in a reasonable time (i.e., maintain reasonable expected utility
according to CBT). This relationship is also evident in Table 1,
where the mean peak velocity is increasing with the reaching
distance (see columns). Note that the values are normalized to
the first value to facilitate an easier comparison. Furthermore,
movement time increases when the target is smaller, and also
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TABLE 1 | Peak velocity relationship to target size and distance (normalized to the first value).

Target [m] - experimental Target [m] - model

0.005 0.01 0.02 0.04 0.005 0.01 0.02 0.04

Distance Short 1.00 1.08 2.13 2.98 1.00 1.20 1.56 1.74

Med. 2.69 2.83 3.20 3.90 2.07 2.18 2.43 2.90

Long 4.20 4.14 4.58 4.93 2.45 2.68 3.36 3.93

A B

FIGURE 2 | Velocity profiles obtained from 1,500 trajectories starting from 15 points (see Figure 5B), for each target size. (A) recorded from subjects. (B) obtained

from the model. The color of lines depends on the distance between the initial point and the target.

increases with the movement distance, consistently with Fitt’s law
(i.e., following SAT). This relationship is also evident in Table 2,
where the mean movement time is decreasing with the target
size (see rows). One can also observe that these relationships
are relatively similar between the experimental data and the
simulation data.

In addition, these profiles resemble asymmetric bell-shaped
trajectories with the peak velocity lying early in the movement,
which corresponds to the established studies from the literature
(Plamondon, 1991). The time of this peak occurs earlier when the
target is smaller, and later for longer movements. Additionally,
the endpoint velocity does not differ much depending on the
length of the movement, but is higher for larger targets.

There are also some discrepancies between subjects and the
model. Themost obvious is that themodel is much faster than the
subjects who also slow down the motion sooner than the model,
resulting in a more pronounced peak. These discrepancies are
further discussed in section 3.4.1.

2.2. Fitts’ Law
Fitts’ law states that the movement time (MT) is linear in its index
of difficulty (ID), this index being larger for longer movements
and smaller targets. The equation that describes the Fitts’
law is

MT = a. log2

(
D

W

)

︸ ︷︷ ︸

ID

+b, (3)

where D is the length of the movement (denoted with A for
amplitude in other papers), W is the width of the target and a

and b are the linear coefficients. This law was initially studied for
one dimensional movements, and then extended for many other
contexts (Soechting, 1984; Bootsma et al., 1994; Laurent, 1994;
Plamondon and Alimi, 1997; Smyrnis et al., 2000; Bootsma et al.,
2004).

From the trajectory data, we computed ID values for different
distances D and target widths W using (3). Figure 3 shows the
resulting movement time MT over ID for the subject and for
the model. One can see that the experimental data are strongly
consistent with Fitts’ law (r2 > 0.9) which also holds for the
computational model (r2 > 0.7).

The obtained values of b are quite similar between the model
and the experimental data, corresponding to a close-to-null
offset. However, the values of a do not match. First, as outlined
in section 2.1, the movements from the computational model are
faster than those of subjects (see section 3.4.1 for discussion).
Besides, according to the literature, the values of a vary widely
across subjects (Crossman and Goodeve, 1983; Scott MacKenzie,
1989).

2.3. Hit Dispersion
The hit dispersion resulting from our study is shown in
Figure 4. One can observe a good match between experimental
hit dispersion and the one obtained from the model. The
Kullback–Leibler divergence was: 0.032, 0.029, 0.069, and 0.043,
respectively for each target. This good match is a distinguishing
feature of our model as, to our knowledge, it is the first that
can reproduce this property of human reaching movements.
Nevertheless, the positive correlation between hit dispersion and
target width is coherent with the minimal intervention principle
(Todorov and Jordan, 2002).
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TABLE 2 | Movement time relationship to target size and distance (normalized to the first value).

Target [m] - experimental Target [m] - model

0.005 0.01 0.02 0.04 0.005 0.01 0.02 0.04

Distance Short 1.00 0.83 0.56 0.46 1.00 0.82 0.62 0.54

Med. 1.32 1.15 0.83 0.69 1.24 1.12 0.97 0.86

Long 1.53 1.35 1.04 0.88 1.66 1.49 1.22 1.09

A B

FIGURE 3 | Fitts’ law. (A) obtained from all subjects trajectories. (B) obtained from the model. Each dot corresponds to an average for each target size and target

distance pair, obtained either over all subjects or over 1,500 model trajectories.

A B

FIGURE 4 | Hit dispersion diagram obtained from 1,500 trajectories starting from 15 points (see Figure 5B), for each target size. (A) Recorded from subjects.

(B) Obtained from the model. The vertical red lines denote the lateral target boundaries. Dark blue histograms are obtained by counting all the trajectories that hit the

target within a 0.5 millimeter range. Light blue Gaussians are fitted to the histograms.

One can observe that subjects and the model tend to hit more
in the center of target, which is in first approximation a good way
to maximize the expected utility. The mean location of the fitted
Gaussians’ peaks with respect to the target center and normalized
to the target size for experimental data is at −5.4 ± 2.5% and for
model is at 0.63± 1.5%. Furthermore, when the target is smaller,
dispersion is reduced to increase the probability of reaching the
target successfully. This reduced dispersion is obtained at the

price of a longer movement time, as illustrated in Figure 3, as a
result of SAT.

However, the probability to miss the target is never null,
neither for the subjects nor for the model. Since the experimental
task included a limitation on the available time to perform
the task, it was more optimal to pay the price of a few failed
movements than to move slow enough to succeed every time.
This resulted in CBT, as moving slowly would mean spending
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too much of the limited time and consequently missing an
opportunity to get a larger cumulative reward.

3. DISCUSSION

As outlined in the introduction, the model presented in this
paper assumes that the CNS optimizes the expected utility of
reaching movements. As Equation (2) shows, this expected utility
is a function of three factors: the discounted reward resulting
from reaching, which is itself a decreasing function of movement
time, the probability to get this reward, which decreases with
hit dispersion, and the cost of movement, which depends on
the movement trajectory and timing. In order to optimize the
expected utility, the CNS must find an optimal trade-off between
these competing factors, by adjusting the instantaneous muscular
activations.

We qualitatively analyzed three main aspects of reaching
movements that are most relevant to CBT and SAT. First, the
results show that the proposed model accounts for CBT as
the velocity of movement is higher for more distant targets.
This suggests that higher cost is permitted by the model/CNS
to compensate for longer distances in order to reach the
target in a reasonable time. Second, the results show that
our model accounts for SAT by following Fitts’ law, as the
reaching time increases while the target size decreases to
compensate for the required higher accuracy. Third, the results
show that the model accounts for stochasticity of movement
due to motor noise, as the target is sometimes missed and
the hit position frequency on the target follows Gaussian
distribution. Thus, even if our model does not quantitatively
account for the reaching time of subject (see section 3.4.1 for
discussion), the good qualitative match between experimental
results and the behavior of our model strongly suggests that
subjects do optimize their reaching time with respect to the
global expected utility of their movement, i.e., taking the
probability to miss into account. Additional results are in
Supplementary Data and which point out that the proposed
model can account for several other phenomena observed in
the experimental data, such as: asymmetric muscle effort cost
with respect to the initial point, and tendency to hit the target
perpendicularly.

3.1. Our Model Simultaneously Accounts
for Both CBT and SAT
The models presented in Shadmehr et al. (2010) and Rigoux and
Guigon (2012) only related discounted reward and movement
cost to explain the time of movement. In particular, motor
control results in Rigoux and Guigon (2012) were obtained
in the absence of sensory and motor noise. This model could
explain several well-established motor control facts, as expected
from the close relationship to previous optimal control models
(Gordon et al., 1994; Shadmehr andMussa-Ivaldi, 1994; Todorov
and Jordan, 2002; Guigon et al., 2007, 2008a; Liu and Todorov,
2007), as well as several phenomena specific to CBT tasks
(Watanabe et al., 2003; Rudebeck et al., 2006). However, the
model in Rigoux and Guigon (2012) could not provide a

direct account of phenomena relying on the stochasticity of
the motor system, such as Fitts’ law. Actually, their model
provided an indirect account of Fitts’ law (see, Rigoux and
Guigon, 2012). For obtaining these results, the authors had
to estimate dispersion as a function of velocity considering a
constant velocity over the movement, and they reconstructed the
relationship between the index of difficulty and the movement
time based on a single starting point and the size of a unique
target that would match this estimated dispersion (personal
communication).

On the other hand, the model of Dean et al. only related
discounted reward and accuracy, without consideration for
movement cost (Dean et al., 2007). An abstract SAT model was
directly fitted to human movement data, taking Fitts’ law as a
prior rather than explaining it. As such, the model could not
account for several motor control phenomena related to the cost
of movement.

In section 2.2, we have shown that our model accounts for
Fitts’ law. In contrast with the model of Dean et al. (2007), in
our model the hit dispersion is measured as an effect of motor
noise and imperfect state estimation along optimized trajectories,
rather than inferred based on a given SAT model. Thus, one of
the contributions is a model that addresses the more global inter-
relationship between the discounted reward, the probability to
reach, and the movement cost through an optimality criterion
that accounts for the motor strategy of human subjects in this
multi-dimensional choice space. Furthermore, simultaneously
taking into account the three factors above endows our model
with further properties, resulting in the contributions highlighted
below.

3.2. Our Model Accounts for Hit Dispersion
In Figure 4, we observe that hit dispersion is smaller for
smaller targets, even if there are still some failed movements.
Our model puts forward two explanations on how the CNS
might do so. First, the hit velocity is lower for smaller targets.
Up to a certain level, motor noise can be reduced without
slowing down by generating less co-contraction. However, below
a certain threshold, less muscular activation implies a slower
movement. Thus, the CNS achieves higher accuracy just by
arriving slower at the target. Second, we observe in Figure 2

that subjects start slowing down earlier when the target is
smaller. By doing so, they give more time to the state estimation
process to accurately estimate the end effector position, which
is another way to reduce hit dispersion. It is quite likely that
both mechanisms contribute to the necessary reduction in hit
dispersion.

Recently, a study by Wang et al. (2016) empirically observed
that human subjects preferred to execute the reaching movement
with a time higher than the time at which the best endpoint
variability was achieved. Based on this, they hypothesized that
the human CNS tends to minimize both effort and endpoint
variability. While their study excluded the visual feedback, their
results are generally in line with the results of our study. However,
Wang et al. (2016) did not devise any mathematical model to
replicate their hypothesis.
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3.3. Our Model Accounts for Asymmetric
Bell-Shaped Velocity Profiles
The hit dispersion observed in Figure 4 results from motor noise
and imperfect state estimation. As a consequence of motor noise
being proportional to muscular activation, one way to decrease
motor noise is to decrease muscular activation. In the case of the
minimum intervention principle (Todorov and Jordan, 2002),
it results in the fact that the brain will not correct an error
which is not related to task achievement. In the case of reaching
movements, it will also result in a tendency to move fast earlier
to be accurate later, when accuracy matters. Additionally, under
the assumption that more accurate state estimation takes more
time, a slower movement provides a better opportunity for state
estimation to compensate for delayed feedback about the current
position of the end effector. Taken together, both phenomena
drive controller optimization toward generating less velocity by
the end of themovement for a smaller target. So, one way tomake
sure to hit a small target would be to perform a slow reaching
movement.

However, a slower movement results in a more discounted
reward, thus the movement should nevertheless be as fast as
possible. As a consequence, the best way to optimize reaching
accuracy under temporal constraints is to be faster in the
beginning of the movement and slower in the end. Such
asymmetry was also observed in the literature (MacKenzie et al.,
1987; Jean and Berret, 2017). This phenomenon can be attributed
to the use of visual feedback, as it has been shown that the
peak in velocity profiles occurs earlier in the movement when
the visual feedback is available compared to when no visual
feedback is available (Hansen et al., 2006; Burkitt et al., 2013).
Thus, velocity profiles should be bell-shaped and asymmetric, as
visible in Figure 2. By contrast, the model of Dean et al. assumes
constant velocity (Dean et al., 2007) and the one from Rigoux and
Guigon are bell-shaped, but not asymmetric (Rigoux andGuigon,
2012).

3.4. Potential Limitations
3.4.1. Discrepancy in Movement Times between

Experimental and Simulation Data
Themovement time discrepancymay be due to various factors:

(1) The presence of the haptic manipulator and an additional
external damping, which significantly slows down the
motion of the subjects and which is not accounted for by the
model,

(2) Inaccuracies in the arm model, which does not account
for the effects of muscular friction that slows down the
arm,

(3) Inaccuracies in the state estimation process. As for the latter,
if estimation is too good in themodel, the simulated armmay
go faster without generating too much inaccuracy.

However, the purpose of this study was not to precisely predict
the movement times of the subjects, but to show that the model
can account for both CBT and SAT. For clarity and generality, the
model was simplified and did not include the external damping
of the haptic manipulator. Therefore, the movement times of the

model do not correspond to the movement times of the subjects,
as the model could move faster due to the less resistance. In
particular, any significant addition external damping increases
the movement time due the increased effort (Tanaka et al., 2006),
therefore such time movement discrepancy is in accordance with
the literature.

Including more detailed or better matching models at various
stages/aspects could indeed make the data look closer to each
other. However, the primary focus of this study was to validate
the hypothesis that the model is able to account for both SAT and
CBT. In addition, a general model should be able to account for
SAT and CBT independently of conditions. Therefore, trying to
precisely match the simulations to any particular experimental
condition (e.g., external damping) would not help to show
such generality, nor would provide any additional validation of
unification hypothesis.

3.4.2. Various Discounting of Reward through Time
The existing study did not explore all design choices of how the
model should discount the reward through time that has been
studied in the literature. The debate between diverse discounting
approaches is a long standing one (see e.g., Green and Myerson,
1996; Berret and Jean, 2016). The model of Rigoux and Guigon
(2012) uses an exponential discounting of the reward through
time. Alternative models suggest linear (Hoff, 1994), quadratic
(Shadmehr et al., 2010), or hyperbolic (Shadmehr et al., 2010)
discounting approaches. The latter is also in line with studies
of many other authors (e.g., Prévost et al., 2010). More recently,
using an inverse optimal control approach, it was determined that
the experimental “cost of time” for reaching movements would
rather follow a sigmoidal function (Berret and Jean, 2016).

3.4.3. Two-Component Reaching Strategy
Several past studies observed that human reaching movements
tend to follow two distinct phases (Woodworth, 1899; Meyer
et al., 1988; Elliott et al., 2001, 2010). The initial phase, which
usually constitutes most of the movement, is rapid and relatively
predictable. In the second phase, when the target is approached,
the movement is slowed down and the time-displacement
profiles often have discontinuities, which reflect modifications
to the trajectory (Elliott et al., 2001). While we observed a
similar behavior in our subjects, the presented model is not
able to explicitly account for such two-component reaching
strategy.

3.4.4. Flat Target
In the classic Fitts’s law, the target surface is assumed to be
oriented perpendicularly with respect to the movement. In our
study the target was flat and the hits could be done from
different angles. Some insights about this aspect are presented
in Supplementary Material. The experimental data showed that
subjects hit the target from different angles, but the majority
of hits were closer to the perpendicular direction. To account
for this observed aspect, we extended the proposed model to
include the perpendicularity cost [see (4) in section 4.2.1 for
details].
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3.4.5. Reliance on Selected Parameters and

Optimization Process
The resolution of the optimization problem to acquire the
controller relies on extensive numerical experiments with several
tunable parameters. The optimization process can be time-
consuming and selecting the suitable parameters is essential in
acquiring a good solution. This can be viewed as one of the
disadvantages of the proposed method.

3.5. Future Work
Beyond better fitting the data and studying the model properties
through systematic variations of the meta-parameters, the
main line in our research agenda consists in shifting from a
motor control perspective to a motor learning perspective by
focusing on the optimization process itself. Under a motor
learning perspective, we might for instance study the evolution
of trajectories, co-contraction, velocity profiles, etc. along the
training process. We might also check whether our model
accounts for already published motor learning studies such as
the work of Izawa et al. (2008) or Diedrichsen et al. (2010). We
might explore different discounting of the reward through time
from the literature (Berret and Jean, 2016). In addition, we will try
to extend the existing model to incorporate multiple-component
reaching strategy (Elliott et al., 2017).

4. METHODS

4.1. Experimental Methods
4.1.1. Participants
Ten healthy male volunteers participated in the study. Their
average age was 23.0 years (SD = 2.7 years), height 178.8 cm
(SD = 4.1 cm) and body mass 77.4 kg (SD = 5.8 kg). All
subjects were right-handed. Exclusion criteria were neurological,
vestibular, locomotion, visual disorders and recent limb injuries
(self-reported). This study was carried out in accordance with
the recommendations of National Medical Ethics Committee
Slovenia (NO. 112/06/13) with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the National Medical Ethics Committee Slovenia
(NO. 112/06/13).

4.1.2. Apparatus
In most experiments where a subject has to reach a target,
either in monkeys (e.g., Kitazawa et al., 1998) or humans
(Trommershäuser et al., 2003, 2009; Battaglia and Schrater, 2007;
Dean et al., 2007; Hudson et al., 2008), the target is displayed
on a vertical screen and the subject performs a trajectory in
the coronal or horizontal plane that the screen intercepts. Our
experimental apparatus reproduces such a scene in the horizontal
plane.

As depicted in Figure 5A, subjects sat on a chair in front of a
TV screen and a 3 axes haptic manipulator (HM) (Haptic master
Mk2, MOOG, Nieuw-Vennep, The Netherlands). The TV screen
was located 2 m in front of the chair backrest. The subject’s right
wrist was immobilized and connected to the HM by means of the

gimbal mechanism (ADL gimbal mechanism, MOOG, Nieuw-
Vennep, The Netherlands). HM constrained the motion of the
subject’s right hand (hand from here on) to the horizontal plane
at the height of the subject’s shoulders. The subject’s right elbow
was suspended from the ceiling by a long string in order to
compensate for the effect of gravity and to restrain the motion
of the arm to the horizontal plane. In order to fix the position of
the shoulders, the trunk of the subject was immobilized by tying
it to the backrest of the chair.

Details about the performed trajectories are shown in
Figure 5B. Subject’s were allowed to move the hand from 15
initial circular areas with 10mm diameter spread in front of them
to a single target that was located symmetrically to their right
shoulder on a virtual wall at a distance equal to 95% of their arm
length (defined as the distance between shoulder and wrist). The
initial areas were spread on three arcs with their center on the
target on the virtual wall. The radius of the first arc was equal to
15% of the arm length and included 3 initial areas, the radius of
the second arc was equal to 37.5% of the arm length and included
5 initial areas, and the radius of the third arc was equal to 60% of
the arm length and included 7 initial areas. The initial areas on
each arc were placed symmetrically with respect to the target on
the virtual wall and were spread within the±45◦. The initial areas
were spread in the region well within the area of arm motion
where the passive joint torques are negligible.

The size of the target on the virtual wall was either 5, 10, 20, or
40 mm wide. The position of the current initial area, the position
of the target and the position of the subject’s hand were drawn in
2D perspective on the screen in real time.

The experiment was divided into five parts corresponding to
the four randomly selected sizes of the target, preceded by a
familiarization trial with the target size of 20mm. In each part,
the randomly selected initial position from where the subject had
to perform the motion was indicated in red. When the subject
reached and stood within the initial position for more than 1 s,
the color of the patch changed from red to green. This allowed the
execution of the complete behavioral neuro-cognitive processes
responsible for the SAT (Perri et al., 2014). When the patch
turned green, the subject was indicated that the motion could
be started. The time of the motion from the moment when the
hand left the initial circular patch to the moment when the hand
touched the virtual wall was recorded and subtracted from the
total time of 100 s. The remaining time was displayed at the
bottom of the screen. Success in hitting the target on the virtual
wall was clearly indicated by changing the color of the virtual
wall from gray to green for 1s. Besides, the subject obtained a
money award of 2.5 euro cents. If the target was missed, the
virtual wall turned red and no reward was given to the subject.
The cumulative reward was displayed on top of the screen using
large bold fonts.

The task of the subject was to obtain as high reward as
possible in the given time. The cost of movement for each starting
point was calculated by using muscle activity measurements
obtained from EMG. The results regarding the movement cost
are presented in Supplementary Material. To amplify the effect
of the cost of motion, the haptic manipulator emulated a
viscous media through which the subject had to move the hand.
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FIGURE 5 | Experimental and simulation setup. (A) Subjects sat on a chair in front of a TV screen with the right wrist connected to the haptic manipulator that

constrained the motion of the right hand to the horizontal plane at the shoulder height. The screen displayed the current position of the subject’s hand, the randomly

occurring initial circular areas, the target on the virtual wall and gave feedback about the remaining time and the cumulative reward. (B) Simulated arm workspace and

distribution of the 15 initial circular areas relative to the target on the wall. The reachable space is delimited by a spiral-shaped envelope (gray). The two segments of

the arm are represented by red lines. The screen is represented as a green line positioned at y = 0.6175m and the target center as a red star. The origin of the arm is

at x = 0.0, y = 0.0. Initial areas are organized into three sets at different distances to the target, corresponding to 15% (3 blue circles), 37.5% (5 green circles), and

60% (7 red circles). The color code of the dots depending on the distance to the target is reused throughout the paper (in Fitts’ law and velocity profiles diagrams).

The coefficient of viscous friction was set to 30Nm−1s. In the
analysis, the muscular activations necessary to compensate for
the friction of the haptic manipulator at the end-effector were
removed by estimating them through the arm model described
in section 4.2.5 and a model of the haptic manipulator friction.

4.2. Computational Methods
The computational model consists of a simulation set-up, an
arm model, a state estimator, a set of controllers and a way
to optimize these controllers. All the meta-parameters of these
various components are summarized in Table 3, apart from arm
model parameters which are given in section 4.2.5. Though
the model is formally described using continuous time, in all
the computational methods time is discretized with a time step
δt = 0.002s.

4.2.1. Specific Computational Model
The model described in the introduction was general. Here, we
give a more specific account of the computational model of arm
reaching movement which is actually used in the simulations.

Instead of (2), the complete cost function that we optimize is

J(u) = E(s, u)

( ∫ ∞

0

[

e−t/γ ρR(st)− υL(ut)
]

dt + C(sf )

)

, (4)

where the perpendicularity cost C(sf ) accounts for the tendency
of subjects to hit the target perpendicularly and penalizes the
scalar product between a vector colinear to the target and the
Cartesian velocity of the end effector when the arm hits the

TABLE 3 | Meta-parameters of the computational model.

ρ Immediate reward factor 3,000

Cost υ Effort term factor 1

function γ Discount factor 0.6

σ Initial covariance factor 0.01

CMA-ES max_iter Maximum number of iterations 5,000

popsize Population size 30

repet Number of repetitions 50

κ Multiplicative muscular noise 0.3

State 1 Sensory delay in time steps 10

estimation k1 Open-loop term factor in state estimation 0.2

k2 Closed-loop term factor in state estimation 1.0

Controller Nh Number of neurons in hidden layer 10

screen. The necessity of this additional term is discussed in
Supplementary Material.

There are three meta-parameters in (4): the continuous-time
discount factor γ accounts for the “greediness” of the controller,
i.e., the smaller γ , the more the agent is focused on short term
rewards, ρ is the weight of the reward term and υ is the weight of
the effort term. Their value is given in Table 3.

4.2.2. Controllers and Optimization
In order to evaluate the criterion defined in (4), we need a
controller which optimizes it. Actually, the optimal control

Frontiers in Human Neuroscience | www.frontiersin.org 9 December 2017 | Volume 11 | Article 615

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Peternel et al. Unifying Speed-Accuracy Trade-Off and Cost-Benefit Trade-off

problem arising from a cost function including an expectation
cannot be solved analytically. The utility expectation itself as
defined in (4) must be estimated empirically as an average of
the return over a set of attempts to hit the target (these attempts
are called “rollouts” hereafter). The more rollouts, the better the
estimate but we have to limit their number because computation
takes time.

We thus rely on a stochastic optimization process, where
a controller is represented as a parametric function whose
parameters are tuned to optimize (4). The class of functions
considered here consists of multi-layer neural networks with one
input layer, one output layer and a hidden layer. In order to
facilitate optimization by decoupling the parameter optimization
problems for each trajectory, we define one such network for each
starting point.

These controllers take the state of the system as input and
provide muscular activations for all muscles in the armmodel. As
described in section 4.2.4, states are 4D and muscular activations
are 6D, thus we have 4+ Nh + 6 neurons in the networks, where
the meta-parameter Nh is the number of neurons in the hidden
layer.

All networks are initialized randomly with all weights and
biases taken in [0, 0.1]. They are then optimized with respect
to the approximated utility expectation described above using
a state-of-the-art black-box optimization tool named CMA-ES
(Hansen et al., 2003). Given an initial random controller, CMA-
ES optimizes its parameters with local stochastic search. New
rollouts are performedwith varying parameters for all parameters
around those of the current controllers, and the parameters that
give rise to a better performance with respect to the cost function
(4) are retained in the new current controller. In practice, the
parameters are the weights and biases of each neuron in the
networks.

CMA-ES comes with four meta-parameters: the initial size
σ of a covariance matrix used for exploration, the size of the
population popsize, the number of repetitions repet for each
trajectory to get a decent estimation of the reward expectation

and the maximum number of iterations max_iter. The values of
these meta-parameters are given in Table 3.

4.2.3. State Estimation
A widely accepted overview of the human motor control
loop is depicted in Figure 6A. According to this view, human
movements are performed in closed loop. However, the sensory
feedback being delayed, the control loop has to rely on state
estimation to be stable (see Figure 6B).

Our implementation of the state estimator contains an
estimate of the current state x̃t of the arm. The initial estimated
state x̃0 is the initial state of the arm x0. Then, at each time step t,
this estimated state is updated by the combination of two terms
x̃1t and x̃2t .

The first term corresponds to an open-loop estimation. At
each time step, it simply updates the estimated state by applying
the forward model of the arm to the previous estimated state,
given the efferent copy of the motor command sent to the arm
(before adding motor noise), i.e.,

x̃1t = FM(x̃1t−1, ut−1).

This term being open-loop and the motor command being
different from the noisy command that has actually been applied
to the arm, it generates an estimated state trajectory that may
eventually drift away from the actual trajectory of the end
effector.

The second term is in charge of closing the estimation loop by
making profit of the delayed sensory feedback. The actual state of
the arm xt−1 is available after a sensory delay of 1 time steps.

A first, naive approach to this second term is the following.
Given this known state xt−1 and the 1 efferent copy of the
commands ut−1 to ut−1 sent to the arm in between, one can infer
an estimate of the current state x̃2t by simply applying the forward
model of the arm 1 times starting from xt−1 given the sequence
of commands, using

A B

FIGURE 6 | (A) A standard schematic view of human motor control (see e.g., Scott, 2004). (B) Illustration of the state estimation dynamics. The open-loop term (in

green) diverges from the perturbation-free “ground truth" trajectory (in blue). The model state estimation (in red) diverges in the accelerating phase of the movement,

but the closed-loop term makes it converge again toward ground truth when the end-effector decelerates.
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x̃2t−1−1 = FM(xt−1, ut−1),

x̃2t−1−2 = FM(x̃2t−1−1, ut−1−1),

. . .

x̃2t = FM(x̃2t−1, ut−1).

Again, the obtained state estimation x̃2t is not perfectly accurate
given that the available efferent copy of the commands do
not incorporate the applied motor noise. However, this term
counterbalances the drifting tendency of the open-loop term
because it updates the current estimate from some delayed
ground truth. This approach neglects sensory noise. As a result,
it is simpler than the standard state estimation model using an
extended Kalman filter, as described in Guigon et al. (2008b).

However, this simpler approach still suffers from its
computational cost, because it requires 1 iterations of the
forwardmodel of the arm. In order to improve the computational
efficiency of the model, we call upon a neural network to replace
these 1 iterations by a single function call. The neural network
learns to predict the current estimated step given the delayed
ground truth xt−1 and the 1 efferent copies that were received
in between.

We made sure through dedicated simulations (not shown)
that the learned neural network provides a reasonably accurate
estimate of the current state, corresponding to what 1

iterations of the forward model would have inferred, at a
much lower computational cost and with an increased biological
implementation plausibility.

Finally, we combine the open-loop and the closed loop term
by a weighted summation, using

x̃t = (k1x̃t
1 + k2x̃t

2)/(k1 + k2).

The delay in number of time steps 1 as well as coefficients k1
and k2 are meta-parameters described in Table 3. They are tuned
so that the estimated state can significantly differ from the true
state when the arm is moving fast, but can become more accurate
again when the arm slows down, so as to give a chance to hit
the target. This tuning process was performed empirically over a

small set of trajectories before starting to optimize the controller
parameters.

4.2.4. Simulation Set-Up
The state-space consists of the current articular position q of
the arm and its current articular speed q̇. The state s = (q, q̇)

has a total of 4 dimensions. The initial state is defined by null
speed and a variable initial position. The positions are bounded
to represent the reachable space of a standard human arm, with
q1 ∈ [2.6,−0.6] and q2 ∈ [3.0,−0.2], as shown in Figure 5B.
The action-space consists of an activation signal for each muscle,
resulting in a total of 6 dimensions.

The target is defined as an interval of varying length around
(x = 0, y = 0.6175m). The movement is stopped once the
line y = 0.6175m has been crossed, and the intersect between
the trajectory and this line is computed to determine whether
the target was hit. The reward for immediately hitting the target
without taking incurred costs into account depends on the meta-
parameter ρ (see Table 3).

4.2.5. Arm Model
The plant is a two degrees-of-freedom (DoFs) planar arm
controlled by 6 muscles, illustrated in Figure 7. There are several
such models in the literature. The model described in Kambara
et al. (2009) lies in the coronal plane so it takes the gravity force
into account. Most other models are defined in the horizontal
plane and ignore gravity effects. They all combine a simple

TABLE 4 | Arm parameters.

m1 Arm mass (kg) 1.4

m2 Forearm mass (kg) 1.1

l1 Arm length (m) 0.3

l2 Forearm length (m) 0.35

I1 Arm inertia (kg.m2) 0.11

I2 Forearm inertia (kg.m2) 0.16

s1 Distance from the center of segment 1 to its center of mass (m) 0.025

s2 Distance from the center of segment 2 to its center of mass (m) 0.045

A B

FIGURE 7 | Arm model. (A) Schematic view of the arm mechanics. (B) Schematic view of the muscular actuation of the arm, where each number represents a

muscle whose name is in the box.
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TABLE 5 | Nomenclature of the arm model parameters.

mi Mass of segment i (kg)

li Length of segment i (m)

Ii Inertia of segment i (kg.m2)

si Distance from the center of

Segment i to its center of mass (m)

A Moment arm matrix (∈ R
6×2)

fmax Maximum muscular tension (∈ R
6)

M Inertia matrix (∈ R
2×2)

C Coriolis force (N.m ∈ R
2)

τ Segments torque (N.m ∈ R
2)

B Damping term (N.m ∈ R
2)

u Raw muscular activation (action) (∈ [0, 1]6)

κ Multiplicative muscular noise (∈ R)

ũ Noisy muscular activation (∈ [0, 1]6)

q* Target articular position (rad ∈ [0, 2π [2)

q Current articular position (rad ∈ [0, 2π [2)

q̇ Current articular speed (rad.s−1)

q̈ Current articular acceleration (rad.s−2)

two DoFs planar rigid-body dynamics model with a muscular
actuation model. The differences between models mostly lie
in the latter component. Our muscular actuation model is
taken from Katayama and Kawato (1993) (pp. 356–357) through
(Mitrovic et al., 2008). It is a simplified version of the one
described in Li (2006) in the sense that it uses a constant moment
arm matrix A whereas Li (2006) is computing this matrix as
a function of the state of the arm. This arm model is used in
simulation through a standard Euler integration method.

The rigid-body dynamics equation of a mechanical system is

q̈ = M(q)−1(τ − C(q, q̇)q̇ − g(q) − Bq̇) (5)

where q is the current articular position, q̇ the current articular
speed, q̈ the current articular acceleration, M the inertia matrix,
C the Coriolis force vector, τ the segments torque, g the gravity
force vector and B a damping term that contains all unmodelled
effects. Here, g is ignored since the arm is working in the
horizontal plane.

The inertia matrix is computed as M =
[

k1 + 2k2 cos(q2) k3 + k2 cos(q2)
k3 + k2 cos(q2) k3

]

, with k1 = I1 + I2 + m2l
2
1,

k2 = m2l1s2 and k3 = I2, wheremi is the mass of segment i, li the
length of segment i, Ii the inertia of segment i and si the distance
from the center of segment i to its center of mass. The value of all
these parameters is given in Table 4. They have been taken from
the literature.

The Coriolis force vector is C =

[

−q̇2(2q̇1 + q̇2)

q̇1
2

]

k2 sin(q2).

The damping matrix B is defined as B =

[

b1 b2
b3 b4

]

q̇ =

[

0.05 0.025
0.025 0.05

]

q̇.

The computation of the torque τ exerted on the system given
an input muscular actuation u is as follows. First, the muscular
activation is augmented with Gaussian noise using ũ = ut × (1+
κN (0, I)), where× refers to the element-wise multiplication and
I is a 6×6 identity matrix. Then, the input torque is computed as
τ = A⊤(fmax × ũ), where the moment arm matrix A is defined
as

A⊤ =

[

a1 a2 a3 a4 a5 a6
a7 a8 a9 a10 a11 a12

]

=

[

0.04 −0.04 0.0 0.0 0.028 −0.035
0.0 0.0 0.025 −0.025 0.028 −0.035

]

,

and the matrix of the maximum force exerted by each muscle is
defined as

fmax =











700 0 0 0 0 0
0 382 0 0 0 0
0 0 572 0 0 0
0 0 0 445 0 0
0 0 0 0 159 0
0 0 0 0 0 318











.

The nomenclature of all the parameters and variables of the arm
model is given in Table 5.
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